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In-silico bitterant prediction received the considerable attention due to the expensive

and laborious experimental-screening of the bitterant. In this work, we collect the

fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is

distinct from the fully or partially hypothetical non-bitterant dataset used in the previous

works. Based on this experimental dataset, we harness the consensus votes from

the multiple machine-learning methods (e.g., deep learning etc.) combined with the

molecular fingerprint to build the bitter/bitterless classification models with five-fold

cross-validation, which are further inspected by the Y-randomization test and applicability

domain analysis. One of the best consensus models affords the accuracy, precision,

specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929,

0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic

prediction of bitterant, a graphic program “e-Bitter” is developed for the convenience of

users via the simple mouse click. To our best knowledge, it is for the first time to adopt

the consensus model for the bitterant prediction and develop the first free stand-alone

software for the experimental food scientist.

Keywords: QSAR, bitter taste, bitterant prediction, classification, machine learning, taste prediction

INTRODUCTION

Bitter taste is one of the basic taste modalities including the bitterness, sweetness, umaminess,
saltiness, acidness, and fatness (Besnard et al., 2016; Roper and Chaudhari, 2017). Evolutionarily,
bitter taste is pivotal to the survival by protecting organisms from the consumption of potentially
poisonous substances, which often taste bitter. Perception of the bitter taste is mainly mediated
by the taste receptors type 2 (Tas2Rs) family of G-protein coupled receptors (GPCRs) on the
apical membrane of the taste receptor cells located in the taste buds (Jaggupilli et al., 2016; Roper
and Chaudhari, 2017). Intriguingly, Tas2Rs are also expressed in the extra-oral tissues, e.g., the
gastrointestinal tract and respiratory system, etc., indicating that they are also intricately involved
in the other crucial biological processes (Clark et al., 2012; Shaik et al., 2016).

In humans, 25 different hTas2Rs are evolved to bind the bitterants with diverse chemical
structures (Behrens and Meyerhof, 2013; Jaggupilli et al., 2016). Some Tas2Rs such as Tas2R10,
Tas2R14, and Tas2R46 broadly accommodate the various bitterants, while some Tas2Rs such as
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Tas2R50 exquisitely select the specific bitterants (Meyerhof et al.,
2010; Brockhoff et al., 2011; Ji et al., 2014). At the same time, the
promiscuous bitterant can interact with multiple Tas2Rs, while
the selective bitterant can only activate one or few specific Tas2Rs
(Di Pizio and Niv, 2015). Therefore, the compound that can
stimulate at least one Tas2R can be treated as a bitterant, however,
only the compound that cannot activate any of 25 hTas2Rs can be
defined as a non-bitterant, since a compound cannot stimulate
one specific Tas2R, which could still elicit the bitterness via
targeting another Tas2R.

Bitterness is often perceived as an unpleasant taste, albeit
it is considered desirable in some products such as tea,
coffee, and beer etc.. In most cases, bitterness influences the
palatability of the functional beverage and food containing
the bitter ingredients, and also poses a major problem for
the patient acceptability and compliance of the bitter-taste
drugs, especially for the pediatric formulations (Drewnowski
and Gomez-Carneros, 2000; Mennella et al., 2013). Therefore,
the bitter-tasting assessment is imperative in the functional
food/beverage development, and could be considered in advance
during the drug discovery process.

Bitter-tasting assessment is often an arduous and tedious task.
Basically there are two types of experimental taste evaluations: in-
vivo and in-vitro approaches, which are systematically reviewed
by Anand et al. (2007). One of the most direct methods is
called “human taste panel studies,” which evaluates the taste
of standard and test stimuli in the healthy human volunteers
with the well-designed protocols (Anand et al., 2007). However,
this experimental method has its major disadvantage due to the
higher probability of toxicity for the bitter compounds, which
will cause the safety and ethical issues and consequently limit its
application in the high-throughput screening of the bitterants. In
contrast to the experimental methods, in-silico method provides
a cheap and rapid alternative to identify the most likely bitterants
from the small-molecule database (Bahia et al., 2018). Thus,
the computational prediction of the bitterant becomes more
and more important prior to the laborious and time-consuming
experimental taste assessment.

Current commonly-used computational methods for the
bitterant prediction are categorized by Bahia et al. which are
listed as follows: (Bahia et al., 2018) structure-based method
(Floriano et al., 2006; Brockhoff et al., 2010; Singh et al., 2011; Tan
et al., 2011; Marchiori et al., 2013; Sandal et al., 2015; Acevedo
et al., 2016; Karaman et al., 2016; Suku et al., 2017), ligand-
based method (Roland et al., 2013, 2015; Levit et al., 2014) and
machine-learning based method (Rodgers et al., 2006; Huang
et al., 2016; Dagan-Wiener et al., 2017). Structure-based method
requires the 3D structures of Tas2Rs, whose crystal structures still
remain unresolved. In contrast, ligand-based method approach
such as the 3D-pharmacophore method still works even in
the absence of 3D structures of Tas2Rs. Both methods work
well for the particular bitter-taste receptor, Nevertheless, a
compound that cannot activate one specific Tas2R could still
trigger the bitter taste via stimulating the other 24 hTas2Rs. Thus,
both methods are not suitable for the general classification of
bitterant/non-bitterant. Machine-learning based approach can
effectively circumvent the aforementioned problems and can

directly predict the bitter or bitterless compounds (Rodgers et al.,
2005, 2006; Huang et al., 2016; Dagan-Wiener et al., 2017; Bahia
et al., 2018). In this emerging method, certain experimental
dataset including both the bitter and bitterless compounds is
employed to establish the prediction model, while the target
information of the bitter compound is not necessary, which
confers the unique advantage on this method.

There are three typical studies about the general bitterant
prediction with the machine-learning approach based on the
relatively large dataset (Rodgers et al., 2006; Huang et al., 2016;
Dagan-Wiener et al., 2017), although there are several studies
about the congeneric systems with the comparatively small
dataset (Takahashi et al., 1982; Spillane et al., 2002; Cravotto et al.,
2005; Scotti et al., 2007). In addition, all these studies focus on the
prediction of small-molecule bitterant, which is our current main
research interest, thus the prediction of bitter peptide explored
in the other studies (Ney, 1979; Soltani et al., 2013) will not be
reviewed here.

Rodgers et al. employ the Naive Bayes algorithm and circular
fingerprint (MOLPRINT 2D, Willett et al., 1998) to classify the
bitter/bitterless compounds (Rodgers et al., 2006). The dataset
consists of 649 bitterants and 13,530 hypothetical non-bitterants.
All the bitterants are from their proprietary database, while
13,530 hypothetical non-bitterants are randomly selected from
the MDL Drug Data Repository (MDDR). The prediction model
gives the best accuracy, precision, specificity, and sensitivity of
88, 24, 89, and 72% respectively in the five-fold cross-validation.
It’s the first bitterant prediction model trained with the large
dataset. Nevertheless, the bitterless compounds in their study
are not experimentally confirmed, and their work didn’t provide
a practical prediction tool for the users to have a test on their
model.

Huang et al. developed the first online prediction tool called
“BitterX,” which combines Support Vector Machine (SVM)
approach (Vapnik, 1995) with the physicochemical descriptors
(Huang et al., 2016). In their study, the dataset is composed
of 539 bitterants and 539 non-bitterants. Five hundred thirty-
nine bitterrants are gathered from the literature and the publicly
available BitterDB (Wiener et al., 2012). For 539 non-bitterants,
20 non-bitterants are from their in-house bitterless compounds
validated by the experiments, and 519 non-bitterants are the
representative structures clustered from the compounds without
the tag of “bitter” in the Available Chemicals Directory (ACD)
database (http://accelrys.com). Their bitterant prediction model
offers the impressive accuracy (91∼92%), precision (91∼92%),
specificity (91∼92%), and sensitivity (91∼94%) on the test set.
However, 519 compounds assumed as the non-bitterants are still
not confirmed by the experiments. Thus, the limited number of
experimental non-bitterants are the bottleneck for the machine-
learning based approach.

Recently Wiener et al. published a prediction tool named
“BitterPredict,” which adopts 12 basic physiochemical descriptors
and 47 Schrödinger QikProp descriptors (Dagan-Wiener et al.,
2017). In this work, the classification method is the adaptive
ensemble machine-learning method “Adaptive Boosting”
(AdaBoost), whose advantage is that this method is simple,
fast, less susceptible to the overfitting. Meanwhile, the dataset is
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larger than the counterpart in Huang et al. and comprises 691
bitterants and 1,917 non-bitterants. The bitterants are mainly
from their BitterDB (Wiener et al., 2012), and the work of
Rojas et al. (2016) The non-bitterants are composed of 1,360
non-bitter flavors, 336 sweeteners, 186 tasteless compounds,
and 35 non-bitter molecules (Eric Walters, 1996; Arnoldi et al.,
1997; Ley et al., 2006; Rojas et al., 2016). The last four sets
of compounds are experimentally confirmed, whereas 1,360
non-bitter flavors are gathered from the Fenroli’s Handbook
of Flavor Ingredients (Burdock, 2004), and are hypothetically
defined as the non-bitterants if the word “bitter” is not explicitly
mentioned in the description section of each compound in the
book (Burdock, 2004). Their prediction model gives the accuracy
(83%), precision (66%), specificity (86%), and sensitivity (77%)
on the test set. Nevertheless, majorities of non-bitterants
(1,360 non-bitter flavors) are still hypothetical. In addition,
BitterPredict works in the environment of commercial MATLAB
package and requires the commercial Schrödinger software to
generate molecular descriptors, which will hamper the extensive
test by the users. So far, users can only send the data to authors
for the prediction.

In short, all three works adopt Naive Bayes, SVM or Adaboost
as the classification method. The recently popular machine-
learning methods such as deep neuron network (DNN) (LeCun
et al., 2015), random forest (RF) (Breiman, 2001), and gradient
boosting machine (GBM) (Friedman, 2002), frequently manifest
the promising performance in the kaggle competition (www.
kaggle.com/competitions), but were not used in the bitterant
prediction before. In addition, the simple K-nearest neighbors
(KNN)method (Itskowitz and Tropsha, 2005), which is generally
used as the baseline for the comparison of machine-learning
methods, was never applied in the bitterant prediction as well.
Moreover, the consensus voting strategy based on the multiple
machine-learning methods also was not employed to build the
bitterant classification model in the past. Secondly, the previous
works make use of the fully or partially hypothetical non-
bittterant dataset. Therefore, there is a pressing need to make
use of the fully experimental dataset with the relatively large size
to develop the consensus model for the bitterant prediction that
can be utilized by the food scientists in an easy-to-use and free
software.

In this work, we collect only the experimentally confirmed
bitterants and non-bitterants. Based on this fully experimental
dataset, we adopt the popular Extended-connectivity Fingerprint
(ECFP) (Rogers and Hahn, 2010) as the molecular descriptors
and propose the consensus voting from the current mainstream
machine-learning methods such as KNN, SVM, RF, GBM, and
DNN to build the bitterant/non-bitterant classification models.
All the models are carefully inspected by the Y-randomization
test to ensure their reliability, and some promising models
are subsequently selected to construct nine consensus models
that are integrated in our program for the bitterant prediction.
To aid the food scientists to automatically predict whether
the compound of interest is bitter or not, we present a
convenient graphic program called “e-Bitter,” which natively
implements ECFPs for the automatic generation of the

molecular descriptors. More importantly, e-Bitter can intuitively
visualize the inter-connected 3D structural feature, feature
importance and feature partial derivative for any specific bit
“1” in ECFP. At last, the performance and functions of our
program compared with other bitterant prediction tools are
discussed.

MATERIALS AND METHODS

Data Collection and Preprocess
An appropriate experimental dataset including both the
bitterants and non-bitterants are critical to properly build the
reasonable prediction model. Three criteria are defined for our
data curation. (1) All the disconnected structures such as salts
are not considered. (2) Only the compounds with the common
elements C, H, O, N, S, P, Si, F, Cl, Br, or I are collected. (3)
The same compound labeled with the different taste qualities
will be excluded. (4) The duplicated compounds from the
different sources will be removed. Based on these criteria, all the
compounds are curated as the Tripos mol2 format.

In our work, majorities of bitterants are downloaded from
the publicly available BitterDB (Wiener et al., 2012), and the
others are retrieved from the literature (Rodgers et al., 2006;
Rojas et al., 2016). The total number of the bitterants is 707.
However, the data source of the non-bitterants raises a tough
issue, since most of the published works often did not report
the non-bitterants due to the less scientific significance. Hence
only 132 tasteless and 17 non-bitter compounds retrieved from
the literature are treated as the non-bitterants (Huang et al.,
2016; Rojas et al., 2016). In order to further extend the size of
the bitterless dataset, we tentatively propose to use the sweet
molecules that can be generally assumed as the non-bitterants.
The sweet compounds are downloaded from the SuperSweet
(Ahmed et al., 2011) and SweetenersDB (Chéron et al., 2017).
Database and additionally gathered from the literature (Zhong
et al., 2013; Cristian et al., 2016; Rojas et al., 2016), which results
in 443 compounds. The whole dataset, containing 707 bitterants
and 592 non-bitterants, is publicly available in our e-Bitter
program, with which users can handily view the 3D structure of
each compound and its corresponding label (Y: bitterant or N:
non-bitterant).

To explore the chemical space of our dataset, molecular
weight (MW), logP, and the numbers of hydrogen-bond donor
and acceptor (NHBD and NHBA) for all the bitterants and non-
bitterants are calculated with Openbabel v2.4 (O’Boyle et al.,
2011). The histograms of logP, MW, NHBD, and NHBA are plotted
in Figures S1–S4 and the scatter plots of logP vs. MW and NHBA

vs. NHBD are shown in Figures 1A,B respectively. Furthermore,
the Tanimoto similarity matrix (Figure 2) between bitterants and
non-bitterants is calculated based on the 2048bit-ECFP6 due to
its more features and less bit collisions.

In order to derive and validate the bitter/bitterless
classification model, the whole dataset is randomly split
into two chunks: the dataset for the cross-validation and the test
set for the independent validation. The detailed data-splitting
scheme is given as follows: 20% of the bitterants and 20%
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FIGURE 1 | The scatter plots of MW vs. logP (A) and NHBD vs. NHBA (B).

NHBD and NHBA refer to the numbers of hydrogen-bond donors and

acceptors respectively.

of the non-bitterants (141 bitterants and 118 non-bitterants)
randomly selected from the whole dataset are treated as the test
set (Dataset-Test), while the rest of them (566 bitter and 474
bitterless compounds) are adopted to train the model with the
cross-validation (CV), which is denoted as Dataset-CV. In the
five-fold cross-validation, Dataset-CV is randomly split into five
chunks. One chunk is employed as the internal validation set
(Dataset-Internal-Validation), and the remaining four chunks
are combined to form the training set (Dataset-Training). This
procedure will be repeated for five times, which is prepared for
the five-fold cross-validation. Finally, to reduce the bias from the
data-splitting scheme, the whole data-splitting procedure will be
repeated for nineteen or three times depending on the different
machine-learning methods. More specifically, 19 data-splitting
schemes are adopted for the model-training with KNN, SVM,
GBM, and RF, while only three data-splitting schemes are used
for the model-training with DNN2 and DNN3 that are very
computationally expensive.

FIGURE 2 | Tanimoto similarity matrix for the bitterants vs. non-bitterants.

Similarity is calculated based on the 2048bit-ECFP6 fingerprint with our

e-Bitter program.

Molecular Descriptors for the
Machine-Learning Algorithms
In this work, Extended-connectivity Fingerprint (ECFP) (Rogers
and Hahn, 2010) is adopted as the molecular descriptor. Thus,
ECFP is implemented natively in our e-Bitter program due to the
following three factors. (1) ECFP, one typical class of topological
fingerprints, was manifested to be powerful in the classification
(Ekins et al., 2010; Rogers and Hahn, 2010; Chen et al., 2011;
Hu et al., 2012; Braga et al., 2015, 2017; Koutsoukas et al.,
2016; Rodríguez-Pérez et al., 2017; Varsou et al., 2017; Wang
et al., 2017; Yang et al., 2017). However, ECFP has not been
applied to the general classification of diverse bitter/bitterless
compounds in the literature. (2) The existing softwares with
the ECFP function such as Pipeline Pilot (http://accelrys.com),
JCHEM (https://www.chemaxon.com), and RDKit (http://www.
rdkit.org) etc. cannot provide a facile and intuitive mean to
highlight the fingerprint bit “1” in the context of the 3D structure
and also cannot inform us the importance of each bit. But it
is worth mentioning that Bioalerts program (Cortes-Ciriano,
2016), which is developed based on the RDKit, can offer a very
useful function to generate the 2D structure image highlighting
with one ECFP bit. Nevertheless, Bioalerts doesn’t have a 3D
graphic frontend to support the interactive visualization. (3) The
native integration of ECFP in our e-Bitter program will decrease
the software dependency on any other packages and will be
convenient for the users to deploy this program on their own
computers. The implementation of ECFP is given as follows.

The generation procedure of ECFP can be divided into the
following steps (Rogers and Hahn, 2010). (1) Initial assignment
of the atom identifiers. The initial integer identifiers, which are
assigned to all the non-hydrogen atoms of the given molecule,
encode the local information about the corresponding atom
such as Sybyl atom type, atomic number, and connection
count etc. (2) Iterative update of the atom identifiers. Each
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atom identifier is recursively updated to reflect the identifiers
of each atom’s neighbors till a specified diameter is reached.
The commonly defined diameter is 4 or 6. (3) Duplication
elimination of the atom identifiers. The multiple identifiers
representing the equivalent atom-environment are removed. (4)
Folding operation of the atom identifiers. All the identifiers are
mapped into the bit string with the fix-sized length, in spite of
the occasional bit collision. The frequently-used length of the
fingerprint is 1,024 or 2,048 bits. (5) Record of the structural
features. Finally all the fingerprint bits “1,” original identifiers
and their corresponding structural features are recorded for
the subsequent visualization. This step is purposely designed to
couple with our 3D visualization platform. In this study, 1024bit-
ECFP4, 2048bit-ECFP4, 1024bit-ECFP6, and 2048bit-ECFP6 will
be harnessed in the followingmodel-training, since more bits will
reduce the chance of bit collision during the folding operation,
while the larger diameters will provide more structural features.

Feature Selection Based on the Feature
Importance
In this work, both full features without the feature selection and
feature subset with the feature selection are attempted to examine
whether the feature selection is beneficial to our bitterrant/non-
bitterant classification. Herein, feature selection is conducted
based on the feature importance (Teixeira et al., 2013) derived
from the model-training with the random forest (RF) method,
which will be elaborated in the following section. Thus, the full
features without the feature selection, and the feature subset after
the feature selection are adopted as the molecular descriptors
to systematically evaluate the performance of bitter/bitterless
classification.

Model Training Without the Prior Feature
Selection
In this work, five algorithms (KNN, SVM, RF, GBM, and DNN)
will be utilized to train the models via the Scikit-learn, Keras
and TensorFlow python libraries, which are fully integrated in
the Windows version of python package (Winpython 3.5.4.0)
with the download site (https://winpython.github.io/). For the
sake of the fine tuning of hyper-parameters, the five-fold cross-
validation is conducted to explore the corresponding optimal
parameters for each machine-learning method, which will be
succinctly introduced as follows.

K-nearest neighbors (KNN) algorithm is a non-parametric
method used for the classification, which is based on the closest
training instances in the feature space (Itskowitz and Tropsha,
2005). The number of nearest neighbors (K) and the weighting
methods will affect the performance of KNNmodel. In this study,
K (1, 3, 5, 7, 9, 11, 13, and 15) and two weighting schemes
(uniform weight or distance-dependent weight) are explored
during the cross-validation.

Support Vector Machine (SVM) is a popular machine-
learning technique that performs the classification by
constructing the hyper-planes in the multi-dimensional
space that separates the different classes (Vapnik, 1995). The
radial basis function (RBF) is used as the kernel, and the grid

search is harnessed to optimize the penalty parameter C (1,000,
5,000, 10,000, 50,000, and 100,000) and the kernel parameter
gamma (0.0001, 0.0005, 0.001, 0.005, 0.01, and 0.1).

Random forest (RF) is an ensemble learning method by
generating the multiple decision trees via the bootstrap sampling
of training set and random selection of feature subset from the
total descriptors (Breiman, 2001). Finally, RF predicts the class
based on the consensus votes from these multiple decision trees.
In addition, RF can provide the importance of each feature, which
is very useful for the intuitive interpretation of the prediction
model and is the key criterion for our feature selection in the
following section. The number of decision trees (10, 50, 100, 200,
300, 400, 500, 600, 700, 800, 900, and 1,000) will be probed during
the cross-validation.

Gradient boosting machine (GBM) is also an ensemble
machine learning technique to construct the multiple decision
trees in a step-wise manner. Each decision tree is not randomly
generated as in the random forest, but is consecutively built to
give a better estimate of the response variable. More specifically,
GBM is to stepwisely construct a new decision tree as a weak
learner with the maximum correlation to the negative gradient of
the loss function (Friedman, 2002). The number of decision trees
(10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000), and
the learning rate (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) will
be tried during the cross-validation.

Deep neuron network (DNN) is a neural network with more
than one hidden layer between the input and output layers. In
DNN, thousands of neurons in each layer can be extensively
applied to the dataset with thousands of features, and more
advanced regularization technique such as the dropout can be
used to prevent the overfitting problem (LeCun et al., 2015).
Nevertheless, DNN requires the users to adjust a variety of
parameters. The number of epochs, the size of mini-batches
and the dropout rate are the most important parameters. The
number of epochs refers to the number of times that the
model is exposed to the training dataset. The size of mini-
batches defines the number of training samples exposed to the
model before updating of the weight. The dropout rate is the
percentage of neurons that are randomly-selected and ignored
during the training. In this study, the number of epochs (100,
200, 300, 400, 500, and 600), the size of mini-batches (60, 80,
100, 120, 140, and 160), and the dropout rate (0.1, 0.2, 0.3, 0.4,
and 0.5) will be probed in the cross-validation. The dropout
technique is exerted only after each hidden layer. Moreover,
four configurations of deep neuron network with the different
numbers of hidden layers (2 or 3 layers) and neurons per layer
(1,024 or 2,048) are explored, which are defined in detail as
follows: DNN2 (Figure S5) contains two hidden layers [input
layer: X (1,024 or 2,048) neurons; hidden layer1: X neurons;
hidden layer2: X neurons; output layer: 2 neurons], and DNN3

(Figure S6) includes three hidden layers [input layer: X (1,024
or 2,048) neurons; hidden layer1: X neurons; hidden layer2: X
neurons; hidden layer3: X neurons; output layer: 2 neurons].
Additionally, the rectified linear unit function (ReLU) is used
as the activation function. adam algorithm is adopted as the
optimizer and “binary crossentropy” is employed for the loss
function.
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Upon completion of model-training with the five-fold cross-
validation, the optimal parameters and the corresponding best
models are achieved based on highest F1-score in Equation
(1). Thus, the combination of four ECFP fingerprints, different
random splits of the dataset, and different machine-learning
methods (KNN, SVM, RF, GBM, DNN2, and DNN3) will totally
offer 328 trained models with the optimal parameters in Table S1.
Subsequently, all those models are evaluated on the test set with
the following metrics: accuracy, precision, specificity, sensitivity,
Matthews correlation coefficient (MCC) and F1-score (Equations
1–6), which are also listed in Table S1.

F1-score = 2×TP / (2×TP+ FP+ FN) (1)

Accuracy = (TP+ TN) / (TP+ TN+ FP+ FN) (2)

Precision = TP / (TP+ FP) (3)

Specificity = TN / (TN+ FP) (4)

Sensitivity = TP / (TP+ FN) (5)

MCC =
(TP× TN− FP× FN)

√
(TP+ FP) (TP+ FN) (TN+ FP) (TN+ FN)

(6)

1F1-score = |F1-score (cross-validation)
−F1-score (testset)| (7)

Where TP, TN, FP, and FN refer to the true bitterant, true non-
bitterant, false bitterant, and false non-bitterant respectively. F1-
score andMatthews correlation coefficient (MCC) are commonly
used to measure the quality of binary classifications. F1-score
(cross-validation) denotes that F1-score is evaluated on the
internal validation dataset during the cross-validation, and F1-
score (test test) marks that F1-score is assessed on the test set.
1F1-score is the absolute value of the difference between F1-
score (cross-validation) and F1-score (test set). 1F1-score is
calculated to monitor the potential overfitting or underfitting. If
1F1-score is small, it means that the model performances are
similar on the internal-validation dataset and test set. For the sake
of the conciseness, F1-score (test set) is reduced to F1, hence the
symbol “F1” specifically means that F1-score is evaluated on the
test set by default if there is no additional statement in this work.

Model Training With the Prior Feature
Selection
Feature selection is commonly adopted to eliminate the
redundant features in the machine-learning study. In order
to demonstrate whether there is any improvement for our
bitterant/non-bitterant classification, feature selection is
performed based on the feature importance derived from the
random forest (RF) method.

More specifically, as described in the previous section about
the model-training without the feature selection, 76 runs of

random forest are conducted considering the combination of
four ECFP fingerprints and different random splits of the
dataset, which will lead to 76 models and the attendant 76
sets of feature importance. Then the feature importance for
all the bits in the ECFP fingerprint is sorted descendingly and
plotted in Figures S7–S10. Thus, the top 512, 256, and 128
important features (Figures S7–S10) are selected respectively
as the typical feature subsets for the following model-training,
since the exhaustive and systematic scan of feature number
ranging from 1 to fingerprint length is really time-consuming
especially for the training of deep neuron networks such as
DNN2 and DNN3.

Subsequently, each set of important features are combined
with the machine-learning algorithms (KNN, SVM, GBM, RF,
DNN2, and DNN3) to train the models respectively. The
training process is nearly identical to the aforementioned model-
training without the feature selection. The only difference is
existed in the configuration of DNN: DNN2 with two hidden
layers (input layer: X (512, 256, or 128) neurons; hidden
layer1: X neurons; hidden layer2: X neurons; output layer: 2
neurons) and DNN3 with three hidden layers (input layer:
X (512, 256, or 128) neurons; hidden layer1: X neurons;
hidden layer2: X neurons; hidden layer3: X neurons; output
layer: 2 neurons). Thus, the combination of three sets of
important features and six machine-learning methods (KNN,
SVM, RF, GBM, DNN2, and DNN3), different random data-
splitting schemes (three splits for DNN2/DNN3 and nineteen
splits for the others) and four ECFPs will lead to 984
models.

After the five-fold cross-validation, the best models are
harvested according to the highest F1-scores, and then all the
best 984 models are assessed on the test set, which are appended
to Table S1. Hence 1,312 models including 984 models with
feature selection and 328 models without feature selection are
obtained. To reduce the bias from the random data splitting, 96
average models (AM) are derived from 1,312 individual models
by averaging over the different data splitting schemes and are
tabulated in Table S2.

Y-randomization Test
Y-randomization test (Rücker et al., 2007) is conducted to
inspect the reliability of all the 1,312 models. In this test,
the experimentally observed labels (bitter or bitterless) for
Dataset-CV are randomly shuffled without changing the total
number of bitterants and non-bitterants (Table S3). Worthy
of notice is that some labels are still correct due to this
random operation. Thus, the newly generated Dataset-CV still
contains some true samples but with lot of noise, and its
detail is described in Table S3. Subsequently, the five-fold cross-
validation on this new dataset is performed with exactly the
same molecular descriptors and protocols mentioned in the
previous section about the model-training. The best models
are determined based on the highest F1-scores assessed on
the internal validation dataset during the cross-validation, and
further evaluated on the test set (Dataset-Test) without any
random shuffling. All the evaluation metrics are collected in
Table S4.
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Applicability Domain Analysis
Generally speaking, compounds that are highly dissimilar from
all the compounds used in the model-training cannot be
predicted reliably (Tropsha, 2010), thus the applicability domain
of our models should be defined in accordance with the guideline
of Organization for Economic Cooperation and Development
(OECD). In this work, each compound in the test set (Dataset-

Test) is compared with every compound in the cross-validation
dataset (Dataset-CV) according to the Tanimoto similarity based
on 2048bit-ECFP6 fingerprint due to its more structural features
and less bit collisions. Subsequently, fivemost similar compounds
from Dataset-CV are retrieved and treated as five nearest
neighbors for the given compound in Dataset-Test, and the
average of five similarities is defined as the “average-similarity”
between this given compound and these five nearest neighbors.
It should be noted that five nearest neighbors are selected here,
because the optimal nearest neighbors is five for the best KNN
model with full 2048bit-ECFP6 (M0255 in Table S1) based on the
highest F1-score (0.927).

Following the definition above, each compound in Dataset-

Test finds its own five nearest neighbors in Dataset-CV and
compute its corresponding average-similarity. Similarly, each
compound in Dataset-CV also retrieves its own five nearest
neighbors in Dataset-CV and calculates its corresponding
average-similarity. Finally the histograms of the average-
similarity for Dataset-Test and Dataset-CV are given in
Figure S11 to address the applicability domain of our models.
This average-similarity is used to reflect the closeness between the
given compound and its neighboring compounds in the cross-
validation dataset (Dataset-CV). If the average-similarity is close
to 1, it means that the given compound can find very similar
compounds in the training set, and the prediction for the given
compound based on our models is not extrapolated and can be
considered as a reliable inference. Nevertheless, in reality it is
often very difficult for us to expect that the compound of user’s
interest can always find very similar neighboring compounds
in our dataset. Thus, an appropriate threshold for the average-
similarity should be defined based on Figure S11.

Consensus Voting Strategy Used for the
Bitterant Prediction
In this work, 1,312 individual models (M0001-M1312 in
Table S1) and 96 average models (AM01-AM96 in Table S2)
are achieved. Although all the models are public available
and can be used for the bitterant prediction through the
flexible function of “customized model” in our e-Bitter program.
However, it would be confusing for the users without any
recommendation.

Thus, nine consensus models are proposed based on the
balance among the accuracy, speed and diversity of machine-
learning methods, and are implicitly integrated in our e-
Bitter program. Consensus model 1 (CM01) selects 19 best
individual models (Table S5) from Table S1 purely based on
the highest F1-scores in each data-splitting scheme. Consensus
model 2 (CM02) chooses the average models (AM32, AM28,
AM31, AM11, and AM69 in Table S6) considering each
machine-learning method with the highest F1-scores to balance
the diversity and performance of machine-learning methods.
Consensus model 3 (CM03) considers the top average models
(AM32, AM26, AM28, AM62, and AM52 in Table S7) with
the highest F1-scores. Consensus model 4 (CM04) selects the
top five average models (AM31, AM49, AM55, AM67, and
AM43 in Table S8) trained with KNN. Consensus model 5
(CM05) comprises the top five average models (AM32, AM26,
AM62, AM50, and AM56 in Table S9) trained with SVM.
Consensus model 6 (CM06) includes the top five average models
(AM69, AM63, AM51, AM33, and AM57 in Table S10) trained
with GBM. Consensus model 7 (CM07) combines the top
five average models (AM28, AM52, AM10, AM46, and AM70
in Table S11) trained with RF. Consensus model 8 (CM08)
consists of the top average models (AM11, AM23, AM35,
AM05, and AM29 in Table S12) trained with DNN2. Consensus
model 9 (CM09) contains the top average models (AM06,
AM36, AM12, AM18, and AM30 in Table S13) trained with
DNN3. All the evaluation metrics for each consensus model
(Table 1) are obtained by averaging over all the constituent
models.

TABLE 1 | The comparison of models evaluated on their own test sets reported in the original works.

Program Model Accuracy (test set) Precision (test set) Specificity (test set) Sensitivity (test set) F1-score (test set) MCC (test set)

e-Bitter CM01 0.929(0.012) 0.918(0.014) 0.898(0.020) 0.954(0.017) 0.936(0.011) 0.856(0.025)

CM02 0.910(0.007) 0.904(0.009) 0.881(0.012) 0.933(0.008) 0.919(0.006) 0.819(0.013)

CM03 0.914(0.002) 0.905(0.005) 0.880(0.007) 0.942(0.003) 0.923(0.001) 0.828(0.003)

CM04 0.910(0.003) 0.902(0.007) 0.877(0.011) 0.936(0.004) 0.919(0.002) 0.819(0.006)

CM05 0.914(0.002) 0.909(0.002) 0.886(0.003) 0.937(0.003) 0.922(0.001) 0.828(0.003)

CM06 0.897(0.001) 0.892(0.003) 0.865(0.004) 0.925(0.003) 0.908(0.000) 0.794(0.002)

CM07 0.910(0.002) 0.897(0.005) 0.869(0.008) 0.946(0.004) 0.920(0.001) 0.821(0.003)

CM08 0.899(0.005) 0.904(0.007) 0.884(0.010) 0.912(0.009) 0.908(0.005) 0.796(0.010)

CM09 0.896(0.006) 0.899(0.011) 0.877(0.017) 0.913(0.013) 0.906(0.005) 0.791(0.012)

BitterX SVM 0.918(0.009) 0.917(0.008) 0.917(0.008) 0.920(0.012) 0.918(0.009) 0.836(0.017)

BitterPredict Adaboost 0.832 0.657 0.855 0.768 0.708 0.595

(1) No standard deviation can be given for BitterPredict, since only one random data-splitting scheme is adopted in their work. (2) Three random data-splitting schemes are used for

BitterX, thus the evaluation metrics for BitterX are shown here via averaging over three different data-splitting schemes.
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Model Comparison Among BitterX,
BitterPredict, and e-Bitter
Models from the BitterX, BitterPredict and e-Bitter will be
compared in two manners: (1) the direct comparison of F1-score
(test set) and MCC (test set), which are derived from their own
works and (2) the more objective comparison on three external
test sets from the recent work of Wiener et al.

For the first direct comparison, two performance indicators
F1-score (test set) and MCC (test set) should be given for
each model. However, both evaluation metrics are not directly
reported in the works of Wiener et al. and Huang et al. thus F1-
score (test set) and MCC (test set) are indirectly derived from
their works. To vividly demonstrate the performance of each
model, the scatter plot of MCC (test set) vs. F1-score (test set)
is plotted in Figure 3 based on Table 1 and Table S2.

For the further fair comparison, three external independent
test sets from the recent work of Dagan-Wiener et al. (2017)
are used for the independent assessment and are given as
follows: “Bitter New” dataset (23 bitterants), “UNIMI set”
dataset (23 bitterants and 33 non-bitterants) and “Phytochemical
Dictionary” dataset (49 bitterants and 26 non-bitterants). The
prediction results by BitterPredict for these three test sets
are reported in the work of Dagan-Wiener et al. (2017) and
compiled in Tables 2–4 for the convenience of comparison.
BitterX prediction is conducted by the manual uploading of each
molecule to the web server one by one, which gives results in
Tables 2–4. The prediction by e-Bitter is performed in batch
for these three datasets and offers the results in Tables 2–4. In
addition, scatter plot of MCC (test set) vs. F1-score (test set) or
accuracy (test set) vs. F1-score (test set) for all the models are
plotted in Figures 4–6.

FIGURE 3 | The scatter plot of MCC (test set) vs. F1-score (test set) for our

models (9 consensus models and 96 average models) and the models from

BitterPredict and BitterX. The MCC (test set) and F1-score (test set) for the

models from BitterPredict and BitterX are calculated based on the data

reported in the original works.

Derivation of Feature Importance and
Feature Partial Derivative of ECFP Bit
The feature importance of ECFP bit is also of particular interest
for us. In this work, feature importance of each ECFP bit is
derived from the random forest (RF) after the five-fold cross-
validation as mentioned above, and feature importance will be
automatically linked to the corresponding fingerprint bit “1” and
structural feature in our e-Bitter program. However, the feature
importance from RF can only tell us whether these features
are vital to the bitter/bitterless classification, but cannot inform
us whether each ECFP bit “1” in a compound positively or
negatively influences the bitterness, which can be described by
the concept “feature partial derivative.” (Hasegawa et al., 2010;
Marcou et al., 2012; Polishchuk, 2017).

wi = ∂if (x) =
∂f

∂x
(x1, x2, . . . , xk) (8)

Where k is the length of ECFP fingerprint; i means the ith
fingerprint bit of interest, which is ranging from 1 to k; x is the
value of fingerprint bit (1 or 0);wi is the feature partial derivative,
which actually belongs to the sensitivity analysis.

The feature partial derivative, exactly defined by Equation
(8) and Hasegawa et al. (2010) is firstly proposed in the work
of Byvatov and Schneider (2004) and is systematically reviewed
in the work of Polishchuk (2017). To derive the feature partial
derivative of each ECFP bit, the backward finite difference
approach is adopted and briefly described as follows (Hasegawa
et al., 2010). Firstly, the fingerprint bit nullification is simply
done by the replacement of the bit “1” with zero, and then the
difference between the predicted probabilities, from the original
prediction and the new prediction after the bit nullification, is
defined as the feature partial derivative for this fingerprint bit. If
the feature partial derivative for one bit is positive, it means that
this bit “1” is important to the bitterness of this compound in the
positivemanner, otherwise, this bit negatively affect the bitterness
of this compound. This procedure is repeated for each bit “1” in a
compound, thus the feature partial derivative of each ECFP bit in
the compound can be derived, which can be done automatically
in the e-Bitter program.

Implementation of e-Bitter Program
In order to automate the whole process, e-Bitter is developed for
the convenience of users. In the current implementation, there
are two basic parts. One is the generation and visualization of
ECFP fingerprint, which is natively implemented in the e-Bitter
program; the other is the underlying model-prediction with the
diverse machine-learning approaches via evoking the external
Scikit-learn, Keras, and TensorFlow python libraries natively
integrated in the Winpython v3.5.4.0. For the sake of seamless
fusion between these two parts, various python scripts have been
implemented and integrated in the e-Bitter program.

Currently, there are three main functions in this program.
(1) Predict the bitterant after loading the molecule into e-Bitter
program. Batch function is also developed to screen the bitter
compounds against the small-molecule database. (2) Visualize
the fingerprint bit in the context of 3D structure, view the feature
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TABLE 2 | The comparison of models evaluated on the “Bitter New” dataset with 23 bitterants.

Program Model Failed TP TN FP FN Accuracy

(test set)

Precision

(test set)

Specificity

(test set)

Sensitivity

(test set)

F1-score

(test set)

MCC

(test set)

e-Bitter CM01 0 23 0 0 0 1.000 1.000 – 1.000 1.000 –

CM02 0 23 0 0 0 1.000 1.000 – 1.000 1.000 –

CM03 0 23 0 0 0 1.000 1.000 – 1.000 1.000 –

CM04 0 23 0 0 0 1.000 1.000 – 1.000 1.000 –

CM05 0 23 0 0 0 1.000 1.000 – 1.000 1.000 –

CM06 0 23 0 0 0 1.000 1.000 – 1.000 1.000 –

CM07 0 23 0 0 0 1.000 1.000 – 1.000 1.000 –

CM08 0 23 0 0 0 1.000 1.000 – 1.000 1.000 –

CM09 0 23 0 0 0 1.000 1.000 – 1.000 1.000 –

BitterX SVM 0 17 0 0 6 0.739 1.000 – 0.739 0.850 –

BitterPredict Adaboost 0 17 0 0 6 0.739 1.000 – 0.739 0.850 –

(1) No standard deviation can be given in this table, since only one unambiguous predicted label should be provided by our e-Bitter and this predicted label is obtained from the predicted

probability averaging over all their respective constituent models. (2) Specificity (test set) and MCC (test set) cannot be given due to the zero number of TN and FP.

TABLE 3 | The comparison of models evaluated on the “UNIMI set” dataset (23 bitterants and 33 non-bitterants).

Program Model Failed TP TN FP FN Accuracy

(test set)

Precision

(test set)

Specificity

(test set)

Sensitivity

(test set)

F1-score

(test set)

MCC

(test set)

e-Bitter CM01 0 21 18 15 2 0.696 0.583 0.545 0.913 0.712 0.471

CM02 0 21 18 15 2 0.696 0.583 0.545 0.913 0.712 0.471

CM03 0 21 19 14 2 0.714 0.600 0.576 0.913 0.724 0.497

CM04 0 20 18 15 3 0.679 0.571 0.545 0.870 0.690 0.422

CM05 0 21 19 14 2 0.714 0.600 0.576 0.913 0.724 0.497

CM06 0 21 18 15 2 0.696 0.583 0.545 0.913 0.712 0.471

CM07 0 21 19 14 2 0.714 0.600 0.576 0.913 0.724 0.497

CM08 0 23 18 15 0 0.732 0.605 0.545 1.000 0.754 0.575

CM09 0 23 18 15 0 0.732 0.605 0.545 1.000 0.754 0.575

BitterX SVM 1 15 18 14 8 0.600 0.517 0.562 0.652 0.577 0.212

BitterPredict Adaboost 0 18 28 5 5 0.821 0.783 0.848 0.783 0.783 0.631

(1) No standard deviation can be given in this table, since only one unambiguous predicted label should be provided by our e-Bitter and this predicted label is obtained from the predicted

probability averaging over all their respective constituent models.

importance of fingerprint bit contributing to the bitterant/non-
bitterant classification and look over the feature partial derivative
of fingerprint bit reflecting the negative or positive influence
on the bitterness. (3) Check whether the compound of users’
interests is located within the applicability domain of our models.

RESULTS AND DISCUSSION

Fully Experimental Dataset Used in This
Work
Our dataset contains the experimentally confirmed 707 bitterants
and 592 non-bitterants. The bitterless dataset is composed of the
experimentally validated 132 tasteless compounds, 17 non-bitter
compounds and 443 sweeteners, which is different from the fully
hypothetical non-bitterants employed in the works of Rodgers
et al. (2006) and is also distinct from the partially hypothetical

non-bitterants used in the work of Dagan-Wiener et al. (2017)
and Huang et al. (2016) More specifically, Huang et al. adopt 20
experimental non-bitterants and 519 hypothetical non-bitterants,
and Wiener et al. treat the 1,360 hypothetically non-bitter
flavors and the experimentally validated tasteless, non-bitter and
sweet compounds (557 compounds) as the non-bitterants (1,917
compounds), while our work only conservatively considers
the experimentally confirmed tasteless, sweet and non-bitter
molecules as the non-bitterants (592 compounds).

In the work of Wiener et al. 1,360 hypothetically non-
bitter flavor compounds are assumed as the non-bitterants for
the bitter/bitterless classification (Dagan-Wiener et al., 2017).
However, some of hypothetically non-bitter flavors are small and
volatile odorous molecules, which are modulated by about 400
olfactory receptors to give rise to the sense of smell (Hauser et al.,
2017). As we know, the olfactory receptors, belonging to the
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TABLE 4 | The comparison of models evaluated on the “Phytochemical Dictionary” dataset (49 bitterants and 26 non-bitterants).

Program Model TP TN FP FN Accuracy

(test set)

Precision

(test set)

Specificity

(test set)

Sensitivity

(test set)

F1-score

(test set)

MCC

(test set)

e-Bitter CM01 48 20 6 1 0.907 0.889 0.769 0.980 0.932 0.794

CM02 47 20 6 2 0.893 0.887 0.769 0.959 0.922 0.761

CM03 48 20 6 1 0.907 0.889 0.769 0.980 0.932 0.794

CM04 46 21 5 3 0.893 0.902 0.808 0.939 0.920 0.762

CM05 48 20 6 1 0.907 0.889 0.769 0.980 0.932 0.794

CM06 46 20 6 3 0.880 0.885 0.769 0.939 0.911 0.731

CM07 46 18 8 3 0.853 0.852 0.692 0.939 0.893 0.669

CM08 48 19 7 1 0.893 0.873 0.731 0.980 0.923 0.764

CM09 48 21 5 1 0.920 0.906 0.808 0.980 0.941 0.823

BitterX SVM 46 8 18 3 0.720 0.719 0.308 0.939 0.814 0.332

BitterPredict Adaboost 48 18 8 1 0.880 0.857 0.692 0.980 0.914 0.735

(1) No standard deviation can be given in this table, since only one unambiguous predicted label should be provided by our e-Bitter and this predicted label is obtained from the predicted

probability averaging over all their respective constituent models.

FIGURE 4 | The scatter plot of accuracy (test set) vs. F1-score (test set) for all

the models (9 consensus models and 96 average models) evaluated on the

“Bitter New” dataset with 23 bitterants. Accuracy instead of MCC is used as Y

axis, since MCC cannot be calculated due to the zero number of TF and FP in

this dataset without the non-bitterants.

class A family of GPCRs, possess the binding pocket in the TMD
domain (Sayako et al., 2008), meanwhile, 25 hTas1Rs, arguably
categorized as class A family of GPCRs, have the binding site
in the TMD domain as well (Di Pizio et al., 2016). Hence some
of these small odorants may still have chances to promiscuously
activate hTas2Rs to elicit the bitterness. Hence, caution should be
taken in the use of hypothetically non-bitter flavors.

Moreover, the preliminary bitter/bitterless classification
model in the work of Wiener et al., which is trained on the
dataset including the non-bitter flavors and 2,000 diverse
molecules selected from ChEMBL database (Gaulton et al.,

FIGURE 5 | The scatter plot of MCC (test set) vs. F1-score (test set) for all the

models (9 consensus models and 96 average models) evaluated on the

“UNIMI set” dataset (23 bitterants and 33 non-bitterants).

2012) as the hypothetical non-bitterants, is probably not very
promising, since there is no detailed performance evaluation
about this preliminary model mentioned in their work, and
actually these 2,000 compounds from ChEMBL database are
excluded in the model-training to achieve their final best
classification model (Dagan-Wiener et al., 2017). Therefore, our
work does not take account of the hypothetical non-bitterants in
our dataset.

The Chemical Space of Our
Bitterants/Non-bitterants Dataset
To examine whether the chemical space differs obviously between
the bitterants and non-bitterants, the histograms of themolecular
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FIGURE 6 | The scatter plot of MCC (test set) vs. F1-score (test set) for all the

models (9 consensus models and 96 average models) evaluated on the

“Phytochemical Dictionary” dataset (49 bitterants and 26 non-bitterants).

weight (MW), logP, the number of hydrogen-bond donor (NHBD)
and acceptor (NHBA) for this dataset are shown in Figures S1–S4
and analyzed as follows. For logP and MW (Figures S1, S2),
the overall distributions for the bitterants and non-bitterants
are very similar, except the height of peak. In the histogram
of logP, the peak for the bitterants is a bit sharper, which
indicates that more bitterants tends to be hydrophobic, while
in the histogram of MW, the peak for bitterants is a little
flat. Moreover, the scatter plot of logP vs. MW (Figure 1A)
also illustrate that there is no apparent separation between
the bitterants and non-bitterants from this perspective. For the
bitterants, the scatter plot of logP vs. MW is also very close
to the counterpart in the work of Wiener et al., where they
proposed the bitter domain defined by the relations as follows:
−3 = <logP ≤ 7 and MW ≤ 700 (Dagan-Wiener et al.,
2017).

Moreover, NHBD for the bitterants is predominantly ranging
from 0 to 2 (Figure S3), and NHBA for the non-bitterants mainly
varies from 1 to 3 (Figure S4). Similarly, the distributions of
NHBA for the bitterants and non-bitterants have peaks at 2 and
4 respectively. Thus, the comparisons of NHBD or NHBA imply
that the bitterants are slightly less hydrophilic than the non-
bitterants. In addition, the scatter plots of NHBA vs. NHBD show
that the distributions for the bitterants and non-bitterants cannot
be easily distinguished from this view (Figure 1B). Therefore, it
seems that logP,MW,NHBD, andNHBA are not good to intuitively
discriminate the bitterants and non-bitterants.

Furthermore, ECFP based similarity matrix (Figure 2) clearly
shows the overall Tanimoto similarities between the bitterants
and non-bitterants are quite low with the average value (0.0694)
over the whole matrix. This provide an important clue that ECFP
fingerprint may be a good molecular descriptor for our bitterants
and non-bitterants classification. Thus in our work, various ECFP
fingerprints are implemented and explored.

Comparison of Models Trained With the
Different ECFPs and Without the Feature
Selection
ECFP fingerprints are extensively adopted as the molecular
descriptors for the machine-learning based QSAR or QSPR study
(Ekins et al., 2010; Hu et al., 2012; Braga et al., 2015, 2017;
Koutsoukas et al., 2016; Varsou et al., 2017; Wang et al., 2017;
Yang et al., 2017). However, it has not been adopted to predict the
bitterant in the existing literature. In most of the previous works
about the classification, 1024bit-ECFP4 or 2048bit-ECFP6 are
often chosen by default. In this work, 1024bit-ECFP4, 2048bit-
ECFP4, 1024bit-ECFP6, and 2048bit-ECFP6 are systematically
explored, since ECFP6 possesses more structural features than
ECFP4, and 2,048 bits can accommodate more structural features
than 1024bits to alleviate the bit collision. Thus in this section, the
trainedmodels without the prior feature selection are used for the
comparison.

In order to statistically compare the overall performance of
those four ECFP fingerprints in the context of each machine-
learning method, two-sample T-test is conducted based on F1-
scores from two sets of nineteen random data-splitting schemes,
and is systematically performed for each pair (Table 5 and Tables
S14–S16) except the model-training with DNN, since only three
random data-splitting are done for DNN due to its demanding
computational time and are not enough to perform T-test for
the limited sample size. Thus in this section, only KNN, SVM,
GBM, and RF are statistically compared with the p-value from
two-sample T-test. For KNN, Table 5 shows that the average
F1-scores for 1024bit-ECFP4 (AM01), 2048bit-ECFP4 (AM07),
1024bit-ECFP6 (AM13), and 2048bit-ECFP6 (AM19) are 0.898,
0.900, 0.898, and 0.898 respectively, and there are no significant
differences among two ECFPs according to the criterion (p-value
< 0.0001). Thus, different ECFPs won’t statistically influence the
F1-score for KNNwith full features. Based on the Tables S14–S16,
this conclusion is also hold for SVM, GBM, and RF from the
statistical perspective.

In short, different ECFPs won’t statistically affect the
performance of our bitterant/non-bitterant classification in the
context of the same machine-learning method with the full
features. From this view, the default choice of 1024bit-ECFP4
or 2048bit-ECFP6 is generally acceptable in the bitterant/non-
bitterant classification. In our case, four ECFPs are still adopted,
since their combination with the feature selection, multiple
machine-learning methods and consensus strategy may offer a
better solution, which will be discussed as follows.

Comparison of Models Trained With and
Without the Prior Feature Selection
Feature selection is widely employed to choose a subset of
features for the model training in the machine-learning studies.
In this work, the top 512, 256, and 128 important bits of ECFPs
are selected to build the models for the comparison with their
counterparts, which are trained with the full features.

The impact of feature selection on the model performance will
be assessed in the context of specific combination of ECFPs and
machine-learning methods. To compare the model performance
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in the statistical manner, two-sample T-test is also conducted
based on the F1-scores from two sets of nineteen random data-
splitting schemes and all the T-test results including the p-value
will be reported in Table 6 and Tables S17–S31.

Feature selection consistently affects the performance of
model trained with KNN and four ECFPs (Table 6 and
Tables S17–S19). Here KNN method with 1024bit-ECFP4 is
taken as an example (Table 6). The models trained with 512
features (AM25, F1= 0.911) or 256 features (AM49, F1= 0.920)
manifest the significantly different performance compared to
its counterpart trained with full features (AM01, F1 = 0.898)
according to the criterion (p-value < 0.0001). Based on the
average F1-score, in this case feature number 512 or 256 after
feature selection is better than the full features. However, it is not
always true that feature selection will be helpful to the KNN with
1024bit-ECFP4. The models trained with 128 features (AM73, F1
= 0.910) and full features (AM01, F1 = 0.898) have the similar
performance, since two-sample T-test illustrates that there are no
significant difference of performance between these two models,
since the p-value is larger than 0.0001. Thus, feature selection
will improve the performance of KNN method depending on
the specific feature number. KNN method with the other ECFPs
(Tables S17–S19) gives the same conclusion.

However, for the models trained the SVM method and
ECFPs (Tables S20–S24), feature selection won’t influence the
performance relative to the full features, since there is no
significant difference among these models according to the
criterion (p-value < 0.0001). However, it is worth mentioning
that the model trained with 128 features (AM92, F1= 0.905) has
significant difference of F1-score compared with the counterpart
trained with 512 features (AM44, F1 = 0.921) based on the
criterion (p-value < 0.0001).

Similarly, feature selection has no effect on the RF and GBM
methods combined with any ECFP (Tables S25–S31), since no
significant differences of F1-score are observed based on the
criterion (p-value <0.0001). This is expected for RF and GBM
methods, since they have their own intrinsic capabilities to select
the important features, hence RF and GBMmethods are not very
sensitive to the prior feature selection, which is consistent with
the finding in the work of Zang et al. (2017).

Therefore, relative to the full features, 256 or 512 features will
be good for the KNNmethod with ECFPs, while feature selection
has no impact on SVM, GBM and RF methods in our cases
from the statistical analysis. It should be noted that DNN2 and
DNN3 are excluded in our two-sample T-test due to very limited
samples, thus the effect of the feature selection on DNN2 and
DNN3 is not discussed.

Overall Performance of All the Individual
Models and Average Models
In this work, 1,312 models have been harvested considering
the combination of different ECFPs, machine-learning methods,
feature selection, and random data-splitting schemes. To reduce
the bias from different random data-splitting schemes, 96 average
models (AM) are obtained from 1,312 models by averaging over
different data-splitting schemes.

To evaluate the performance of all 1,312 models and 96
averagemodels, both F1-score and1F1-score are calculated from
Tables S1, S2, which are displayed in Figure 7. F1-score is the
key criterion used to select the best model during the modeling
training with cross-validation, while 1F1-score used to inspect
the possible overfitting or underfitting of model is obtained with
Equation (7). The scatter plot of 1F1-score vs. F1-score (test set)
demonstrates that all the average models and most of individual

TABLE 5 | Comparisons of average models (AM) with the different ECFPs, but with the same KNN method and full features.

Name of average model 1024bit-ECFP4

[AM01, F1 = 0.898(0.018)]

2048bit-ECFP4

[AM07, F1 = 0.900(0.014)]

1024bit-ECFP6

[AM13, F1 = 0.898(0.016)]

2048bit-ECFP6

[AM19, F1 = 0.898(0.017)]

1024bit-ECFP4 [AM01, F1 = 0.898(0.018)] – 3.3221497380e-01(N) 9.7217732030e-01(N) 9.6728090414e-01(N)

2048bit-ECFP4 [AM07, F1 = 0.900(0.014)] 3.3221497380e-01(N) – 2.1534925183e-01(N) 4.9376183004e-01(N)

1024bit-ECFP6 [AM13, F1 = 0.898(0.016)] 9.7217732030e-01(N) 2.1534925183e-01(N) – 9.8674211132e-01(N)

2048bit-ECFP6 [AM19, F1 = 0.898(0.017)] 9.6728090414e-01(N) 4.9376183004e-01(N) 9.8674211132e-01(N) –

(1) “N” means that there is no significant difference between two models according to the criterion (p-value < 0.0001); (2) the number in the element of matrix is the p-value after

two-sample T-test for every two average models. (3) “–” indicates that two-sample T-test between the same average models will be ignored.

TABLE 6 | Comparisons of average models (AM) with the different feature numbers, but with the same KNN method and 1024bit-ECFP4.

Name of average model Full features

[AM01, F1 = 0.898(0.018)]

512 features

[AM25, F1 = 0.911(0.012)]

256 features

[AM49, F1 = 0.920(0.016)]

128 features

[AM73, F1 = 0.910(0.013)]

Full features [AM01, F1 = 0.898(0.018)] – 4.9645296142e-05(Y) 3.6331197284e-05(Y) 3.1292342028e-03(N)

512 features [AM25, F1 = 0.911(0.012)] 4.9645296142e-05(Y) – 2.1671323186e-02(N) 7.8500884020e-01(N)

256 features [AM49, F1 = 0.920(0.016)] 3.6331197284e-05(Y) 2.1671323186e-02(N) – 7.9667376708e-03(N)

128 features [AM73, F1 = 0.910(0.013)] 3.1292342028e-03(N) 7.8500884020e-01(N) 7.9667376708e-03(N) –

(1) “N” means that there is no significant difference between two models according to the criterion (p-value < 0.0001), while “Y” suggests that there is significant difference between

two models according to the criterion (p-value < 0.0001); (2) the number in the element of matrix is the p-value after two-sample T-test for every two average models. (3) “–” indicates

that two-sample T-test between the same average models will be ignored.
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FIGURE 7 | The scatter plot of 1F1-score vs. F1-score (test set) for all the

1,312 individual models and 96 average models derived from this work.

models have the 1F1-score lower than 0.04, indicating that the
performance on the test set and in the cross-validation is quite
similar. Hence all these average models and most of individual
models are probably robust without the apparent overfitting or
underfitting from this perspective.

In addition, majorities of the average models and individual
models are located in the bottom-right corner of the scatter
plot (Figure 7), suggesting that most of them have high F1-score
larger than 0.90. Moreover, MCC (test set) vs. F1-score (test
set) for all the 1,312 individual models and 96 average models
(Figure S12) indicates that most of these models are quite good
from the perspective of MCC and F1-score. Therefore, most of
our average models and individual models exhibit the promising
performance.

Y-randomization Test of Our Models
To examine the reliability of all the 1,312 models,
Y-randomization test is conducted by the random shuffling
of the experimentally-observed labels, which generates a noisy
dataset (Table S3). Before the model-training, the accuracy,
precision, specificity, sensitivity, F1-score, andMCC of this noisy
dataset are 47.5∼53.3%, 51.8∼57.1%, 42.4∼48.7%, 51.8∼57.1%
0.518∼0.571, and −0.058∼0.058 respectively (Table S3), which
indicates that almost half of samples are still correct in this noisy
dataset. Taken the randomized exp01 (Table S3) as an example,
the respective numbers for the true bitterants (TP) and true non-
bitterants (TN) are 315 and 223, while the respective numbers
for the false bitterants (FP) and false non-bitterants (FN) are 251
and 251 due to the random shuffling (Table S3). However, the
ratio between bitterants (TP and FP) and non-bitterants (TN
and FN) is still 566:474, which is identical with its counterpart in
the originalDataset-CV before the shuffling.

After training on these noisy datasets via the cross-validation,
the models with the best performance (highest F1-score) on
the internal validation dataset are also assessed on the test set,

which is not transformed by any random shuffling for the labels.
According to Figure S13, the F1-score and MCC of the models
(blue spheres) in the Y-randomization test is strikingly decreased
relative to the original models (red spheres), which suggests that
our original models are quite reliable. Meanwhile, the MCC of all
thesemodels in the Y-randomization test are close to 0, indicating
that these models in the Y-randomization test have no better
than the random prediction. Hence the Y-randomization test
substantiates the reliability of the original models.

Applicability Domain Assessment of Our
Models
Applicability domain of models are defined quantitatively by the
average-similarity between the given test compound and its five
nearest neighbors in Dataset-CV. If the given test compound is
close to its neighbors with a larger average-similarity, it means
that the chemical space of this given compound is covered by
Dataset-CV, thus the prediction is probably interpolated from
Dataset-CV, which gives more reliable estimation. According to
the average-similarity histograms (Figure S11) of Dataset-CV

and Dataset-Test, the compounds in the test set (Dataset-Test)
are fully covered by the dataset for the cross-validation (Dataset-

CV), thus the given compound with average-similarity higher
than 0.1 is assumed to be within the applicability domain of our
models according to Figure S11. If the compound is not located
within the applicability domain of our models, the prediction for
this compound is probably extrapolated from Dataset-CV and
consequently is not confident.

Performance Comparison Among BitterX,
BitterPredict, and e-Bitter
BitterX and BitterPredict adopt SVM and Adaboost methods
respectively, while e-Bitter implicitly integrates nine
consensus models (CM01-CM09) and optionally includes
96 average models (AM01-AM96). To evaluate the performance
of all the models, two types of comparisons are conducted. One
is the direct comparison on the test set reported in the original
works. The other is the more fair comparison on the three
external test sets in the recent work of Wiener et al.

For the direct comparison, F1-score (test set) and MCC (test
set) of the model from BitterX are 0.918 and 0.842 respectively
(Table 1), and the counterparts of the model from BitterPredict
are 0.708 and 0.595 respectively (Table 1). It worth mentioning
that F1-score and MCC are all calculated based on the data
reported in their works. From this perspective, BitterX is much
better than BitterPredict. Additionally, the model from BitterX
and our models including consensus models and average models
are markedly better than the counterpart from BitterPredict (Red
sphere in Figure 3). Moreover, one of our consensus models
(CM1, Blue sphere in Figure 3) is also a little better than the
model from bitterX (Black sphere in Figure 3), the consensus
models (CM03, CM05, and CM07) are comparable to the model
from BitterX and the consensus models (CM02, CM04, CM06,
CM08, and CM09) are slightly inferior to the model from
BitterX. It should be noted that the model from BitterPredict is
derived from only one random data-splitting scheme, and the

Frontiers in Chemistry | www.frontiersin.org 13 March 2018 | Volume 6 | Article 82

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zheng et al. e-Bitter for the Bitterant Prediction

model from BitterX is averaged over three random data-splitting
schemes. Our consensus models are built by averaging over all
the constituent models (19 individual models for CM01 and
5 average models for CM02-CM09), while our average models
(AM) in Table S2 are derived by averaging over 19 random
data-splitting schemes for KNN, SVM, GBM, and RF or three
random data-splitting schemes for DNN2 and DNN3. Therefore,
our models in the e-Bitter may offer more robust results in this
respect.

To seek the further objective evaluation, three external test sets
in the recent work of Dagan-Wiener et al. (2017) are employed
accordingly. For the “Bitter New” dataset with 23 bitterants,
the prediction accuracies are 74, 74, and 100% for bitterX,
BitterPredict, and e-Bitter respectively, while F1-scores are 0.85,
0.85, and 1.00 for bitterX, BitterPredict, and e-Bitter respectively
(Table 2). Thus, all the consensus models and average models in
the e-Bitter afford the best performance for this dataset (Figure 4
and Table 2).

As concerning the “UNIMI set” dataset (23 bitterants and
33 non-bitterants), bitterX obtains the accuracy, precision,
specificity, sensitivity, F1-score and MCC of 60, 52, 56, 65%,
0.58 and 0.21 respectively (Table 3), which are lower than
their counterparts reported in the work of Huang et al. (2016)
BitterPredict offers the accuracy, precision, specificity, sensitivity,
F1-score and MCC of 82, 78, 85, 78%, 0.78 and 0.63 respectively
reported in the work of Dagan-Wiener et al. (2017) Meanwhile,
e-Bitter gives the accuracy, precision, specificity, sensitivity,
F1-score and MCC of 68∼73%, 57∼61%, 55∼58%, 87∼100%,
0.69∼0.75, and 0.47∼0.58 respectively considering the different
consensus models (Table 3), which are also lower than their
counterparts evaluated on our test set (Dataset-Test) in Table
S2. Obviously, BitterPredict and e-Bitter (9 consensusmodels and
96 average models) unanimously outperform BitterX (Figure 5),
while BitterPredict exhibits the slightly better performance than
e-Bitter in light of F1-score and MCC (Figure 5).

Regarding to the “Phytochemical Dictionary” dataset (49
bitterants and 26 non-bitterants), BitterPredict provides the
accuracy, precision, specificity, sensitivity, F1-score and MCC
of 88, 86, 69, 98%, 0.91 and 0.735 respectively (Table 4, Dagan-
Wiener et al., 2017) while e-Bitter predicts that the accuracy,
precision, specificity, sensitivity, F1-score andMCC are 85∼92%,
85∼91%, 69∼81%, 94∼98%, 0.89∼0.94, and 0.67∼0.82, which
is comparable with the counterparts evaluated on our test
set (Dataset-Test) in Table S2. BitterX achieves the accuracy,
precision, specificity, sensitivity, F1-score and MCC of 72, 72,
31, 94%, 0.814 and 0.332 respectively (Table 4). Thus for this
dataset, all 9 consensus models and 96 average models in the
e-Bitter are consistently better than BitterX (Figure 6), while
most of the consensus models (CM01, CM02, CM03, CM04,
CM05, CM08, and CM09) and some average models show more
promising results than BitterPredict based on the F1-score and
MCC (Figure 6).

Therefore, in light of the performance indicators F1-score
and MCC, e-Bitter obtains the best performance for the “Bitter
New” dataset and “Phytochemical Dictionary” dataset. e-Bitter
consistently outperforms bitterX for all these three test sets.
BitterPredict achieves the slightly better result than e-Bitter for

the “UNIMI set” dataset. It is worth noting that in this section
the performance of e-Bitter specifically refers to the performance
of the consensus models, albeit the performance of 96 average
models are optionally available in the e-Bitter and also discussed
above.

Interactive Visualization of ECFP
Fingerprint Bit, 3D Structural Feature,
Feature Importance, and Feature Partial
Derivative
ECFP fingerprint is prevalently used in the chemoinformatics,
however, this “0/1” bit string is quite obscure for the food
scientist to correlate the specific bit “1” to its corresponding
structural feature in the context of 3D structure. For this purpose,
our implementation is designed to record all the structural
information including atoms and bonds for each bit during the
ECFP generation, and is intended to highlight the structural
feature in the context of the whole 3D structure via clicking the
bit “1” of interest. This unique feature of our implementation will
provide an appealing advantage. In our current version, ECFP
diameter and bit length can be customized by the users, albeit
the commonly-used ECFP diameter is 4 or 6, and frequently-used
ECFP bit length is 1,024 or 2,048. Once setup the diameter and
bit length, e-Bitter program can generate the ECFP fingerprint
in the fingerprint windows via simply clicking on the menu, and
can automatically associate all the bit “1” with the corresponding
structural features in the 3D viewer, and is ready for the users to
select the bit of interest (Figure 8).

Besides the structural visualization for the fingerprint bit, the
associated feature importance and feature partial derivative are
also very useful information. The feature importance emphasizes
the importance of each bit contributing to the bitter/bitterless
classification, and the feature partial derivative of each bit
stresses the positive or negative influence of each bit on the
bitterness of the compound. Hence, the fingerprint bit “1,”
its corresponding structural feature, feature importance, and
feature partial derivative are closely interconnected and can be
interactively visualized in our e-Bitter program. This interactive
and synchronization function can be well depicted by Figure S14.

Demonstration of e-Bitter Program
e-Bitter is a stand-alone package, which can be freely downloaded
from Dropbox shared folder (https://www.dropbox.com/sh/
3sebvza3qzmazda/AADgpCRXJtHAJzS8DK_P-q0ka?dl=0). This
program is well tested on the 64bit windows operating system
such as Win7, Win8, and Win10, while the external Scikit-
learn, Keras and Tensorflow python libraries can be easily
set up via simply installing the Winpython-64bit v3.5.4.0 that
integrates the complete python environment and rich python
libraries on the windows operating systems. In this sense, the
whole installation process on user’s computer is quite handy.
Once installed and configured, e-Bitter can predict whether the
molecule loaded in the 3D viewer is bitter or not, or can perform
an automated virtual screening against a small-molecule database
to obtain the possible bitterants candidates. Additionally, e-
Bitter program also implements the job management system
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(Figure S15), since it would be time-consuming to conduct
the prediction with the consensus models, particularly for

FIGURE 8 | The interactive visualization of the fingerprint bit and its

corresponding structural feature in the 3D viewer. The title of fingerprint

window shows the type of ECFP and also displays whether there is bit-collision

occurring in the fingerprint. All the structural features can be visualized by

browsing the list in the combo box (bottom) even if there is bit-collision.

those models including the deep neuron network methods.
Figure 9 briefly recapitulates all the functions in the e-Bitter
program.

Besides this graphic mode, e-Bitter program can also work in
the console mode, since some users prefer to use the command
line to predict the bitterants. The only input for e-Bitter program
is the molecular file with the Tripos Mol2 format. The detailed
example and usage are described in the tutorial and manual,
which are integrated in the e-Bitter program and can also be
accessed from the Dropbox shared folder.

Furthermore, all the consensus models and their constituent
models integrated in our program can be easily upgraded. As
we know, the dataset about the bitterants and non-bitterants
will grow more and more rapidly, thus we will continue to
spend the effort to constantly upgrade our models with the
larger experimental dataset, and upload the new models to the
folder called “model” in the Dropbox shared folder. Users can
download the latest models to replace the previous ones for their
prediction.

Overall Function Comparison Among
BitterX, BitterPredict, and e-Bitter
Relative to the online tool bitterX (Huang et al., 2016), e-
Bitter works on the local machines, which ensures that users
can well exploit their own computational resource to test
their propriety compounds without turning to the external
web server. Moreover, e-Bitter can screen the small-molecule
database in batch. More importantly, e-Bitter program adopts
the consensus voting strategy based on the multiple machine-
learning algorithms to enhance the reliability of prediction result.

Compared to the MATLAB tool BitterPredict (Dagan-Wiener
et al., 2017), e-Bitter adopts the ECFP fingerprint as themolecular
descriptors, which is natively implemented in our program.

FIGURE 9 | The basic functions in the e-Bitter program, which is highlighted by the red rectangle.
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Thus, e-Bitter does not depend on any other commercial
softwares such as Schrödinger package required in BitterPredict.
In addition, this free e-Bitter program employs the versatile
machine-learning algorithms and works compatibly with the
free python environment, while BitterPredict is developed and
runs in the commercial MATLAB environment, which will
restrict its extensive tests or applications for most of the
users.

Limitation and Future Prospect
Admittedly, our work has some limitations. (1) From the
perspective of curated data, the experimentally confirmed dataset
probably still has some intrinsic noise, since in the experimental
taste assessment, the trained panelists have some objective
factors such as the individual gene-polymorphism of Tas2Rs,
and also have some subjective factors such as the mixed tastes,
which are unlikely to be clearly discerned. (2) As for the
parameter optimization in the model training process, it is a
daunting task to explore the complete parameters combinations,
since the parameter spaces for machine-learning methods such
as DNN are very large. Thus, in this work only the key
parameters are tuned with the grid method. (3) Regarding
to the feature selection, feature importance from the random
forest method is used as the criterion to select the important
features. In this work, only full features, 512, 256, and 128
features are attempted, while the other feature numbers and
feature selection methods, which may provide more promising
results, are not tried because of the tremendous combination
of options and parameters. (4) From the view of consensus
models, this strategy will introduce some extra computational-
burden. First, different types of ECFP fingerprints should be
generated for each compound, and then each constituent model
coupled with its corresponding fingerprint affords the prediction
result also for each compound, finally the results from all the
constituent models will be averaged to make the final prediction.
Therefore, this procedure is not extremely fast, especially for the
consensus model containing the deep-neuron network. (5) From
the function of e-Bitter, this program is only focused on the
bitterant classification for the small molecule due to our current
research priority.

In the future, we will devote to further collect the high-
quality dataset and constantly update the models. Moreover, we
will pay more attention to the other feature selection methods
and parameter optimization schemes and will implement
in the future version of e-Bitter program. Furthermore, e-
Bitter program will be extended to qualitatively classify the
bitter/bitterless peptide, quantitatively predict the bitterness of
the bitterants, and explore the possible target information of the
bitterants.

CONCLUSIONS

In this work, it is the first time that the fully experimental
bitterants/non-bitterants dataset, consensus voting based on the
multiple machine-learning algorithms, and ECFP fingerprints
are adopted to build the bitter/bitterless classification models.
Through the exhaustive parameter exploration with the five-fold
cross-validation, all the models are carefully scrutinized by the
Y-randomization test to ensure their reliability, and subsequently
nine consensus models are constructed based on the individual
or average models, which differ in term of accuracy, speed
and diversity of models. Evaluation on the three external test
set from Wiener et al. demonstrates that e-Bitter outperforms
bitterX on these three test sets; e-Bitter harvests the better results
than BitterPredict for the “Bitter New” and “Phytochemical
Dictionary” dataset; BitterPredict demonstrates slightly better
performance than e-Bitter for the “UNIMI set” dataset. To
automate the whole process, we develop a graphic e-Bitter
program for the bitterant prediction or screening against the
small-molecule database in batch. Additionally, e-Bitter program
natively implements ECFP fingerprint, and more importantly,
e-Bitter can vividly visualize the structural feature, feature
importance, and feature partial derivative for any specific bit “1”
in the ECFP fingerprint. We hope our work can provide a useful
tool for the experimental scientist to rationally design and screen
the bitterants.
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