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HIGHLIGHTS

• A facial method was used to fabricate BiOI/BiOCl film at room temperature.

• 30% BiOI/BiOCl showed an excellent photocatalytic activity and stability.

• Improvement of photocatalytic activity was owed to expanded visible light absorption

and high separation efficiency of charge.

Photocatalysis has been considered to be one of the most promising ways to

photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO

were fabricated through a simple method at room temperature. The photocatalytic

efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and

MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed

12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl

showed 5 and 6 times higher efficiency when degrading RhB andMB, respectively. These

obvious enhancements were attributed to expanded visible light absorption and high

separation performance of photoinduced charge. Moreover, the photocatalytic activity

of 30%BiOI/BiOCl had no obvious decrease after five recycles, suggesting that it was a

promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible

growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were

investigated in details. This work would provide insight to the reasonable construction of

BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

Keywords: BiOI/BiOCl film, visible light, heterojunction, photodegradation, recycle

INTRODUCTION

Recently, semiconductor photocatalysts have been potential materials in energy storage, organic
pollutants degradation and so on Kisch (2013). Since TiO2 had been reported to produce H2

under UV light (Fujishima and Honda, 1972), transitional mental oxides have been applied
as photocatalysts, such as ZnO (Soci et al., 2007), SnO2 (Law et al., 2002), and WO3 (Baeck
et al., 2003). However, many of them have wide bandgap and are activated by UV-light (4% of
solar light). To utilize more solar light, searchers pay a lot of efforts to find new photocatalysts
which could maximize the utilization of solar light. Among those photocatalysts, BiOCl is
considered as a new kind of promising layered material for photocatalysis due to its unique layered
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structure, high chemical and optical stability, corrosion resistance
and nontoxicity (Li J. et al., 2014; Ding et al., 2015; Li et al., 2017).
BiOCl has layered structure consisting of [Bi2O2]

2+ sandwiched
between two slabs of Cl−, which produces internal static electric
fields to separate photogenerated electrons and holes (Cheng
et al., 2014; Mi et al., 2016). However, the practical application of
BiOCl has been hindered owing to its wide bandgap and relatively
high recombination rate of photoinduced carriers (Dong et al.,
2012; Xiao et al., 2012).

Aiming at solving these shortcomings, many strategies have
been reported to enhance the photocatalytic efficiency of BiOCl,
including: (i) impurity element doping, such as BiOClxBryIz
(Sun X. et al., 2015) and BiOClxI1−x (Kim et al., 2014), (ii)
surface functionalization, like inducing oxygen vacancies in
BiOCl (Jiang et al., 2013), (iii) construction of the plasmonic
photocatalysis system, such as Ag/BiOCl (Liu H. et al., 2012)
and Ag-AgX-BiOX (X = Cl, Br, I) (Cheng et al., 2011;
Xiong et al., 2011; Cao et al., 2013), (iv) construction of
semiconductor heterojunctions (Jiang et al., 2011; Wang et al.,
2015). Construction of semiconductor heterojunctions has been
widely explored in recent years because of two advantages.
First, materials with wide bandgap could match with lots of
semiconductors at the energy level. In that way, it is propitious
to electron and hole separation by building an interfacial electric
field between different semiconductors. Cui’s work showed that
photodegradation efficiency of Ag3PO4/BiOI was nearly 10 times
that of BiOI (Cui et al., 2013). And Cui’s group found that
photodegradation efficiency of BiOI/Bi2WO6 was about 6.1
times higher than that of pure Bi2WO6 under visible light
irradiation (Li et al., 2013). Ao’s work showed that Ag2MoO4/g-
C3N4 highly improved photocatalytic degradation performance
for different organic pollutants under sunlight irradiation
(Wu et al., in press). Secondly, coupled with narrow band
semiconductors, BiOCl could expand visible light absorption
and utilize more solar energy. Narrow bandgap materials act
as the light absorber and generate photoinduced carriers with
proper energy, indicating that it is a very efficient visible-
light-activated photocatalyst (Wang et al., 2017). Therefore,
many BiOCl/narrow bandgap materials, such as BiOCl-C3N4

(Wang et al., 2013), BiOCl/Bi24O31Cl10 (Li F. et al., 2014),
BiOCl/Bi2S3 (Cheng et al., 2012), BiOCl/BiOI (Sun L. et al.,
2015), BiOCl/BiOBr (Zhang et al., 2013), and NaBiO3/BiOCl
(Chang et al., 2010), have been successfully prepared.

SCHEME 1 | Illustration of the preparation of BiOI/BiOCl composites on FTO.

Based on the advantages mentioned above, BiOI is a great
candidate to couple with BiOCl, which is a narrow bandgap
semiconductor (1.72 eV) and has a similar layered structure
(Jiang et al., 2011; Huang et al., 2015; Ning et al., 2016).
Once coupled with BiOI, BiOI/BiOCl is expected to achieve
the aims as followed: (i) to enhance visible light absorption,
(ii) to accelerate separation efficiency of photoinduced electrons
and holes (Cao et al., 2011; Xiao et al., 2012; Wang et al.,
2016). Although there are a few reports about BiOI/BiOCl,
most of them are powder synthesized through hydrothermal
and solvothermal methods, which needs high temperature
and pressure. Additionally, powder catalysts are hard to be
separated and recovered because they are easily dispersed into
solution when used in pollutants degradation (Zhao et al., 2015).
Unlike powder catalysts, immobilized photocatalysts become
more promising in practical application for easy separation and
high reusability (Liu X. et al., 2012). Therefore, BiOI/BiOCl
film is of great advantage in practical organic pollutants
degradation.

In this work, a facial method was used to fabricate a series
of BiOI/BiOCl immobilized films at room temperature. The
possible growth process of BiOI/BiOCl film was investigated
in detail. All BiOI/BiOCl films showed better photocatalytic
performance than pristine BiOCl film. UV-vis diffusion
reflectance spectra, photocurrent, fluorescence spectra (PL) and
trapping experiment were used to gain insights into the reasons
for remarkable enhancement of photocatalytic activity and the
possible photocatalysis mechanism of BiOI/BiOCl film. Besides,
recycle experiments were used to measure the stability and
duration of BiOI/BiOCl film.

EXPERIMENTAL

Synthesis of xBiOI/BiOCl Film
In a typical procedure, 3.0 g BiCl3 wasmixed with 100mL ethanol

and 1 mL HCl, and stirred for 1 h to form BiCl3 solution.

Similarly, BiI3 solution was prepared using BiI3, HI and ethanol

in the same way. After that, BiCl3 solution and BiI3 solution

were mixed with different molar ratio.1 mL of mixture solution
was dropped onto FTO glass. After being dried at 100◦C for 1
h, the films were dipped into distilled water for 30 min to form
BiOI/BiOCl (as shown in Scheme 1). Finally, the samples dried at
60◦C for 2 h. The xBiOI/BiOCl composites with molar ratios of
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BiOI to BiOCl at 10, 30, and 60%were named as 10%BiOI/BiOCl,
30%BiOI/BiOCl, 60%BiOI/BiOCl, respectively.

Characterization of Photocatalysts
The morphologies and phase structures of xBiOI/BiOCl
films were observed by Field emission scanning electron
microscopy (FE-SEM, Zeiss ULTRA 55), transmission electron
microscopy (JEOL 2010F) and high-resolution transmission
electron microscopy (JEOL 2100 F) and X-ray diffractometry
(XRD, equipped with a Cu Ka X-ray source). The optical
properties of as-synthesized catalysts were tested by UV–vis
spectrophotometer (DRS, Hitachi- UV-3010, using BaSO4

for the baseline measurement) and photoluminescence
spectroscopy (PL, RF-5301PC). FT-IR spectra were recorded on
an Aipha-Centuart FT-IR spectrometer.

The visible-light-driven photocatalytic efficiencies of
xBiOI/BiOCl films were evaluated the degradation of Rhodamine
B (RhB, 2.5mg L−1) and methylene blue (MB, 2.5mg L−1) in a
reactor equipped with a 350 W Xe lamp with >420 nm filter as
the light source. The as-obtained BiOI/BiOCl film was putting
into a reactor, in which 100mL dye solution were poured.
Before irradiation, the solution was continuously stirring in
the dark for 30 min to ensure establish adsorption-desorption
equilibrium. At certain time interval, 4 mL of the suspension
were sampled; the concentration of dye solution was measured
by recording the absorption band maximum in the absorption
spectra. For comparison, the photocatalytic activities of BiOCl
and BiOI were characterized under same condition. In addition,
30%BiOI/BiOCl photocatalyst was examined by 5-cycle to
characterize its stability. Before entering next cycle, samples were
washed by deionized water and alcohol three times. Dried at
100◦C for 1 h and reuse in fresh dye solution.

Electrochemical Measurements
Photocurrent of samples was studied by there-electrode system
in a quartz cell, which was using Pt plate as counter
electrode, Ag/AgCl as reference electrode, and the as-prepared
samples as working electrode on electrochmical workstation
(CHI660C.Shang-hai.). 0.1 M Na2SO4 solution was used as the
electrolyte. The surface area of the working electrode was 4 ×

5 cm2. A 350 W Xe lamp with an filter (λ > 420 nm) was used as
the visible-light source.

RESULTS AND DISCUSSION

XRD Patterns
Figure 1 showed XRD patterns of the as-prepared xBiOI/BiOCl
films. It could be seen that all the diffraction peaks of BiOI
and BiOCl were in good agreement with the standard cards
(JCPDS No. 73-2062) and (JCPDS No. 06-0249) without any
impurity peaks, which indicated that they exhibited tetragonal
structure and corresponded to the FT-IR results (Figure S2). The
characteristic peaks of BiOI and BiOCl coexisted in the XRD
patterns, demonstrating the formation of BiOI/BiOCl composite
without the present of BiOClxI1−x solid solutions (Huang et al.,
2015). With the increase of percentage of BiOI in the composites,
the strength of diffraction peaks of BiOI gradually increased, on

FIGURE 1 | XRD patterns of the as-prepared films.

the contrary, the intensity of BiOCl simultaneously decreased.
Additional, it could see that FTO peaks in Figure 1, it might be
due to the uneven film on glass of the sample.

SEM, TEM, HRTEM, and EDS Images
All the samples were systematically analyzed by SEM. From
Figure 2A, it could be observed that pristine BiOCl was
composed of numerous nanosheets and its surface was very
smooth. Differently, under similar preparation conditions,
pristine BiOI presented hierarchical microspheres consisting
of a series nanosheet in Figure 2B. As for xBiOI/BiOCl
(Figures 2C–E), it could be observed that xBiOI/BiOCl showed
hierarchical structure with BiOCl nanosheets adhering tightly on
BiOI and the particle sizes of xBiOI/BiOCl obviously increased
in comparison with pristine BiOCl. Additionally, color of
sample gradually deepened compared with pristine BiOCl when
percentage of BiOI increased in Figure 2F.

The morphology and structure of as-obtained samples
were further characterized by TEM and HRTEM images.
The microstructures of pristine BiOCl, pristine BiOI and
30%BiOI/BiOCl were shown in Figure 3. The interactions
between BiOCl and BiOI were so strong that ultrasonication did
not separate them during the sample preparation procedure for
TEM characterization (Xiao and Zhang, 2010). Figures 3B,D,F
indicated that the samples were highly crystallized. In Figure 3B,
the lattice fringe with a d-spacing of 0.735 nm matched well
with (001) lattice plane of BiOCl, while in Figure 3F, the
interlayer distance of 0.280 nm responsed to the (280) plane of
BiOI. Figure 3D showed the HRTEM of 30%BiOI/BiOCl, clear
fringes with the lattice spacing of 0.264 and 0.280 nm could
be indexed to (102) lattice plane of BiOCl and (110) lattice
plane of BiOI, respectively. TEM results were in good consistent
with XRD patterns in Figure 1. The results clearly confirmed
the formation of heterostructure between BiOCl and BiOI. In
addition, the elemental distributions of 30%BiOI/BiOCl were
studied through EDS elemental mapping. The corresponding
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FIGURE 2 | SEM images of BiOCl, BiOI and BiOI/BiOCl film: (A) BiOCl;(B) BiOI; (C) 10%BiOI/BiOCl; (D) 30%BiOI/BiOCl; (E) 60%BiOI/BiOCl; (F) Picture of

as-synthesized samples.

results for 30%BiOI/BiOCl were shown in Figures 4A–E. It
could be obviously seen that the sample consist of only I, Bi,
Cl, O, elements. The results of EDS mapping confirmed the
composition, structure and the high purity of 30% BiOI/BiOCl
composite.

Growth Process of xBiOI/BiOCl Film
In order to understand the growth process of BiOI/BiOCl film
in this work, SEM images and XRD patterns of 30%BiOI/BiOCl
film at different time stage were shown in Figure 5. The whole
process was divided into three stages. In the first stage (0 min),
as shown in Figure 5I, the peaks collected from 0 min sample
could be indexed as a composition of BiOCl and BiI3. After
the mix solution consisting of BiI3 and BiCl3 was dropped
on FTO, there was a hydrolyzation competition between them.
BiCl3 was hydrolyzed to form BiOCl prior to the hydrolyzation

of BiI3 when ethanol volatilized, because the Ksp (BiOCl) was
smaller than Ksp (BiOI). As shown in Figure 5B, BiI3 broke
down on the nanosheets structure of BiOCl to form into
hierarchical structure. Besides, the diffraction peak at around
11.9◦ corresponding to the (001) plane shifted to smaller 2θ
in Figure 5I. That might be because the ionic radius of I−

(220 pm) was larger than that of Cl− (181 pm). In the second
stage (1–15 min), BiI3 was hydrolyzed to BiOI. In Figure 5I,
with the increase of reaction time, diffraction peak of BiI3
disappeared and the intensity of BiOI became stronger. In the
meantime, the extent of hydrolyzation caused the shifting of
the diffraction peak of (001) to bigger 2θ. Figures 5C–E showed
that hierarchical BiOI and nanosheets-structure BiOCl formed
a tidily hierarchical structure in the second stage. In the third
stage (30 min), BiI3 was hydrolyzed totally, and BiOI/BiOCl was
formed.
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FIGURE 3 | (A) TEM and (B) HRTEM images of BiOCl, (C) TEM and (D) HRTEM of 30%BiOI/BiOCl, (E) TEM and (F) HRTEM of BiOI.

FIGURE 4 | EDS images of 30%BiOI/BiOCl (A) and Bi (B), O (C), Cl (D), I (E) elemental maps.
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FIGURE 5 | SEM images of (A) BiOCl and 30%BiOI/BiOCl after different hydrolysis times (B) 0 min, (C) 1 min, (D) 3 min, (E) 5 min, (F) 10 min, (G) 15 min, (H) 30 min,

(I) XRD patterns of 30%BiOI/BiOCl after different hydrolysis time.

FIGURE 6 | UV-vis diffuse reflectance spectrum (DRS) of xBiOI/BiOCl films.

Optical Properties
The UV-vis diffuse reflectance spectra (DRS) of xBiOI/BiOCl
films were shown in Figure 6. BiOCl had a strong absorption

edge around 360 nm, meanwhile, BiOI had a strong absorption
edge around 700 nm. Compared to BiOCl, xBiOI/BiOCl showed
an absorption edge shifting to larger wavelength with the increase
of BiOI percentage. This shifting was in accordance with the
color change of as-prepared samples (Figure 2F) caused by the
addition of BiOI. The band gap energy of a semiconductor could
be calculated from the following equation:

αhν = A(hν − Eg)n/2 (1)

where α, ν, Eg, and A were the absorption coefficient, light
frequency, band gap energy, and a constant, respectively (Ning
et al., 2016). Among them, n depended on the characteristics of
the transition in a semiconductor. For example, n = 1 (direct
transition) or n = 4 (indirect transition). BiOX belonged to
indirection transition, thus n was estimated to be 4. The band
gap of BiOI and BiOCl were 1.74 and 3.34 eV, respectively. With
narrowing of band gap, xBiOI/BiOCl could exhibit enhanced
visible light absorption, subsequently resulting in improved
photocatalytic activity.

Besides optical absorption property, separation efficiency
of photogenerated carriers played an important role in
photodegradation. Photocurrent could directly indicate the
capability of charge separation. The higher photocurrent density
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FIGURE 7 | Visible light photocurrent of xBiOI/BiOCl films.

corresponded to the greater capability of charge separation.
Figure 7 showed the photocurrent responses of the as-prepared
photocatalysts under several on/off visible light irradiation cycles.
BiOCl and BiOI showed a poor photocurrent response while the
response of xBiOI/BiOCl increased. The photocurrent density
of 30%BiOI/BiOCl was almost 6 times as high as that of
pristine BiOCl and 3 times as high as that of pristine BiOI,
revealing that 30%BiOI/BiOCl had superior separation efficiency
of photogenerated carriers.

Photoluminescence spectra were used to characterize the
photogenerated carriers’ recombination rate of as-prepared
samples, since the PL emission originated from free carrier’s
recombination. The higher PL intensity meaned the higher
recombination rate in the photocatalytic procedure (Cao et al.,
2011). As shown in Figure 8, BiOCl showed a strong emission
peak with high intensity at approximate 420 and 440 nm,
meanwhile, BiOI exhibited a low intensity. Decline of the PL
intensity implied that adding BiOI could successful suppress
recombination process during photocatalysis. In addition,
30%BiOI/BiOCl shown the lower intensity indicated the lower
recombination rate, thus could promote photocatalytic activity.

Photocatalytic Properties
The photodegradation efficiency of the xBiOI/BiOCl films were
evaluated by degradating RhB and MB under visible-light
irradiation. As shown in Figure 9A, the degradation percentage
of RhB by pristine BiOCl was 48% in 90 min. It was about 70% by
pristine BiOI in 90min. Compared with pristine BiOCl and BiOI,
xBiOI/BiOCl film showed a great degradation: 30% BiOI/BiOCl
could degrade more than 99% of RhB in 90 min. To further
illustrate the photocatalytic reaction, pseudo-first-order kinetics
were fitted from the degradation process (Ning et al., 2016),

ln(C0/C) = kt (2)

where the value of rate constant kwas equal to the corresponding
slope of the fitting line as shown in Figure 9C. The rate constant

FIGURE 8 | Fluorescence spectra of xBiOI/BiOCl films.

value for 30%BiOI/BiOCl was 0.07315 min−1, which was 12
times higher than BiOCl (0.00575min−1) and 5 times higher
than BiOI (0.01303 min−1), respectively. Figure 9B showed the
photocatalytic performance of the xBiOI/BiOCl evaluated by
degradating MB under visible-light irradiation. 48% of MB was
self-degraded under visible light irradiation. Compared with self-
degradation of MB, the photocatalytic performance of BiOCl
was negligible and BiOI could only degrade 60% MB. The
photocatalytic performance of xBiOI/BiOCl filmwasmuch better
than pristine BiOCl and BiOI. More than 99% of MB was
degraded using 30%BiOI/BiOCl film in 120 min. According
to Figure 9D, the rate constant value of 30%BiOI/BiOCl
was 0.05218 min−1, which was 6 times higher than BiOI
(0.00772min−1). This better photocatalytic performance might
be due to the enhanced visible light absorption and improved
separation efficiency of photoinduced carriers.

Reusability of 30%BiOI/BiOCl Film
Efforts were made in this work to identify the stability and
practicality of as prepared catalysts for dye degradation, which
was a significant factor to be considered in real application.
30%BiOI/BiOCl film was reused for RhB and MB degradation in
five cycles under the same condition and the result was shown
in Figures 9E,F. It was remarkable that the efficiencies had no
obvious decrease after 5 cycles, revealing its great reusability. In
term of XRD patterns in Figure S1, there was no obvious change
in phase and structure of 30%BiOI/BiOCl film after 5 cycles,
demonstrating its excellent stability. The excellent reusability and
stability indicated its great potential in practical application.

Photocatalytic Mechanism
The energy band structures of BiOX were evaluated using the
following equation (Xiao et al., 2016):

EVB = X− Ee + 0.5Eg (3)

ECB = EVB − Eg (4)
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FIGURE 9 | Photodegradation of dyes using xBiOI/BiOCl films: (A) RhB; (B) MB; pseudo-first-order reaction kinetics of 30%BiOI/BiOCl film: (C) RhB; (D) MB; and

repeated degradation of dyes with 30%BiOI/BiOCl film under visible light irradiation: (E) RhB; (F) MB.

Where EVB was the valence band edge potentials, X was the
electronegativity of BiOX, which was the geometric mean of the
electronegativity of constituent atoms, Ee was the energy of free
electrons on the hydrogen scale (about 4.5 eV), Eg was the band
gap energy, ECB was the conductance band edge potentials (Xiao
et al., 2016). The EVB of BiOCl and BiOI were 3.60 eV and 2.11
eV, respectively. And the ECB of BiOCl and BiOI were 0.26 and
0.37 eV, respectively.

Active species of 30%BiOI/BiOCl film was detected by
typical trapping experiments. Benzoquinone (BQ) was
used as superoxide radical species (•O−

2 ) scavenger, while
dimethylcarbinol (IPA) was used as quencher of •OH and

EDTA-2Na was used as hole scavenger (h+). In Figures 10A,B,
IPA could significantly decrease the photocatalytic efficiency;
otherwise, BQ and EDTA-2Na had less effect on it. Figure 10
indicated that •OH, •O−

2 and h+ were active species during
the degradation of RhB and MB. A possible mechanism of
BiOI/BiOCl film was proposed based on the above discussion.
In Figure 11, BiOI could utilize visible-light with energy <2.95
eV (λ > 420 nm). Photoinduced electrons could be excited to
a higher potential edge of BiOI (−0.84 eV) which was negative
than that of BiOCl (0.26 eV). Then, photogenerated electrons
could transfer to the CB of BiOCl, leaving the holes on the
VB of BiOI. Thus, photogenerated carriers could be effectively
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FIGURE 10 | Trapping experiments of active species during visible light photodegradation: (A) RhB and (B) MB.

FIGURE 11 | The proposed photodegradation mechanism of RhB and MB by

BiOI/BiOCl films.

separated. The EVB of BiOI (2.11 eV) was negative than the
potential of ·OH/H2O (2.27 eV), so •OH was generated by OH−

(E
•OH/OH− = 1.99 eV) rather than H2O (Zeng et al., 2016).

Compared to the potentials of O2/•O
−

2 (−0.046 eV), electrons
in the BiOI/BiOCl could reduce O2 to •O−

2 , followed by the
generation of •OH (Wang et al., 2013; Zeng et al., 2016). In this
way, h+, •O−

2 and •OH oxidized the organic compounds. which
played an important role in the degradation process.

CONCLUSIONS

In conclusion, BiOI/BiOCl films were successfully prepared using
a facile method at room temperature. The growth process studies
indicated that there was a hydrolyzation competition between
BiOCl and BiOI in synthesis protocol. 30%BiOI/BiOCl could
eliminate more than 99% of RhB within 90 min, which was 12

times higher than that of BiOCl. Besides RhB, 30% BiOI/BiOCl
also showed a great photocatalytic performance toward MB.
When degrading RhB, the efficiency of 30% BiOI/BiOCl was
5 and 12 times higher than that of pristine BiOI and BiOCl
respectively. While degrading MB, 30%BiOI/BiOCl showed 6
times higher efficiency than that of pristine BiOI. These excellent
enhancements were attributed to extended visible light region
and high separation efficiency of charge. Five recycles indicated
the as-prepared film exhibited a great reusability. In general,
this work provided not only an easy and facial method to gain
BiOI/BiOCl film but also insights for preparing photocatalysts
which effectively utilized visible light with excellent reusability.
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