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In recent years, soft-sensors have been widely used for estimating product quality or

other important variables when online analyzers are not available. In order to construct a

highly accurate soft-sensor, appropriate data preprocessing is required. In particular, the

selection of input variables or input features is one of the most important techniques for

improving estimation performance. Fujiwara et al. proposed a variable selection method,

in which variables are clustered into variable groups based on the correlation between

variables by nearest correlation spectral clustering (NCSC), and each variable group is

examined as to whether or not it should be used as input variables. This method is called

NCSC-based variable selection (NCSC-VS). However, these NCSC-based methods

have a lot of parameters to be tuned, and their joint optimization is burdensome. The

present work proposes an effective input variable weighting method to be used instead of

variable selection to conserve labor required for parameter tuning. The proposedmethod,

referred to herein as NC-based variable weighting (NCVW), searches input variables that

have the correlation with the output variable by using the NC method and calculates the

correlation similarity between the input variables and output variable. The input variables

are weighted based on the calculated correlation similarities, and the weighted input

variables are used for model construction. There is only one parameter in the proposed

NCVW since the NC method has one tuning parameter. Thus, it is easy for NCVW to

develop a soft-sensor. The usefulness of the proposed NCVW is demonstrated through

an application to calibration model design in a pharmaceutical process.

Keywords: soft-sensor, calibration model, variable weighting, partial least squares, near infrared spectroscopy

1. INTRODUCTION

It is important in terms of process safety and quality control to estimate product quality or
other process variables, particularly when online analyzers are not available. Soft-sensors are
mathematical models for estimating variables that are difficult to measure by hard sensors in real-
time from other variables that are easy to measure. They have been used in various industries,
for example, measurement of product composition at distillation columns in chemical processes,
silicon wafer surface flatness in semiconductor processes, and active ingredient content of drugs in
pharmaceutical processes. There are three methodologies for constructing soft-sensors: (i) first-
principal modeling based on physicochemical knowledge of processes, (ii) statistical modeling
based on process data, and (iii) a combination of the two. These methodologies also are called
white-box, black-box, and gray-box modeling, respectively (Ahmad et al., 2014). In particular,
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statistical modeling has attracted wide attention due to recent
advances in machine learning. Although we can utilize various
machine learning techniques for soft-sensor development, partial
least squares (PLS) is still widely used in chemometrics as well as
soft-sensor design. This is because it is possible to construct an
accurate linear regression model even when the multicollinearity
problem occurs (Wold et al., 2001; Kano and Ogawa, 2010; Kano
and Fujiwara, 2013).

One of the major issues in developing a precise soft-sensor is
input variable selection. Although soft-sensors are well-fitted to
modeling data when numerous variables are used as the input,
their performance may deteriorate when unimportant variables
are used for estimation. In particular, input variable selection is a
key when a calibration model is constructed from Near-infrared
spectroscopy (NIRS) which is a powerful online measurement
technology due to its short measuring time and non-invasiveness
(Roggo et al., 2007;Miyano et al., 2014). The number of measured
wavelengths of an NIR spectrum is usually more than 100.

If all of the possible variable combinations are tested, the
computational load increases exponentially as the candidate
variables increase. Appropriate variables must be selected in a
systematic manner, which is referred to as input variable selection
in soft-sensors, and feature selection in machine learning. A
technique for input variable selection should be developed for
improving the efficiency of soft-sensor design (Andersen and
Bro, 2010; Mehmood et al., 2012).

In linear regression, stepwise and least absolute shrinkage
and selection operator (Lasso) are widely used as input variable
selectionmethods (Hocking, 1976; Tibshirani, 1996). In addition,
PLS-Beta and variable influence on projection (VIP) are available
for selecting input variables of PLS (Kubinyi, 1993).

Methods of selecting variables on the basis of correlation have
been proposed because the correlation between variables should
be considered when building a good regression model (Fujiwara
et al., 2009). In correlation-based variable selection methods,
variable groups are constructed according to the correlation,
some of which are selected as the input variables. Nearest
correlation spectral clustering (NCSC) (Fujiwara et al., 2010,
2011) is used for variable grouping. In NCSC-based variable
selection (NCSC-VS), variable groups are constructed by NCSC,
and it is examined whether or not they should be used as the
input variables according to their contribution to the estimates
(Fujiwara et al., 2012b). In addition, NCSC-based group Lasso
(NCSC-GL) uses group Lasso (Yuan and Lin, 2006; Bach, 2008)
for variable group selection after NCSC (Fujiwara and Kano,
2015). Although both NCSC-VS and NCSC-GL can build highly-
accurate soft-sensors, tuning their parameters is complicated and
time-consuming because they have multiple parameters to be
tuned. Therefore, the number of their tuning parameters should
be reduced for efficient variable selection.

Another approach is input variable weighting or input
variable scaling, which multiplies each input variable by weights
according to its importance from the viewpoint of estimation
(Kim et al., 2014). The present work proposes an effective input
variable weighting method to replace variable selection in order
to conserve labor required for parameter tuning. The proposed
method, referred to herein as NC-based variable weighting

(NCVW), searches input variables that have the correlation with
the output variable by using the NC method and calculates the
correlation similarity between each input variable and the output
variable. The input variables are weighted based on the calculated
correlation similarities, and the weighted input variables are used
for modeling. Since there is only one parameter in the proposed
NCVW, an efficient soft-sensor design is realized. In this work,
the usefulness of the proposed NCVW is demonstrated through
application to calibration model design for estimating active
pharmaceutical ingredient (API) content.

This paper is organized as follows. Section 2 introduces
conventional variable selection methods for PLS modeling, and
NCVW is proposed in section 3. Section 4 reports on application
results of the proposed method to pharmaceutical data. The
conclusion and future work are described in section 5.

2. CONVENTIONAL METHODS

This section introduces PLS and conventional input variable
selection methods.

2.1. PLS
PLS is a widely used linear regression method in chemometrics as
well as soft-sensor design. Given an input data matrix X ∈ ℜN×M

whose nth row is the nth input sample xn ∈ ℜ
M and an output

data vector y ∈ ℜN whose nth element is the nth output sample
yn ∈ ℜ, X and y are mean-centered and appropriately scaled.
The input X ∈ ℜN×M and the output y ∈ ℜN are broken down
as follows:

X = TPT + E (1)

y = Tb+ f (2)

where T ∈ ℜN×K is the latent variable matrix, whose columns
are the latent variable tk ∈ ℜ

N (k = 1, · · · ,K), P ∈ ℜM×K is
the loading matrix of X whose columns are the loading vectors
pk ∈ ℜ

M , and b = [b1, · · · , bK]
T is the regression coefficient

vector of y. K denotes the number of adopted latent variables.
E ∈ ℜN×M and f ∈ ℜN are errors.

A PLS model can be constructed by the non-linear iterative
partial least squares (NIPALS) algorithm. Let the first to kth latent
variables be t1, · · · , tk, the loading vectors be p1, · · · , pk and the
loading be b1, · · · , bk. The (k+1)th residual input and output are
as follows:

Xk+1 = Xk − trp
T
k (3)

yk+1 = yk − bktk. (4)

tk is a linear combination of the columns of Xk, that is, tk =
Xkwk where wk ∈ ℜ

M is the kth weighting vector. wk is
the eigenvector corresponding the maximum eigenvalue of the
following eigenvalue problem:

XT
k−1y

T
k−1yk−1Xk−1wk = λwk (5)

where λ is an eigenvalue. The kth loading vector pk and the
kth loading bk are pk = XT

k
tk/t

T
k
tk and bk = yT

k
tk/t

T
k
bk.
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This procedure is repeated until the number of adopted latent
variables K is achieved; K can be determined by cross-validation.

2.2. PLS-Beta
PLS-Beta translates a PLS model, Equations (1, 2), into a multiple
linear regression (MLR) model and selects input variables based
on the magnitude of its regression coefficients (Kubinyi, 1993).
The translated model is expressed as

ŷ = T(TTT)−1Ty = Xβpls (6)

where βpls = W(PTW)−1(TTT)−1y, and W = [w1, · · · ,wK] ∈

ℜM×K . The evaluation index of PLS-Beta ν is defined as

ν =
||βselect||

||βpls||
(0 < ν ≤ 1) (7)

where βselect is the regression coefficient vector of the selected
input variables. We select individual input variables in
descending order of the magnitude of βpls until ν achieves
a predefined threshold.

2.3. Variable Influence on Projection (VIP)
The VIP evaluates the contribution of each input variable to the
output (Kubinyi, 1993). The VIP score of the jth input variable is

Vj =

√

√

√

√M

K
∑

k=1

(

w2
jk
b2
k
(tT
k
tk)/||wk||

2
)/

K
∑

k=1

b2
k
(tT
k
tk) (8)

where wjk is the jth element of wk. Variables satisfying Vj > η (>
0) are selected.

2.4. Stepwise
Stepwise is an input variable selectionmethod for theMLRmodel
based on a statistical test which checks whether or not the true
value of the regression coefficient of a newly added candidate
variable is zero (Hocking, 1976).

2.5. Least Absolute Shrinkage and
Selection Operator (Lasso)
Lasso is least squares with L1 regularization so that some
regression coefficients approach zero (Tibshirani, 1996). The
objective function of Lasso is as follows:

βlasso = arg min
β

(

||y− Xβ||22 + λ||β||1

)

, λ (> 0) (9)

Least angle regression (LARS) solves the problem of Equation (9)
efficiently (Efron et al., 2004).

3. NEAREST CORRELATION BASED
VARIABLE WEIGHTING (NCVW)

The present work proposes a new method for weighting input
variables for PLS modeling to be used instead of variable
selection. Since the proposed method uses the nearest correlation
(NC) method for calculating correlation-based variable weights,

this section explains the NC method and variable selection
methods based on the NC method before the proposed method
is described.

3.1. NC Method
The NC method was originally developed as an unsupervised
learning technique for detecting samples whose correlation is
similar to the query (Fujiwara et al., 2012a). The procedure of the
NC method is described in Algorithm 1.

Algorithm 1 Nearest correlation (NC) method

1: Prepare xn(n = 1, · · ·N) and xq.
2: Set γ .
3: for all n = 1, 2, · · · ,N (n 6= q) do
4: x′n = xn − xq.
5: end for

6: for all k, l (k 6= l) do
7: Calculate C′

k,l
from x′

k
and x′

l
.

8: if |C′
k,l
| ≥ γ then

9: Output xk and xl as similar samples to xq
10: end if

11: end for

The concept of Algorithm 1 is explained through a simple
example. In Figure 1 (left), there are seven samples xq, x1, · · · , x6,
of which five xq and x1, · · · , x4 are on the same plane P. That is,
plane P expresses the hidden correlation between the five samples
and x5 and x6 have a different correlation. The aim of the NC
method here is to detect samples whose correlation is similar to
the query xq, that is, to detect x1, · · · , x4 on P.

In steps 3–5, the entire space is translated so that xq becomes
the origin by subtracting xq from all other samples xn as shown
in Figure 1 (right). The translated plane P becomes the linear
subspace V since it contains the origin.

Draw lines connecting each sample and the origin, and check
whether another sample is on the line in steps 6–8. In this
example, pairs x1-x4 and x2-x3 satisfy such a relationship, and
x5 and x6, which are not on V , cannot make pairs. At this time,
the correlation coefficients of these pairs must be 1 or −1. Thus,
the pairs whose correlation coefficients are ±1 are thought to
have a correlation similar to xq. The threshold of the correlation
coefficient γ (0 < γ ≤ 1) is used for constraint relaxation. Steps
6–8 correspond to the above procedure.

Finally, the pairs whose correlations are similar to the query
xq are output in step 9.

3.2. NCSC
NCSC was originally proposed for sample clustering based on
correlation between variables (Fujiwara et al., 2010, 2011), in
which the NC method and spectral clustering (SC) (Ding et al.,
2001; Ng et al., 2002) are integrated. SC is a graph theory-
based clustering method, which can partition a weighted graph,
whose weights express affinities between nodes, into subgraphs
by cutting some of their arcs. In NCSC, the NC method is
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FIGURE 1 | Example of the NC method: A red circle is the query xq. Dashed lines denote pairs of samples, whose correlation is similar to xq (left) (Fujiwara et al.,

2010, 2012a,b).

used for building an affinity graph expressing the correlation-
based similarities between samples, and SC partitions the graph
constructed by the NC method.

Algorithm 2 shows an affinity matrix construction procedure
in NCSC. Steps 6–13 correspond to the NC method, and the
weighted graph constructed by the NC method is expressed as
an affinity matrix S. Although some SC algorithms have been
proposed, the max-min cut (Mcut) algorithm (Ding et al., 2001)
or its extended method (Ng et al., 2002) is used herein.

Algorithm 2 Affinity matrix construction

1: Set γ and J.
2: S ∈ ℜN×N ← ON,N .
3: L = 1.
4: for L = 1 to N do

5: SL ∈ ℜ
N×N ← ON,N .

6: for all n = 1, 2, · · · ,N (n 6= L) do
7: x′n = xn − xL.
8: end for

9: for all k, l (k 6= l) do
10: Calculate C′

k,l
from x′

k
and x′

l
.

11: if |C′
k,l
| ≥ γ then

12: (SL)k,l = (SL)l,k = 1.
13: end if

14: end for

15: S = S+ SL.
16: end for

NCSC has two parameters: the threshold in the NC method γ

and the number of clusters partitioned by SC, J. Previous studies
have suggested the default value of γ to be 0.99 (Fujiwara et al.,
2010, 2011), and that J needs to be determined by trial and error.

3.3. NCSC-VS and NCSC-GL
NCSC has been utilized for variable selection in soft-sensor
design. In these methods, multiple variable groups are
constructed by NCSC, of which some are selected as the
input variables of a soft-sensor. NCSC classifies variables into J
variable groups vj = {xm | m ⊂ Vj} (j = 1, · · · , J), where Vj is

the subset of variable indexes and V = ∪Vj. An affinity matrix is

derived from the transposed input variable matrix XT by the NC
method for variable grouping.

NCSC-VS evaluates each variable group as to whether or not
its members should be used as input variables from the viewpoint
of contribution to the output (Fujiwara et al., 2012b). The jth PLS
model with the number of latent variables P, f Pj , is built from the

jth variable group matrix Xj, and its contribution is evaluated by

CP
j = 1−

||ŷPj ||
2

||y||2
(10)

where ŷPj is the estimate of f Pj . We select D (≤ J) variable groups

in descending order ofCP
j and construct the final PLSmodel from

the selected input variables.
NCSC-GL selects variable groups by using group Lasso instead

of contribution evaluation in NCSC-VS. Group Lasso is an
extension of Lasso for selecting some input variable groups from
predefined multiple variable groups (Yuan and Lin, 2006; Bach,
2008).

Suppose that M variables are divided into J groups; and Xj

and βj denote the input data matrix and the regression coefficient
vector corresponding to the jth group, respectively. The number

of variables in the jth group is Mj, that is, M =
∑J

j=1Mj. The

regression coefficients of group Lasso is derived as:

βglasso = arg min
β

(

||y−

J
∑

j=1

Xjβj||
2
2 + λ

J
∑

j=1

√

Mj||βj||2

)

(11)

where β = [βT
1 , · · · ,β

T
J ]

T , and λ is a parameter. Variable groups
must be constructed in advance in group Lasso. Thus, NCSC-GL
uses variable groups formed byNCSC as the input of group Lasso.

NCSC-VS has four tuning parameters: γ in the NC method,
the number of variable groups partitioned by SC, J, latent
variables in the PLS models for variable group evaluation, P,
and selected variable groups, D. On the other hand, there are
three tuning parameters in NCSC-GL: γ in the NC method, the
number of variable groups J formed by SC and λ in group Lasso.
These three or four parameters need to be tuned for appropriate
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input variable selection. However, their joint optimization is
burdensome and time-consuming. For more efficient soft-sensor
design, the number of tuning parameters should be reduced.

3.4. NCVW
A new input variable weighting method, referred to as NC-based
variable weighting (NCVW), is proposed to be used instead of
variable selection for conserving labor required for parameter
tuning. The proposed method applies the NC method to the
input variables and output variable together for calculating
similarities based on the correlation between the input variables
and output variable, and uses the input variables weighted by the
calculated similarities for modeling.

Let the nth input sample and the nth output sample are xn ∈
ℜM and yn, where M denotes the number of input variables. In
NCVW, the NC method is applied to extended samples

x′n = [x[1]n , · · · , x[M]
n , yn]

T (n = 1, · · · ,N) (12)

and the affinity matrix S′ is constructed. Next, the 1st to Mth
element in the (M + 1)th column of S which corresponds to
the output variable is extracted as a weighting vector w =

[w[1], · · · ,w[M]]. Finally, a new input variable for PLS modeling
is formed as

zn = w ◦ x = [w[1]x[1], · · · ,w[M]x[M]]T . (13)

where a ◦ b denotes an element-wise product between vectors a
and b. Algorithm 3 summarizes the procedure of the proposed
NCVW.

Algorithm 3 Nearest correlation based variable weighting
(NCVW)

1: Prepare xn and yn (n = 1, · · ·N).

2: xn ←− [x
[1]
n , · · · , x

[M]
n , yn]

T (n = 1, · · · ,N)
3: Get S ∈ ℜ(M+1)×(M+1) by applying Algorithm 2 to xn.
4: Extract the 1st toMth element in theM+ 1th column of S as

w = [w[1], · · · ,w[M]].
5: zn = w ◦ x = [w[1]x[1], · · · ,w[M]x[M]]T (n = 1, · · ·N).
6: Construct a model from zn by PLS.

In soft-sensor design, the correlation among multiple input
variables needs to be considered as well as the correlation between
an individual input variable and the output variable. Thus, the
proposed NCVW does not evaluate the correlation between each
input variable and the output variable, but the correlation of
multiple input variables together, which may contribute to an
improvement in the estimation performance of a soft-sensor. In
addition, the proposed NCVW has only one parameter, which is
the threshold of the NCmethod γ . This leads to a huge efficiency
improvement of soft sensor development.

4. CASE STUDY

This case study evaluates the performance of the proposed
NCVW through application to pharmaceutical data provided by
Daiichi Sankyo Co., Ltd. (Kim et al., 2011).

4.1. Objective Data
The objective of this case study is to design a calibration model
that estimates active pharmaceutical ingredient (API) content in
a target drug. NIR spectra (2203 points in 800−2500 nm) and
the API content were measured from the granules of the drug
through experiments. Since the number of wavelengths in NIR
spectra was large, appropriate input wavelengths of NIR spectra
had to be selected for constructing a precise calibration model.
The modeling data and validation data consisted of 576 and 20
samples, respectively.

4.2. Model Construction
Before modeling, a first-order differential Savitzky-Golay
smoothing filter (Savitzky and Golay, 1964) was applied to the
spectra. As a benchmark, a PLS model using all the wavelengths
as the input was constructed, which was called PLS-All. The
number of its adopted latent variables was determined by cross-
validation. Input wavelengths were selected using PLS-Beta, VIP,
stepwise, Lasso, NCSC-VS, and NCSC-GL. Parameters used in
each method were selected by trial and error, which are shown
in Table 1. We calculated the root-mean-square error (RMSE)
for the modeling data in each parameter and determined the
optimal wavelengths based on the calculated RMSE.

We designed PLS models with the wavelengths selected by
each method in which cross-validation was used for determining
the appropriate number of latent variables. Although Lasso
derives regression coefficients, the PLS model was built from the
wavelengths whose regression coefficient was not zero. This is
for the reason that the number of retained wavelengths was still
large and dimension reduction by PLSmay have been needed. On
the other hand, in the proposed NCVW, we calculated variable
weights and constructed the PLS model from the weighted
wavelengths. Finally, the API content was estimated by these
constructed PLS models.

These procedures were repeated 100 times for calculating
average CPU time per one modeling of each method. The
computer configuration was as follows: OS: Windows10 (64bit),

TABLE 1 | Tested parameters.

Parameters

PLS-All –

PLS-Beta ν = {0.70, 0.75, 0.80, 0.85, 0.90, 0.95}

VIP η = {0.6, 0.7, 0.8, 0.9, 1.0, 1.1}

Lasso λ = {0.1, 0.2, 0.4, 0.5, 0.8, 1.0}

Stepwise p̄ = {0.005, 0.05, 0.08, 0.1, 0.12, 0.15}

NCSC-VS γ = 0.99

J = {5, 6, 7, 8, 9, 10}

P = {9, 10, 11}

D = {2, 3}

NCSC-GL γ = 0.99

J = {5, 6, 7, 8, 9, 10}

λ = {20, 25}

NCVW γ = 0.99
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CPU: Intel Core i7-8700 (3.2 GHz×6), RAM: 64G bytes, and
MATLAB 2018a.

Table 2 summarizes the results of the case study. #Wavelength
and #LV mean the numbers of selected wavelengths and
adopted latent variables determined by cross-validation, R2 is
the determination coefficient, “CPU time” is the average CPU
times [s], and “Parameters” denotes the optimal parameters in

TABLE 2 | API content estimation results.

#WL #LV Parameters RMSE R2 CPU time [s]

PLS-All 2203 37 – 1.28 0.83 –

PLS-Beta 928 36 ν = 0.75 1.06 0.81 1.52

VIP 1133 19 η = 0.8 1.01 0.83 0.36

Lasso 1138 39 λ = 0.2 0.98 0.87 0.17

stepwise 561 24 p̄ = 0.15 1.42 0.72 1.64

NCSC-VS 843 25 γ = 0.99, J = 6,

P = 10, D = 2

0.77 0.92 202.39

NCSC-GL 1059 18 γ = 0.99, J = 8,

λ = 25

0.71 0.93 204.04

NCVW 2203 15 γ = 0.99 0.74 0.92 202.27

each method. In addition, Figure 2 shows the detailed estimation
results.

While PLS-Beta, VIP, and Lasso improved the estimation
performance compared to PLS-All, only stepwise was worse
than PLS-All. Both NCSC-VS and NCSC-GL achieved higher
performance than methods above; and, in particular, NCSC-
GL had the best performance. The proposed NCVW achieved
almost the same performance as NCSC-VS and NVSC-GL,
even though NCVW has only one tuning parameter. RMSE
of NCVW was improved by about 42% in comparison with
PLS-All.

It is concluded that the proposed NCVW is a tuning-free soft-
sensor design technique and that its performance is comparable
to the NCSC-based methods.

4.3. Discussion
According to Table 2, the CPU time of NCSC-VS, NCSC-GL,
and the proposed NCVW were much longer than those of other
methods. NCSC occupied more than 99% of their CPU time
since it uses iteration for similarity calculation, which means
NCVW does not improve the computational load. In addition,
the estimation performance of NCVW was not improved in

FIGURE 2 | API content estimation results: (A) PLS-All, (B) PLS Beta, (C) VIP, (D) Lasso, (E) Stepwise, (F) NCSC-VS, (G) NCSC-GL and, (H) NCVW (Fujiwara et al.,

2010, 2012a,b).
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FIGURE 3 | Wavelength group selection by NCSC-VS and variable weights by

NCVW.

comparison with NCSC-GL; however, construction of the actual
soft-sensor therewith is much easier than NCSC-VS and NCSC-
GL. The latter methods respectively have four and three tuning
parameters. In this case study, 36 calculations in NCSC-VS and
12 calculations in NCSC-GL were repeated for searching the
best parameter combination according to Table 1. It becomes
difficult to find the optimal parameter combination when the
number of tuning parameters increases. On the other hand,
NCVW has just one parameter–the threshold of the NC method
γ and its recommended value has been proposed to be γ =

0.99 (Fujiwara et al., 2010, 2011). In fact, the total computation
times of NCSC-VS, NCSC-GL, and the proposed NCVW were
about 121, 42, and 3 min, respectively, for parameter tuning
in this case study. Thus, the proposed NCVW makes the
soft-sensor design much more efficient than NCSC-VS and
NCSC-GL.

Variable weighting based on another type of the weight,
the correlation coefficient between each input variable and the
output variable, was evaluated. This method is called correlation
coefficient-based variable weighting (CCVW). The mth variable
weight of CCVW is defined as follows:

c[m] =
yTx[m]

||y||||x[m]||
(14)

where x[m] ∈ ℜN denotes the mth column in the input data
matrix X ∈ ℜN×M and y ∈ ℜN is the output data vector. A
PLS model was constructed from the input variables weighted by
c[m]. RMSE and R2 of NCVW were 1.34 and 0.84, respectively.
This showed the effectiveness of the variable weight by NCVW
which consider the correlation of multiple input variables and the
output variable together.

Figure 3 shows the results of wavelength selection of NCSC-
VS and the variable weights calculated by the proposed NCVW.
The colored bands express the selected wavelengths, and the
colors denote groups by NCSC-VS. The red line is the weights of

NCVW. The wavelength groups selected by NCSC-VS contained
almost only specific peaks. On the other hand, in NCVW, the
weights of almost all wavelength regions that contain peaks, were
large while some peaks had small weights. This is consistent
with the physicochemical knowledge that information about
compounds is contained in specific peaks. Some peaks might
have important information about the API content, and other
peaks might not contribute to API content estimation. Therefore,
the weights by NCVW suggest that unnecessary peaks for
API content estimation exist in NIR spectra. This indicates
that NCVW can create meaningful weights for soft-sensor
design.

5. CONCLUSION

In the present work, an input variable weighting method
was proposed for efficient and highly-accurate soft-sensor
design. The proposed NCVW derives the variable weights on
the basis of the correlation between the input variables and
output variable by utilizing the NC method and builds a PLS
model from the weighted input variables. Since NCVW has
just one tuning parameter, its soft-sensor design is efficient.
The performance of NCVW was evaluated through the case
study of calibration model development of the pharmaceutical
process. The result showed that the estimation performance
of NCVW was comparable to that of NCSC-VS and NCSC-
GL, while the labor required for parameter tuning was greatly
conserved. Although the objective data used in the case
study was NIR spectra data, the application area of the
proposed method is not limited to a specific type of data.
The proposed NCVW is applicable to general soft-sensor
design when the number of input variables is large. Therefore,
NCVW will contribute to realizing the efficient soft-sensor
design.
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