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With the idea of retrosynthetic analysis, which was raised in the 1960s, chemical

synthesis analysis and pathway design have been transformed from a complex problem

to a regular process of structural simplification. This review aims to summarize the

developments of computer-assisted synthetic analysis and design in recent years,

and how machine-learning algorithms contributed to them. LHASA system started the

pioneering work of designing semi-empirical reaction modes in computers, with its

following rule-based and network-searching work not only expanding the databases,

but also building new approaches to indicating reaction rules. Programs like ARChem

Route Designer replaced hand-coded reactionmodes with automatically-extracted rules,

and programs like Chematica changed traditional designing into network searching.

Afterward, with the help of machine learning, two-step models which combine reaction

rules and statistical methods became themain stream. Recently, fully data-driven learning

methods using deep neural networks which even do not require any prior knowledge,

were applied into this field. Up to now, however, these methods still cannot replace

experienced human organic chemists due to their relatively low accuracies. Future new

algorithms with the aid of powerful computational hardware will make this topic promising

and with good prospects.

Keywords: chemical synthesis analysis, retrosynthesis, pathway design, deep learning, seq2seq

INTRODUCTION

Although the concept of organic chemistry was proposed before the nineteenth century, the first
steps of synthesis analysis took human beings more than 100 years, from 1828, when the German
chemist FriedrichWöhler produced urea with potassium cyanate and ammonium sulfate (Leicester
and Klickstein, 1951), to mid-twentieth century, when chemists such as Robinson, Woodward, and
Corey raised it to a qualitatively higher level of sophisticationwith the idea of retrosynthetic analysis
(Corey, 1988). Since then, laboratories around the world have made remarkable achievements in
total synthesis, biosynthesis and biomimetic synthesis. The standard flow of synthesis pathway
planning has made it possible for scientists to design computer programs to deal with synthetic
problems.

Since the Dendral Project (although failed) of Stanford University in the 1960s, experts
in chemistry, biology and computer science showed great enthusiasm in developing relevant
algorithms in the next 30 years, but few breakthroughs were made and more people viewed it as a
“mission impossible.” Actually, this task was too complex for scientists at that time when machines
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could only deal with very simple molecules which humans
did not need much assistance with. However, after the 1990s,
the developments of new efficient algorithms and more well-
designed databases including Reaxys and SciFinder (providing
chemists the source of structured data of chemical reactions)
lighted the passion for computer-assisted synthesis design again.
And more cheminformatics tools were proposed, including the
development of molecule descriptors and molecular encoding
methods like SMILES (Simplified Molecular Input Line Entry
Specification) (Weininger, 1988).

Early retrosynthesis analytic systems were mainly reaction
rule-based, such as LHASA (Corey et al., 1972a,b), SYNLMA
(Johnson et al., 1989). Different rule-based methods focused
on different concepts, including reaction mechanisms, skeletal
construction and some classic reactions between common
groups. However, rule-based methods cannot cover the whole
organic reaction space and probably give out incorrect results
(e.g., the algorithms would produce a compound which never
exist, or forget to protect groups with high reactivity).

After 1990, many new methods using machine learning as an
important tool were proposed, but most of them still followed
the concepts of traditional reaction rules. So we define them as
“two-step models”—machine learning played the role of decision
making, and decision generating were related to reaction rules or
structural rules. In recent years, deep learning (or deep neural
networks) techniques have been applied in reaction prediction
and retrosynthesis analysis. For example, regarding reactions as
translation between two languages (“reactants” and “products”),
seq2seq (two recurrent neural networks) (Sutskever et al., 2014)
was used in synthetic prediction. However, these modern tools
still need essential improvements to meet the need of organic
chemists. Also, negative samples are quite important in machine
learning, but reaction databases seldom provide information
about “A do not react with B,” which is a severe limitation.

Recently, in the field of drug design, modern methods
have changed the trial-and-error and time-consuming lab
work into computational process. After designing molecules
according to certain principles, medicinal chemists will have
to synthesize the designed molecules. With modern web
resources (Khan et al., 2011; Yadav et al., 2016), computers
can take the synthesis pathway into consideration. For example,
databases like KEGG enzymatic reaction and ChemBioFinder
have benefited a lot in both drug discovery and drug synthesis
prediction.

Organic reactions are not like the process of chess or Sudoku
games, because they are full of exceptions and rarely have fixed
rules, so it presents great challenge for computer programs. With
the general trend of artificial intelligence (AI), scientists realized
the combination of AI and synthetic planning would probably
be the general trend in this field. Although we cannot guarantee
the correctness of one computer-designed synthetic route, AI
may probably come up with incredible new ideas beyond human
ones, and its comprehension of complex reaction patterns such
as rearrangement and catalytic cycles may be superior to humans,
too. To sum up, we believe that computers will help scientists to a
great extent in the field of synthetic analysis and pathway design
in the future.

SYNTHESIS PREDICTION WITH NETWORK
SEARCHING AND RULE MATCHING

Building and Searching Reaction Networks
As we all know, one decisive character differing between
humans and computers are the ability of memory. For organic
chemistry experts, they often memorize hundreds of classic
reactions and rules, but modern computers have the ability
to store and search for chemical databases as large as the
entire set of known molecules and reactions. In a computer
scientists’ view, chemical reactions are sets of data indicating
relationships or connections of compounds, and this kind
of existence can be represented as data structures such as
connections or networks. According to these ideas, Grzybowski
et al. did such a kind of transformation in early 2000s and
finally finished the Network of Organic Chemistry (NOC)
(Fialkowski et al., 2005; Bishop et al., 2006; Grzybowski et al.,
2009), which contains more than ten million organic reactions
(edge) connecting a similar number of compounds (vertex)
(Figure 1).

The searching process is not simple. Grzybowski’s group
tried different ways to do global minimization in their program
Chematica. They took two factors into consideration: one is the
overall “cost” Ctot of a pathway (including labor, purification
costs, etc.) and the cost of starting materials. The other is the
popularity scoring function Ptot which prioritized more popular
reactions. For the searching algorithm, one approach is to
minimize the scoring function in each “depth” of searching and
gradually increase the “depth” to produce the synthetic pathway.
Traditional BFS (breadth-first-search) (Lee, 1961) is also adapted
to synthetic planning to generate many possible pathways.
These searching algorithms can simplify the “combination
explosion” problems into simple and intuitionistic ones, which
can be solved within a few seconds. In addition, due to the
specific data structure of NOC, Chematica has the Synthesis
Optimization with Constrains (SOCS) scheme, too, which
supports the existence of constraints, such as the maximum
number of products and avoidance of certain intermediate.
This process is just like finding a function’s minimum value

FIGURE 1 | Schematic representation of a local part of the Reaction Networks.

Reactions included in this figure are: (1) A + B = C; (2) B + C = D; (3) C = E.
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with constrains. And without doubt, satisfying any constraint
factors will probably cause a trade-off of an increased cost
function.

The Development of Rule-Based Synthetic
Design
Although reaction networks can guarantee the validity of
predicted retrosynthesis reactions, it was a much difficult task
for early pioneers to collect reaction databases as big as
NOC. The first ideas of chemists and computer scientists were
using reaction rules to predict retrosynthesis reactions, and
developing logic-based and knowledge-based searching strategies
for designing reaction routes. By applying retrosynthetic
(backward generation) procedure which was proposed in the
mid-twentieth century, in theory, computers can generate
reasonable starting materials and reaction pathways. However,
although there are many rules and famous name reactions in
the field of organic chemistry, choosing which reaction to use
are things that really matters. One of the earliest pioneers,
Dendral project (Lindsay et al., 1993) started by a Stanford
team did not realize this goal. As one of the contributors of
retrosynthesis analysis, Corey raised his rule of breaking bonds
and planning the synthetic pathway, which can be taught to
computers. Although it is far from mature in today’s view,
Corey and his idea had raised computer-assisted pathway design
to a higher level. In 1969, Corey and Wipke presented the
first computer-aided synthesis design software called OCSS
for Organic Chemical Simulation of Synthesis (Corey and
Wipke, 1969). It was then split into two directions: LHASA
(Corey et al., 1972a,b) in Corey’s group and SECS (Wipke
et al., 1978) developed by Wipke. After that, many followers
proposed different kinds of rule-based methods, which were
introduced in detail in other recent reviews (Szymkuć and
Gajewska, 2016). Here we only briefly list some of them in
Table 1.

For rule-based de novo synthesis prediction, there exists
mainly two challenges. The first one is the collection of reaction
rules. Early pioneers like LHASA and SECS are relatively weak in
the number and diversity of reaction rules, while later programs
like Syntaurus can meet the requirements of basic coverage
of reaction space. The other challenge is ranking or scoring
of pathways. To deal with this, different synthetic-planning
programs used various types of methods ranging from bond
disconnections in LHASA to minimize the combined scoring
function in Syntaurus.

Perhaps the challenge has been tackled too early, as organic
reactions are full of exceptions. Rule-based methods still cannot
meet the full requirement of organic chemists. In practice,
some relatively rare reactions, paradoxically, can be of vital
importance in some particular synthesis, so generalized rules
may not be the ample knowledge for computers, instead, some
specialized cases are also needed. Moreover, most algorithms
cannot predict issues of stereo- and regio-chemistry until the
general application of SMILES and SMARTS (which can take
these factors into consideration). Limitations of searching space
and lack of intelligent algorithms still call on scientists to explore
new revolutionary ways to predict synthetic pathways—that is

why machine learning was becoming more and more popular in
the past decade.

THE APPLICATION OF MACHINE
LEARNING IN SYNTHETIC DESIGN

Automatically Learning Reaction Rules
Manual encoding of organic reaction rules has some obvious
disadvantages. Since it relies on the experience of a small
number of chemists, it usually did not cover enough fraction
of the reaction space and few of them can be as ample as
Syntaurus. Moreover, it is not realistic to exhaustively define
the full substrate scope and incompatibilities for every possible
reaction, and conflicting reactivity is rarely black and white;
incompatibility depends on the exact nature of the reacting
molecules. These factors motivate the development of an
automated approach to the forward reaction evaluation.

Systems with machine-generated chemistry rules were first
published in the early 1990s such as the example SYNCHEM
(Gelernter et al., 1990), which also use machine learning to
increase its knowledge base. The KOSP (Satoh and Funatsu,
1999) program (Knowledge Base-oriented System for Synthesis
Planning) attempts to extract rules from reaction databases by
clustering reactions based on characteristics of atoms within
three bonds of a disconnection site. Similarly, RETROSYN
(Blurock, 1990) also provided an interactive search based
on finding single disconnections by similarity with precedent
reactions. The system ARChem Route Designer (Law et al.,
2009) developed by SymBioSys realized a systematic mode for
automatically extract reaction rules and applied these rules in
retrosynthetic design. However, it also has the limitation of
not accounting for stereochemistry and/or regiochemistry like
most rule-based system. Figure 2 illustrates how ARChem Route
Designer learns reaction rules from reaction pools.

ARChem Route Designer provides the method to generate
synthesis trees. This method still has some weakness. First, the
long-distance effect was neglected, for example, the existence
of hydroxyl in the distance of several bonds can accelerate
leaving of groups such as –OSO2CH3. Second, some conflicts
might happen when there are two or more reactive groups
in a molecule. Nevertheless, this approach already proved that
computer’s ability to learn reaction rules can make it possible for
fully data-driving and automatic pathway designing algorithms.

Two-Step Models—Combination of
Rule-Based Model and Machine Learning
Methods summarized in section The Development of Rule-
based Synthetic Design emphasized the importance of reaction
rules as traditional organic chemists do. As statistical methods
get more and more popular in recent two decades, scientists
tried to combine reaction rules with data science skills,
especially machine learning. We define these models as two-
step ones, which undergoes two separate steps (1) the first
step is for providing excess possible reaction results, and the
second is for ranking or scoring of them; (2) or the first
step is for classification of reactions, and the second is for
applying certain pre-coded rules. In a two-step method, “reaction
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TABLE 1 | Summary of some rule-based retrosynthesis models.

Model name References Reaction rules Limitations and problems

LHASA & SECS Corey et al., 1972a,b;

Wipke et al., 1978

Expressing several simple design strategies by a chemical language

called CMTRN (ChemistryTRaNslator).

Few reaction rules

No stereochemistry

Not active for years

SYNLMA Johnson et al., 1989 Using knowledge base to do logical operations. The problem of combination explosion

IGOR & IGOR2 Bauer et al., 1985; Ugi

et al., 1993

Transforming molecules into bond-electron (BE) matrices &

transforming reactions rules were into the subtraction of reactant and

product matrices.

High computationally cost

CHIRON Hanessian et al., 1990 Trying to maximize the overlap between targets and start materials. CHIRON does not search full synthetic tree

and can only be used to assist humans

WODCA Hollering et al., 2000 Analyzing the characters of bonds to suggest which one should be

regarded as the retrosynthetic disconnections with matrix notation.

Slow computational speed

Syntaurus Szymkuć and

Gajewska, 2016

Using 20,000 expert-coded and cross-checked chemical transforms

and using CSF (Chemicals’ Scoring Function) + RSF (Reaction Scoring

Function) to evaluate and rank the synthetic routes.

Many years were taken to construct the

database

Some reactions are not applicable in real

lab work

FIGURE 2 | The process of extracting reaction rules. (A–C) Identifying the Reaction core (the set of atoms where connections or bonds have changed by going from

reactant to product) by comparing reactants and products, and extending the cores to contain neighboring atoms or functional groups. (D) Clustering the extracted

reaction cores into common groups. (E) Producing a generalized rule template for each cluster group and completing the generalized rule templates.

rules” play the role of important intermediates in the models
(Figure 3).

SYNCHEM (Gelernter et al., 1990) was one of the earliest
effort in the application of machine learningmethods to chemical

predictions, relied on clustering similar reactions, and learning
when reactions could be applied based on the presence of
key functional groups. While SYNCHEM uses active node
and non-active node to label the molecules, other subsequent
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FIGURE 3 | Reaction rules play the intermediate role in two-step models. The judging or ranking (in diamond blocks) is implemented by using machine learning or

deep learning methods.

machine learning algorithms are based on molecular descriptors
to characterize the reactants in order to guess the outcome of
the reaction. Such descriptors include information both from
experimental/physico-chemical measurements, such as dipole
moment, and theoretical/structural information such as the
number of rings, to represent the properties of themolecule.With
descriptors as the fingerprint of molecules or reactions, computer
algorithms become more likely to do classification or similarity
calculation. Schneider and collaborators’ work (Schneider et al.,
2015) is an example to use molecular descriptors to generate
reaction fingerprints and classify organic reactions into 50 classes,
with methods of random forests, naïve bayes, K-means and
logistic regression. If the input is shortened to only include
reactant or product, this method can be applied to reaction
prediction or pathway design.

During the last 10 years, there were many algorithms
published to predict the outcome of organic reactions, which still
rely on reaction rules but use machine learning to judge which
rule to choose. Although the ideas are similar, they differ in some
details. Since outcome prediction is forerunners of retrosynthesis
analysis in this field, we briefly introduce some of the relevant
algorithms. Carrera et al. used machine learning to predict
chemical reactivity of organic molecules (Carrera et al., 2009).
They train random forest models for certain molecules (such
as BuNH2 and NaCNBH3) to predict their reactivity. However,
it was unlikely to give every compound an independent model,
so it was far from a generalized reaction prediction system.
The CSB (Chemical Sense Builder) system (Fica and Nowak,
2005) proposed by Fica and Nowak can simulate and predict
organic reactions. This system consists of two separate functional
modules, which can be used individually or sequentially. The
first one contains four logic-based and knowledge-based models
for generating and discovering reactions. The second one mainly
applies learning tools for reaction simulation process. The CSB
takes account of a set of mechanisms controlling the course of
reaction generation, even considering thermodynamic concept
(reaction enthalpy), and common reactive sites, searching for
analogies in reaction database.

Reaction Predictor (Kayala et al., 2011; Kayala and Baldi, 2012)
by Kayala et al. is an algorithm that first identifies potential
electron sources and electron sinks in the reactant molecules
based on atom and bond descriptors. The first component
is a proposal model analyzing structures of input molecules
and propose all possible reactions according to the mechanism
of reactions. Finally, neural networks are used to determine
the most likely combinations in order to predict the true
mechanism. The reported accuracy is 78.1% for polar reaction,
85.8% for pericyclic reactions and 77% for radical reactions.
While this approach allows for the prediction of many reactions
at the mechanistic level, many organic chemistry reactions
have relatively complicated mechanisms with several elementary,
which would be costlier for this algorithm to predict. However, it
does not require any reaction template.

Coley et al. also applied the idea of two-step analysis like
ReactionPredictor too, but their way of generating the set of
possible products is different (Coley et al., 2017). First, they
generated a set of chemically plausible products according to pre-
inputted reaction rules. During this process, they also mentioned
the importance of negative sampling like Segler and Waller,
and they expanded existing reaction databases with negative
reaction examples. Second, softmax neural network layer (i.e., an
exponential activation function that maps a list of numbers to
a list of probabilities that sum to one) was applied to generate
probabilities of each product. The most creative part was to
use “edit-based” information as the feature of learning. Four
kinds of information were inputted: (1) An atom ai loses a
hydrogen; (2) An atom ai gains a hydrogen; (3) Two atoms, ai
and aj, lose a connecting bond bij; (4) Two atoms, ai and aj,
gain a connecting bond bij, and output will be the probability.
Combining edit-based model and baseline model (only concern
about the structure of products), the hybrid model gives the
accuracy of 71.8% for top-1, 86.7% for top-3, and 90.8% for top-5.
It can also be applied to predict retrosynthetic reactions.

Wei et al. (2016) used a graph-convolution neural network
proposed by Duvenaud et al. (2015) to infer fingerprints of the
reactants and reagents, and then predict the outcome of reactions
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based on reactant fingerprints. This kind of fingerprints were
generated frommolecule graphs, in which nodes represent atoms
and edges represent bonds. At each layer of a convolutional
neural network, information flows between neighbors in the
graph. Finally, this model will generate a fixed-length fingerprint
vector. In the afterward predicting algorithm, Wei et al. classified
organic reactions into 16 different types (for alkyl halides
and alkenes) and use SMARTS transformation to describe the
transformation between product molecules and reactants. This
method can achieve an accuracy of 85% of test set reactions and
80% of selected textbook questions fromWade problems (Wade,
2013). In fact, previously developed machine learning algorithms
were also able to predict the products of these reactions with
similar or better accuracy, but the structure of their algorithms
allow for greater flexibility. However, only 16 types of reactions
covering a very narrow scope of possible alkyl halide and alkene
reactions limits the application of the algorithm. Furthermore,
the effect of secondary reactant or reagent was over-simplified as
only 50 common ones were taken into consideration.

Segler and Waller built a knowledge graph using reaction
templates (Segler and Waller, 2017a), which resembles NOC
described in section Building and Searching Reaction Networks.
With some additional network-based calculation, this model can
find novel reactions by searching for missing nodes in the graph
and predict the catalysts of reactions. Although they did not
include machine learning then, one major advancement is their
idea of negative sampling. As they mentioned, while the positive
evaluation of a reaction prediction system can be easily done with
a test set of hold-out known reactions, negative evaluation with
reactions that are known not to occur is a difficult task, because
failed reactions or the limitations of synthetic methodology were
seldom published. This lack of data has been criticized both by
synthetic chemistry and chemoinformatics community. To get
data on reactions which are unlikely to occur, Segler and Waller
randomly selected 36,000 known reactions from their validation
set and generated “wrong” (but some still plausible) products
with hand-coded reaction rules. Then the model can identify the
wrong products and label these reactions as unlikely to occur.
That means negative samples can be generated by computers,
which greatly helped the development of machine learning in the
field of reaction prediction.

Although these methods are not designed specifically for
retrosynthesis, some of them can be modified to meet the
requirements of retrosynthetic prediction, too, such as Segler
and Waller’s reaction graph, Coley et al.’s ReactionPredictor and
Wei et al.’s graph-convolution neural network. These methods,
together with other earlier retrosynthesis methods related to
machine learning are in common because they all divide the
task into two separate steps, they all undergo an intermediate
step—reaction rules. Similarly, programs specialized for reaction
pathway prediction can also adopt this process. One important
work is Segler and Waller’s neural-symbolic approach (Segler
and Waller, 2017b) for retrosynthesis and reaction prediction, as
well as synthetic pathway design. Since it is specially designed
for retrosynthesis analysis, it must have some distinguished
features—global information has to be considered to avoid
conflicts. For example, for carbon-carbon coupling reactions,

when there are carboxyl or aldehyde groups in the target
molecule, Kumada reaction should be abandoned because the
Grignard reagent will react with these groups, so we can only
choose Suzuki, which uses R-B(OH)2 instead of RMgBr. In their
neural-symbolic method, the computer has to learn which named
reaction can be used to produce a molecule (or under which
rule the starting materials reacted) with all information about the
molecule. By training neural networks with millions of examples
of known reactions and the corresponding correct reaction
rules, computers will give each input a label of reaction type.
Their reaction data are from the commercially available Reaxys
database. The input information is ECPF4 (Unterthiner et al.,
2014) of targeting molecule. Because this fingerprint a fixed-
length indicator, a neural network with one hidden layer (Clevert
et al., 2015) or a deep highway network can be applied. The
neural network on molecular fingerprints to prioritize rules are
combined with a Monte Carlo tree search, which can realize the
function of retrosynthetic reaction prediction. When applying
retrosynthesis prediction several times, we can get the synthesis
pathway. Segler and Waller used 103 hand-coded reaction rules,
such as Diels-Alder, Sonogashira, Kumada. Their model can
predict retrosynthesis reaction rules in an accuracy of 78% (top-
1) and 98% (top-3). Then, they replaced 103 hand-coded reaction
rules with automatically-extracted 8,720 reaction rules from 4.9
million examples. Although the accuracy decreased to 64% (top-
1) and 95% (top-3), this approach is fully end-to-end and data-
driving. However, they reported an average of 44.5 matches per
query, suggesting the coverage might be not enough.

In Segler et al. (2018) published their updated model. In
this work, they proposed a 3N-MCTS approach for chemical
synthesis prediction, which means three neural networks
combine with Monte Carlo tree search (MCTS). Like their
previous work, reactions published in Reaxys before 2015
were used to extract reaction rules (contain the information
of reaction center), and two separate neural-symbolic models
are trained—relatively slower “expansion policy” for selecting
best candidate transformations and faster “rollout policy”
for estimating synthesis positions values. Then by generating
negative examples as they did in their previous work, a binary
filter network for predicting whether reactions really occur were
trained, thus every reaction proposed in the expansion process
would be evaluated and only feasible ones are kept, which greatly
reduced the risk of wrong output. Following the process of
selecting, expansion, rollout and update, 3N-MCTS model can
give result much more quickly than any other methods such as
plain Monte Carlo, and BFS. In double-blind test, even chemists
cannot distinguish literature and 3N-MCTS results. However,
quantitatively prediction of enantiomerism is still an unsolved
problem in this model. Because of the coverage of training set,
the accuracies of synthetic prediction for natural products are
limited.

For all the methods mentioned in this section, reaction rules
are still the most important guidance of reaction prediction and
pathway design, and machine learning is more like assisters. The
common limitation of this kind of system, as well as other rule-
based ones, is that they do not take stereochemistry into account.
We are curious if it can be solved with more reaction examples
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or other descriptors, such as stereo-chemically aware descriptors
(Carbonell et al., 2013). But it is indubitably that, machine
learning greatly accelerates the development of retrosynthesis
design. Although these methods have not fully got rid of the
idea of rule-guided design, the wide application range and high
accuracy is really impressing.

Fully End-To-End Retrosynthesis Analysis
With Deep Neural Networks
In recent years, deep neural networks have been applied to this
field. One characteristic feature is that computers do not need to
follow human-defined reaction rules, and instead, they can re-
comprehend chemical reactions with only millions of reaction
examples. So we call these methods end-to-end ones—scientists
only provide computers with two ends—one end is reactant
and the other is product. These methods are fully data-driven.
One exception is mentioned in section Two-Step Models—
Combination of Rule-Based Model and Machine Learning—
the first template-free approach introduced by Kayala et al.
(2011) and Kayala and Baldi (2012). Because it can predict a
series of mechanistic steps to obtain one reaction outcome using
fingerprints and handcrafted features, it was based on common
reaction mechanisms, and not fully data-driven. Using end-to-
end analysis with deep neural networks, many approaches were
proposed in recent years.

In order to implement the end-to-end methods, one kind
of approaches is to define some special data structures to help
computers understand the concept of reactions. These data
structures are far from traditional “reaction rules” which can
be understand by human beings. An important example is Jin
et al.’s research (Jin et al., 2017) with a novel approach based
on Weisfeiler–Lehman Networks (WLN) (Lei et al., 2017). They
trained two independent networks on a set of 400,000 reactions
extracted from US patents and their approach bypasses reaction
templates by learning a reaction center identifier. In WLN,
organic molecules are considered as a graph G = (V, E), where
V is the set of atoms (vertices) and E is the set of associated
bonds (edges), and a chemical reaction is a pair of molecular

graphs (Gr, Gp). Thus, a reaction center is defined as a minimal
set of graph edits needed (change of bond type for certain atom
pairs) to transform reactant graph to product graph. The WLN
will give every node a vector by training it with the information
of all the neighbor nodes, which captures the local chemical
environment of the atom and involves a comparison against a
learned set of reference environments. Then with the local or
global information (taking important reagent into account), they
trained the model to predict reactivity label. After generation
of candidates according to the reactivity label, they trained
another Weisfeiler–Lehman Difference Network (WLDN) to
rank the candidates. Their method achieved a top-1 accuracy
of 74.0% on a test set of 40,000 reactions. Jin et al. claimed
to outperform template-based approaches by a margin of 10%
after augmenting the model with the unknown products of the
initial prediction to have a product coverage of 100% on the
test set. Differing from methods summarized in section Two-
Step Models—Combination of Rule-based Model and Machine
Learning, this approach is not only end-to-end, but also gets
rid of the dependence on reaction rules. Though it definitely
undergoes an intermediate step of reaction center (defined with
certain data structure), this method is more “computational”
than “chemical,” and the final model becomes more abstract than
before.

Other end-to-end methods can even skip the step of
“reaction center” (or similar concepts). In Nam and Kim (2016)
first applied seq2seq approach to reaction prediction. Seq2seq
(Sutskever et al., 2014) is an algorithm using a multilayered
Long Short-Term Memory (LSTM) to an input sequence (of
unfixed length), and then another deep LSTM to decode a target
sequence (also of unfixed length) from the vector (Figure 4). It
was designed for translation between English and French, with
the advantage that we only need to input large amount of parallel
data, and the powerful deep neural network will automatically
extract information and features of different languages and finally
realize the translation. Molecule structures can be represented
as linear SMILES strings, which can be decomposed to a list
of atoms, bonds and several kinds of symbols. Hence, in a
linguistic perspective, SMILES can be regarded as a language

FIGURE 4 | A schematic diagram of seq2seq—RNN with LSTM.
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with grammatical specifications. In this sense, the problem of
predicting products can be regarded as a problem of translating
“reactants and reagents” to “products.” Nam and Kim used
reaction database collected from patents by Lowe (2012) and
2001–2013 USPTO. Their model was based on the TensorFlow
translate model (v0.10.0) (Abadi et al., 2016), from which they
took the default values for most of the hyperparameters. When
testing with Wade problems, the accuracy ranges between 0.35
and 0.85 in different problem sets.

With more training data, seq2seq model can behave much
better in the field of reaction prediction. Schwaller et al.
from IBM Research, Zurich also published a seq2seq approach
(Schwaller et al., 2017). They built on the idea of relating
organic chemistry to a language and explore the application of
state-of-the-art neural machine translation methods, which are
seq2seq models. Besides Lowe’s data, they used data extracted
from US patents granted and applications dating from 1976
to September 2016 in addition. The portion of granted patents
is made of 1,808,938 reactions, described with SMILES. They
took only single product reactions, corresponding to 92% of
the dataset, to have distinct prediction targets. The accuracy is
80.3% for top-1, 84.7% for top-2, 86.2% for top-3 and 87.5% for
top-5.

Actually, retrosynthesis is the opposite of reaction prediction.
Given a product molecule, the goal is to find possible reactants.
So, if we reverse the reaction direction, seq2seq can also solve
pathway design problems, and this algorithm was developed by
Liu et al. (2017). They used a set of 50,000 reactions extracted and
curated by Schneider et al. (2016) The accuracy is 34.1% for top-
1, 56.5% for top-5, 62.0% for top-10, and 71.9% for top-50. An
important difference between this and Schwaller et al.’s method
is that they did not omit reactions with multiple reactants or
products. Instead, adding a dot between separate SMILES string
can deal with this kind of reaction. In their approach, the dataset
was classified into 10 reaction classes, including heteroatom
alkylation and arylation, acylation and related processes, etc. The
dataset was split into training, validation and test datasets (8:1:1).
The accuracies of different reaction classes were calculated
separately. Reversed input can increase the accuracy of recurrent
neural networks, so they also reversed all the SMILES strings
before training. Compared with other rule-based algorithms
(Law et al., 2009), seq2seq retrosynthetic analysis behave much
better in protection and de-protection reactions, that is to say,
this algorithm can judge whether to introduce a protection
group to avoid side reactions. As for common bond connecting
and breaking reactions, however, this retrosynthetic analysis
program cannot outperform traditional rule-based reactions.
Liu et al. summarized all the errors into three types. First, the
model outputs invalid SMILES string, which means the data
is not enough for computers to comprehend the grammar of
SMILES. Second, some reaction rules are wrongly predicted.
Third, the overall reaction is chemically plausible but different
from the result of the test set—this means the accuracy is
underestimated in some ways. It is partially because of the
presence of multiple reaction sites in the target molecule that can
be disconnected retrosynthetically, so multiple possible reactant
sets are chemically plausible.

The accuracy of retrosynthesis prediction is much lower than
reaction outcome prediction. The difference between training
and testing data is one reason, andmultiple possible pathways for
synthetic design is another reason. However, it is undeniable that
none of the previous works can achieve end-to-end learning to
the level of seq2seq models, and the accuracy of reaction product
prediction has reached the highest level. An obvious disadvantage
when compared to template-based methods is that the strings are
not guaranteed to be a valid SMILES, which might decrease the
prediction accuracy. Another limitation of the training procedure
is multiple pathway choices. However, the problem of multiple
choices only affects the apparent accuracy, and the algorithms can
still give valuable results of retrosynthesis pathway predictions.

PERSPECTIVE

It is now clear that high-quality synthesis analysis systems
are required to meet various needs in chemistry. With the
development of learning algorithms and database, these needs
are gradually being met or are the subject of active researches,
but there are still many challenges to be overcome, including
regiochemistry and stereochemistry. Computational chemical
synthesis analysis and pathway design prediction is a task full
of contradictions—more reaction rules mean more matches in
each query, but are also likely to produce implausible examples;
local scoring functions (for each step) may not give the best
pathway, but designing functions emphasizing global minimum
is so difficult. That’s why recently scientists are shifting their
attention to deep learning algorithm, however, methods like
seq2seq are still not good enough for academic or commercial
usage.

In an organic chemist’s view, synthesis design is a kind of art
rather than science—which intermediate, whether to protect. . .
But for computer algorithms, whether rule-based methods or
deep neural networks mainly focus on the availability of each
step (some new methods could even solve the problem of the
first step), and neglect the idea of “designing.” To reach the level
of intelligent design, algorithms other than seq2seq and datasets
which contain multiple-step synthetic data should be developed.
If we regard chemical space as a “compound surface,” present
methods are ready to tell us “how to take a correct step,” but we
need the result of “shortest trajectory,” which is on a higher level.

Besides developing more methods for common chemical
reactions, there are other fields needing the help of synthesis
analysis. For example, biomimetic and biological synthesis is
a tricky problem, and choosing proper enzymes can greatly
reduce the complexity of synthesis pathway. Projects like
PathPred (Moriya et al., 2010) used methods similar to database
searching, but the result is limited due to the insufficient
coverage of database and relatively poor ability of generalization.
There are also learning-based methods like Dale et al.’s
model (Dale et al., 2010) and rule-based methods like U
Minnesota Pathway Prediction System (Gao et al., 2011) for
biosynthesis pathway prediction. Predicting the condition of
unknown reactions is also an extension of synthesis analysis
systems.
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In summary, in the past decades, there are plenty of
exciting breakthroughs in chemical synthesis analysis and
pathway design. Today, computers can be used to predict
viable syntheses leading to quite complex targets and, with
further development of computational methods, they can
become better. As these systems of many varieties become
more widely known and studied, the trend of chemical
synthesis analysis systems will become more apparent and
will stimulate research and development in directions not yet
envisioned.
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