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A unique irregular hexagon was self-assembled using an organic donor clip (bearing

terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting

metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and

elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this

metallamacrocycle which is a unique example of a discrete hexagonal framework

self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor

tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer

cell lines and results were compared with cisplatin. Results confirmed a positive effect of

the metallamacrocycle formation on cell growth inhibition.

Keywords: ionic metallamacrocycle, supramolecular assemblies, cytotoxicity, cancer cell lines, heterocyclic

compounds

INTRODUCTION

Coordination driven self-assembly has been used conveniently in contemporary research for the
construction of wide range of discrete supramolecular architectures (Chakrabarty et al., 2011; Cook
et al., 2013b; Li et al., 2013; Schmidt et al., 2014; Schoedel and Zaworotko, 2014; Tanaka et al.,
2014; Bhowmick et al., 2015a,b; Cook and Stang, 2015; Wang et al., 2016; Jana et al., 2017). In
such complex frameworks, the building blocks (aka supramolecular tectons) are held together
by using multiple ligand-metal coordination bonds (Lehn, 1995; Chakrabarty et al., 2011; Cook
et al., 2013b; Li et al., 2013; Ward and Raithby, 2013; Han et al., 2014; Schmidt et al., 2014;
Schoedel and Zaworotko, 2014; Tanaka et al., 2014; Bhowmick et al., 2015a,b; Cook and Stang,
2015; Johnson et al., 2015; Holloway et al., 2016, 2017; Wang et al., 2016; Jana et al., 2017). The
dimensions of resultant abiotic supramolecules are guided by chemical information (stereo and
geometric) contained in precursor moieties (Oliveri et al., 2008; Newkome and Shreiner, 2010;
Inokuma et al., 2011; Cook et al., 2013b; Harris et al., 2013; Yoshizawa and Klosterman, 2014; Cook
and Stang, 2015; Wang et al., 2015; Xu et al., 2016; Jana and Das, 2017). Intense research interest
in understanding the complexity level of these artificial self-assembly processes is reflected in the
quantum of reports published in this research domain (Barbara, 2001; Sauvage, 2001; Balzani et al.,
2002; Beuerle, 2016; Fujita et al., 2016). Moreover, metal-mediated self-assembly studies are useful
in understanding the fundamental principles of molecular self-organization in nature (Liu et al.,
2007; Albertí et al., 2013; Chakraborty et al., 2013, 2015; Cook et al., 2013b; Galstyan et al., 2013;
Saha et al., 2014; Sarkar et al., 2014; Chen et al., 2015; Cook and Stang, 2015; Li et al., 2015).
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The library of discrete structures designed using the principles
of coordination driven self-assembly (Pluth et al., 2009;
Yoshizawa et al., 2009; Michito and Makoto, 2010; Thanasekaran
et al., 2012; Cook et al., 2013b; Therrien, 2013; Young and Hay,
2013;Mishra andGupta, 2014; Samanta andMukherjee, 2014; Xu
et al., 2014; Cook and Stang, 2015; Bhowmick et al., 2016) include
two dimensional (2-D) structures such as metallamacrocycles
(triangles, rectangles, pentagon, hexagon, square etc.) and three
dimensional (3-D) frameworks (cages, boxes, barrels, prisms,
Archimedean, and Platonic solid) (Stang and Olenyuk, 1997;
Fujita et al., 2005; Takezawa and Shionoya, 2012; Cook et al.,
2013b; Kishi et al., 2013; Chen et al., 2014; Liu et al., 2014; Lu
et al., 2014; Cook and Stang, 2015; Manna et al., 2015; Zhang
et al., 2017). Among the 2-D polygons, hexagonal frameworks
are most interesting because such a shape is most abundantly
observed in nature. Prominent examples of hexagonal motif
observed in nature are honeycombs and graphite. Artificial self-
assembly of hexagonal nanoscalar entities is challenging, as it
requires convergence of several smaller components.

In recent years, an emerging application of these abiological
supramolecules is to investigate their nature of interactions with
biological systems (Wang and Lippard, 2005; Kelland, 2007;
Wheate et al., 2010). These interactions include but are not
limited to studies with cancer cells, DNA and proteins. Among
purely inorganic complexes, Pt, Ru, and Au based ions are most
popular (Mattsson et al., 2009; Ott, 2009; Berners-Price and
Filipovska, 2011; Vajpayee et al., 2011, 2013; Lo et al., 2015;
Ajibola et al., 2017). For example, Pt based cisplatin has been
one of the most successful therapeutic agent in cancer treatment
(Rosenberg et al., 1969; Vickers et al., 2004). However cisplatin
has limitation (as a chemotherapeutic agent) such as uptake
by healthy cells, resistance developed by target cancer cells,
harmful side effects (such as nephrotoxicity, neurotoxicity and
ototoxicity) and protein inactivation (Jung and Lippard, 2007;
Yao et al., 2007; Wang and Guo, 2008; Todd and Lippard, 2009;
Kaluderovic and Paschke, 2011; Barry and Sadler, 2013; Farrell,
2015). Considering these limitations of cisplatin’s therapeutic use,
synthetic organometallic and supramolecular entities are being
explored as alternatives with potential application in treatment
of cancer. These supramolecules are often constructed from
organometallic precursor molecules. In this class of molecules,
the metal ruthenium is clearly a leader (Yan et al., 1997; Therrien
et al., 2008; Paul et al., 2012; Jo et al., 2017). Cook, Stang, and Chi
have reviewed the biological interactions of metallacycles derived
using coordination driven self-assembly protocol (Cook et al.,
2013a). Majority of these are derived from Ru based precursors.
It is obvious from this report that biochemical interactions of
supramolecular frameworks bearing Pt(II) centers have not been
explored, especially in the context of their potential as anticancer
therapeutic agents.

This present work is in continuation of our research efforts
to design unique supramolecular coordination complexes (SCCs)
wherein we report synthesis of a discrete and nanoscalar
hexagonal supramolecular complex using a new donor tecton.
Furthermore, we have explored cytotoxicity of the new hexagonal
SCC and its organometallic precursor. Additionally the results
have been compared with cisplatin under similar conditions.

EXPERIMENTAL SECTION

General Details
All chemicals and anhydrous solvents used in this work were
purchased from commercial sources and used without further
purification. FTIR spectra were recorded in a PerkinElmer
Spectrum 400 FT-IR spectrophotometer. 1H and 31P{1H}
NMR spectra were recorded on Bruker 400MHz spectrometer.
Elemental analyses were carried out using an Elementar
Vario Micro Cube elemental analyzer. ESI-MS analysis
was performed using a Bruker Impact ESI-Q-TOF system.
Theoretical calculations of PM6 semiempirical molecular orbital
method were carried out with Gaussian 09. A549 (human
lung cancer cell line), KB (human oral cancer cell line) and
HaCaT (human skin keratinocyte cell line) were procured from
National Centre for Cell Science (NCCS), Pune. MTT [(3-(4,
5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrasodium bromide] was
purchased from SigmaAldrich, USA. Ethidium homodimer-1 in
2mL pbs, propidium iodide, Ribonuclease A were also purchased
from SigmaAldrich.

Synthesis of Compound 5
2,6-bis((3-iodophenyl)ethynyl)pyrazine 3 (0.050g, 0.093 mmol),
4-ethynyl-pyridine 4 (0.019 g, 0.187 mmol), CuI (0.017 g, 0.009
mmol) and bis(-triphenylphosphine)palladium(II) dichloride
(6.52mg, 0.009 mmol) were charged in a 50ml Schlenk flask in
the glove box. Subsequently, 10ml dry THF and freshly distilled
and degassed triethylamine (0.5ml, 0.372 mmol) were added
under nitrogen. The reaction mixture was stirred overnight at
room temperature. After overnight stirring, the reaction mixture
was filtered through a bed of celite. The filtrate obtained was
evaporated to dryness on a rotary evaporator to obtain a crude
product which was purified by column chromatography on
neutral alumina by eluting with 35% ethyl acetate in hexane to
isolate the desired product (5) as off white solid.

Yield: 0.037 g, 81%, mp 198–202◦C; 1H NMR (400 MHz,
CDCl3): δ 8.67 (s, 2H, Ar-H), 8.62–8.61 (dd, J = 6Hz, 2H, Ar-H),
7.81–7.80 (m, 1H, Ar-H), 7.64–7.575 (m, 2H, Ar-H), 7.43–7.37
(m, 3H, Ar-H).13C{1H} NMR (CDCl3, 100 MHz): δ 149.8, 145.7,
139.5, 135.3, 132.9, 132.7, 130.9, 128.9, 125.5, 122.8, 121.9, 92.4,
92.3, 87.6, 86.1. IR (ATR): 3,048, 2,918, 2,849, 2,210, 1,687, 1,585,
1,503, 1,404, 1,279, 1,203, 1,154, 987, 887, 796, 671 cm−1. Anal.
Calcd. For C34H18N4: C, 84.63; H, 3.76; N, 11.61. Found: C, 84.72;
H, 3.84; N, 11.68.HRMS (ESI,m/z): Calculated for C34H18N4 ([M
+H]+): 483.16; Found: 483.16.

Synthesis of Macrocycle 7
To the solution of 6 (30mg, 0.020 mmol) in chloroform (4mL)
was added two equivalents of AgNO3 (7.06mg, 0.040 mmol)
in one portion, and the reaction mixture was stirred overnight
in the absence of light at room temperature. The precipitated
AgI was filtered off over a bed of Celite, and the filtrate was
collected as a yellow colored solution. Subsequently, a methanolic
solution of the donor tecton 5 (0.02 mmol, 0.5mL) was added
drop wise to the aforementioned filtrate with continuous stirring.
The reaction mixture was stirred for 15 h at room temperature.
Solvents were removed by rotary evaporator and the product
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obtained which was washed several times with n-pentane to
obtain a solid that was finally dried in a vacuum. The macrocycle
7 was recrystallized as an off white microcrystalline solid by slow
vapor diffusion of diethyl ether in its corresponding concentrated
chloroform-methanol solution.

Macrocycle 7

Yield: 34mg, 92%; 1H NMR (400 MHz, CDCl3): δ 8.89–8.87
(dd, J = 8Hz, 4H, Ar-H), 8.68 (s, 2H, Ar-H), 8.67 (s, 2H,
Ar-H), 8.00–7.99 (m, 4H, Ar-H), 7.89–7.87 (dd, J = 8Hz, 4H,
Ar-H), 7.68–7.64 (m, 4H, Ar-H), 7.47–7.45 (m, 4H, Ar-H), 7.33–
7.32 (m, 4H, Ar-H), 1.86–1.83 (m, 8H, -CH2-), 1.26–1.20 (m,
12H, -CH3). 31P NMR (162 MHz, CDCl3): δ 15.70 (1JPPt =

1,162Hz). FTIR (ATR): 2,972, 2,922, 2,216, 2,116, 1,710, 1,602,
1,511, 1,469, 1,329, 1,145, 1,034, 888, 762, 683 cm−1. Anal. Calcd.
for C82H88N8O6P4Pt2: C, 54.85; H, 4.94; N, 6.24. Found: C, 54.93;
H, 4.98; N, 6.28. ESI-MSm/z found: [7−2NO3]2+ = 835.76.

Preparation of Stock Solutions
Organometallic complex 6 and self-assembled macrocycle 7 were
solubilized into cell culture grade dimethyl sulfoxide to make
10mM stock solution. However, cisplatin was solubilized into
saline (0.9% sodium chloride) to make 1mM stock solution.
Aliquots of the stock solutions were taken and preserved in
−20◦C till further use.

In Vitro Cytotoxicity
The cytotoxicity of all the compounds (6, 7 and cisplatin) was
assessed using MTT assay against A549, KB, and HaCaT cell
lines. First, 6 and 7 were solubilized in DMSO to prepare stock
solutions (concentration 10mM). Subsequently, stock solutions
were diluted 1,000 times in cell culture media for the treatment.
The compounds were then tested at varying concentration range
starts from 2.5 to 30µM. For the assay, all the cells were
trypsinized and counted using hemocytometer. Approximately
5 × 103 cells were seeded into each well of a 96 well plate
and allowed to adhere for 24 h. Post adherence the cells were
treated with pre-determined concentration (2.5, 5, 10, 15, 20, 25,
and 30µM) of all the compounds and incubated for 48 h. The
media was then decanted, and cells were washed with phosphate
buffer saline (PBS), pH 7.4. 100 µl of 10% MTT (5mg/ml
stock) prepared in FBS free media was then added to each well
and incubated at 37◦C for 4 h. The formed formazan crystals
were solubilized in DMSO and absorbance was taken at 570 nm
using the Multiplate reader (Tecan Infinite Pro, Switzerland).
The percentage viability was calculated by normalizing the
absorbance value of test sample with anuntreated control, and the
seven-point dose-dependent curve was plotted to determine the
IC50 (IC50 value is the concentration of compound at which 50%
of cells are viable) value of each compound.

Live/Dead Assay
The viability of cells was visualized under a fluorescence
microscope using live/dead solution. The cells were seeded in
a 96 well plate as mentioned earlier. Post adherence cells were
treated for 48 h with 6-7 at 25µM concentrations and cisplatin
at 10µM concentration. The media was decanted and after

PBS (Phosphate-buffered saline) wash, cells were incubated with
100 µl working live/dead solution (1 µL of 4mM Calcein AM
and 4 µL of 2mM ethidium homodimer-1 in 2mL PBS) for
10min at 37◦C. The live cells fluoresce green (Excitation: 495 nm,
Emission: 516 nm) due to Calcein-AM uptake however dead
cells fluoresce red (Excitation: 528 nm, Emission: 617 nm) due to
Ethidium homodimer-1 uptake.

RESULTS AND DISCUSSION

Synthesis and Characterization of the
Organic Donor Clip (5)
Commercially available 2,6-dichloropyrazine is the synthetic
precursor for both donor and acceptor tectons employed
herein for the self-assembly reaction. In the first step, 2,6-
diiodopyrazine (1) was obtained from 2,6-dichloropyrazine,
which was further reacted in two steps to yield 2,6-bis((3-
iodophenyl)ethynyl)pyrazine (3) via the formation of 2,6-
diethynylpyrazine (2) (Scheme 1) (Bhowmick et al., 2017).

In the final step, 3 was further reacted with 4-ethynyl pyridine
(4) to yield the desired organic donor clip (5) as depicted in
Scheme 2. 2,6-bis((4-ethynylpyridyl)ethynyl)pyrazine) (5) was
obtained as a white colored compound (81% isolated yield).
5 is stable in air/moisture and has high solubility in common
organic solvents. 5 was fully characterized by FT-IR and NMR
spectroscopy, mass spectrometry and elemental analyses.

In the 1H NMR of 5 (Figure S1), signal appearing at δ

= 8.62 ppm and δ = 7.64 ppm corresponds to the α and β

pyridyl protons respectively. As expected, signals corresponding
to these protons appear as doublets. All characteristic peaks
corresponding to pyrazine, phenyl and pyridyl units of 5 were
observed in 13C {1H} NMR spectrum (Figure S2).

Application of 5 as a Donor Tecton toward
Self-Assembly of a Supramolecular
Hexagon
Coordination driven self-assembly reactions have been employed
for the construction of complex yet discrete metallomacrocycles.
Among various shapes reported in the literature, hexagonal
macrocycles are especially fascinating because of nature’s
preference for hexagon motif (honeycomb, graphite, snowflakes,
etc.) (Pucci et al., 2000). Consequently, there is interest in
mimicking nature in laboratory in the context of design and
synthesis of macrocycles with hexagonal cavity. The most
commonly reported methodologies involve self-organization of
12 (twelve) or 6 (six) tectons, thereby generating hexagonal
assemblies that are referred to as [6 + 6] or [3 + 3]
hexagonal metallacycles respectively (Cook and Stang, 2015).
These syntheses are challenging as they require self-assembly
of a large number of molecular components in a reaction that
is entropically unfavorable. More recently, we have reported
design and synthesis of hexagonal polygons requiring self-
assembly of two donor and two acceptor tectons thereby
yielding [2 + 2] hexagons. In this report, we have chosen
donor and acceptor in such a manner that construction of a
hexagonal macrocycle requires only one donor and one acceptor
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SCHEME 1 | Synthesis of 2,6-bis((3-iodophenyl)ethynyl)pyrazine (3).

SCHEME 2 | Synthesis of organic donor clip (5).

tecton. Thus the anticipated framework will be a unique [1 +

1] hexagonal macrocycle requiring the least number of self-
assembling molecular tectons for its construction.

In order to perform the above mentioned self-assembly
reaction, first the acceptor tecton (6) was reacted with two
equivalents of AgNO3 in CHCl3 to yield the corresponding
dinitrate derivative which was further reacted with the donor
tecton (5) (methanol solution) in 1:1 stiochiometric ratio at
room temperature (Scheme 3). A solid product was obtained by
evaporating the solvents. Subsequent washing (with n-pentane)
and recrystallization yielded the desired product (7) as an off-
white microcrystalline solid (yield > 90%) that was soluble in
organic solvents.

The self-assembled product (7) was subjected to various
characterization techniques to confirm its purity and
composition. In 31P{1H} NMR spectrum (Figure 1A) a
sharp singlet (δ = 15.70 ppm), accompanied with a pair of
195Pt satellite peaks (1JPPt = 1,162Hz), indicated that 7 has a
highly symmetrical structure, wherein all phosphorous nuclei are
chemically equivalent. The 1HNMR spectrum of 7 also suggested
incorporation of both tectons (5 and 6) in it (Figure 1B and
Figures S3, S4). In 1HNMR spectrum of 7 (Figure 1B), two peaks
appearing at 8.67 and 8.68 ppm were assigned to the protons of

pyrazine moieties of donor (5) and acceptor clip (6) respectively.
Four sets of signals at 8.00–7.99, 7.68–7.64, 7.49–7.45, 7.33–7.32
ppm are due to protons in phenyl ring. Two sets of signals at
8.89–8.87, 7.89–7.87 ppm are due to protons of the pyridyl ring.
The ethyl protons of PEt3 groups (attached to PtII center) are
observed in the range 1.86–1.20 ppm spectrum (Figure S3).

The formation of 7 via coordination of 5 (donor tecton) with
6 (acceptor tecton) was also evident from the observed downfield
shift (1δ ∼ 0.25 ppm) of both α and β pyridyl protons present
in the terminal pyridine moieties (Figure S5). This has been
attributed to the decrease in electron density in pyridine rings
of the donor (5) due to their coordination (via lone pair on
nitrogen) with PtII metal centers of the acceptor tecton (6).

Furthermore, the purity of product 7 was confirmed by 1H
DOSY NMR spectroscopy (Figure S6), wherein a single trace
spectrum indicated the formation of a single product. This result
also confirms absence of other macrocyclic species or oligomers
as byproduct and exclusive formation of discrete macrocyclic
species. Thus NMR analyses confirm purity of the 7 and indicated
formation of single, highly symmetrical species. Sharp peaks in
1H and 31P NMR are also clear indications of presence of discrete
species and absence of any oligomers. Mass spectrometry was
subsequently used to confirm the proposed composition of 7. The
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SCHEME 3 | Design and self-assembly of a hexagonal macrocycle (7) by employing only two molecular tectons.

ESI-TOF-MS spectrum of 7 indicated formation of desired [1 +
1] molecular ensembles (Figure 2). The ESI-TOF-MS spectrum
of 7 showed a signal corresponding to the consecutive loss of
two nitrate counter anions from the expected [1+ 1] macrocycle
at m/z = 835.76 [7-2NO3]2+. The isotopic resolution of this
peak was in excellent agreement with the theoretically predicted
isotopic distribution pattern of [7-2NO3]2+ (Figures 2A,B
and Figure S8). Thus mass spectrometric analysis of 7

confirmed the formation of a discrete [1 + 1] self-assembled
macrocycle.

All attempts to grow X-ray quality single crystals of 7 were
unsuccessful. In such a scenario, molecular modeling (using PM6
semiempirical MO method) (Stewart, 2007) was employed to
obtain useful structural information for 7. The energy minimized
structure of 7 (Figure 3 and Figure S7) confirms the formation
of a macrocycle with hexagonal cavity. The distance between
the two exocyclic nitrogen atoms of pyrazine rings was 2.53 nm.
The distance between the two platinum centers was found to
be 1.30 nm. The lengths of sides of hexagon were found to be
1.62 and 0.68 nm. Thus 7 may be described as an irregular
hexagon since all the sides are not of equal length even though
the polygonal framework is equiangular. A slight distortion from
the square geometry was observed at the two Pt(II) centers.

Cytotoxicity (in Vitro) Assessment and
Estimation of IC50
Till date, platinum based molecules have been used most
frequently as anticancer therapeutic agents. Cisplatin is
undoubtedly the most popular anticancer drug bearing Pt(II). In
the first step of its mechanism of action (as anticancer drug), the
chlorides of cisplatin are substituted/exchanged by hydroxide
ions or water. The resulting diaquo species subsequently bind
with nucleophilic sites present in RNA or DNA. Thus cytotoxicity
of cisplatin stems from the fact that Pt-Cl bonds are unstable

under physiological conditions relative to the new Pt-N bonds
that are formed due to adduct formation with nucleobases. Also
it is known that Pt-N bonds are essentially irreversible under
the same physiological conditions (Farrell, 1999). Moreover, in
the context of platinum based complexes as anticancer drugs,
it is well known that cisplatin is quite potent while transplatin
is inactive. This is a consequence of the difference in the
stereospecificity of the labile Pt-Cl bonds in these two isomers.
6 and 7 are quite different from cisplatin in this aspect as these
species don’t have two labile (halide/hydroxo) groups in cis
orientation to facilitate adduct (bifunctional) formation with
DNA (as observed with cisplatin). It was therefore our curiosity
to study the cytotoxicity of Pt(II) based compounds (6 and 7)
reported herein that don’t posses two cis-oriented labile groups
unlike cisplatin.

The cytotoxicity of platinum containing 6 and 7 were
examined against three cell lines KB (human oral cancer), A549
(human lung cancer) and HaCaT (human skin keratinocyte)
using MTT assay. Cisplatin was used as a positive control (Wang
and Lippard, 2005). Toxicity of all the compounds was observed
to be dose and cell dependent. The IC50 value is the inhibitory
concentration of a compound at which 50% cells are dead. A
seven-point dose-dependent plot (Figure 4) was recorded for
each compound against each cell line for measurement of IC50

concentration. 7 exhibited higher toxicity (relatively lesser IC50

value) relative to 6 against A549 and KB cancer cells. However,
for HaCaT cells, both 6 and 7 exhibited comparable IC50 value
(Table 1).

From the IC50 values listed in Table 1, it is clear that
compounds 6 and 7 have lesser toxicty relatively to cisplatin. This
was anticipated considering the absence of two cis-oriented labile
groups in 6 and 7. In other words, the general higher activity of
cisplatin over other 6 and 7 is due to the presence of cis-oriented
more labile Pt-Cl bonds in cisplatin that tend to hydrolyze
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FIGURE 1 | (A) 31P{1H} and (B) 1H NMR (partial) spectra of 7. Lower case letters represent signals/peaks in proton NMR corresponding to different protons.

FIGURE 2 | ESI-MS data of the macrocycle 7; inset (A) experimental spectrum and (B) theoretical isotopic distribution pattern of the fragment [7-2NO3]
2+.

easily under physiological conditions to facilitate binding with
DNA/RNA. On the other hand, the PtII-based compounds in this
report (6 and 7) have Pt-N bonds that tend to be relatively stable
under such conditions.

It is however noteworthy that though 6 and 7 don’t have
labile groups in cis orientation to facilitate adduct (bifunctional)
formation with DNA, these species show reasonable cytotoxic
effect (Table 1). More interestingly, the macrocycle (7) exhibited
superior cytotoxic effect when compared with cisplatin for A549
(human liver cancer) cells. Additionally, it was observed that
upon self-assembly and formation of the macrocycle 7, the
resulting supramolecular framwork exhibited lower IC50 value
relative to that observed for the acceptor tecton (6) in case of
A549 and KB carcinoma cell. For, HaCaT cell, the IC50 values are

comparable for both 6 and 7. Considering the literature reported
stability of Pt-N bonds under physiological conditions (Farrell,
1999), it may be assumed that macrocycle 7 remains intact under
these conditions.

Subsequently, the effect of Pt-based compounds (6 and 7) on
cell viability and attachment was studied and results compared
with cisplatin. Cancer cells (KB, A549, and HaCaT) were treated
with compounds (6, 7 and cisplatin) and these were stained with
fluorescent dyes (Calcein AM and Ethidium homodimer-1). In
these fluorescent imaging studies, cancer cells were treated with
25µM 6-7 and 10µM cisplatin for 48 h. Post-treatment, cells
were stained with a live/dead stainsolution. Fluorescent images
are shown in Figure 5, wherein live cells (green color) were firmly
attached to tissue culture plate (TCP) surface relative to dead cells
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FIGURE 3 | Simulated ball and stick molecular model optimized by PM6 semiempirical molecular orbital methods of macrocycle 7 (Color code: light gray, C; dark

cyan, Pt; blue, N. PEt3 and Hare omitted for clarity).

FIGURE 4 | In vitro cytotoxicity of 6, 7 and cisplatin with predetermined dose range against (A) A549 (B) KB, and (C) HaCaT cell lines for 48 h using MTT assay. Data

points represent mean ± SD for three independent experiments. *p < 0.05 and **p < 0.01 represent a significant decrease in the viability of cells at 25µM

compounds treated group compared to the untreated group.
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(red color). Variable dead cell population was observed in each
case due to either their loose attachment to TCP or difference in
their respective IC50. These results suggest that 6 and 7 indeed
demonstrate cancer cell growth inhibition to an extent that is
comparable cisplatin (a widely used Pt-drug for treatment on
various forms of cancer).

CONCLUSION

In conclusion, we have reported a new donor tecton (5) with
two pendant pyridine rings that is derived from commercially
available 2,6-dichloropyrazine. 5 is a new ditopic donor tecton
with 0◦ angular orientation of the two pyridine rings. Self-
assembly reaction of 5 with a complementary ditopic acceptor
tecton (6) resulted in the formation of a single product (7).
NMR and elemental analyses confirmed its purity while mass
spectrometry (ESI-MS) data supported the formation of a [1 +

1] supramolecular species. PM6 molecular modeling suggested

TABLE 1 | IC50 concentration (µM) after 48 h treatment against different cell lines.

IC50/µM

A549 cells KB cells HaCaT cells

Cisplatin 25.0 ± 2.0 11.0 ± 0.3 6.0 ± 3.0

6 >30.0 >30.0 23.0 ± 4.0

7 20.0 ± 0.4 26.0 ± 0.4 26.0 ± 0.2

formation of a macrocycle with hexagonal cavity. The product (7)
is a unique example in literature wherein a nanoscalar, discrete
and cationic hexagonal framework has been synthesized using
only two tectons—one unit of donor and one unit of acceptor.
Previous report of all Pt(II)-based hexagonal macrocycles utilized
four, six or twelve tectons resulting in highly charged species.
Furthermore the PtII-based species (6 and 7) were subjected to
cytotoxicity studies using three different cancer cell lines, and
the results were compared with cisplatin. Although 6 and 7

are less potent than cisplatin, it was observed that formation
of the metallamacrocycle (7) improved cytotoxicity in case of
treatment with A549 and KB cancer cells. This is in spite of
the fact that acceptor tecton (6) contains labile Pt-I bonds while
macrocycle 7 contains platinum bonds to nitrogen that are
essentially irreversible under physiological conditions (Farrell,
1999). Interestingly, the supramolecular ensemble (7) showed
better A549 cell growth inhibitory effect than cisplatin. The
cytotoxic behavior of 6 and 7 may be attributed to their non-
covalent interaction with DNA. These results will form the
basis of further research on the mechanism of cell-killing action
of these Pt-based species which are stereo-chemically quite
different from cisplatin. Nevertheless this report is a unique
example, wherein a supramolecular hexagonal framework with
only two Pt(II) centers has been self-assembled and it potential
application in anticancer therapy has studied. Development
of similar Pt(II)-based self-assembled structures as therapeutic
agents for malignant cells is currently being explored in our
laboratory.

FIGURE 5 | Live/dead cell staining. (A) A549, (B) KB, and (C) HaCaT cells were treated with 25µM 6, 7 and 10µM cisplatin for 48 h. Post-treatment cells were

stained with alive/dead stain solution, and the images were captured with a fluorescence microscope (scale bar – 200µm).
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