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A methodology to calculate analytical figures of merit is not well established for detection

systems that are based on sensor arrays with low sensor selectivity. In this work, we

present a practical approach to estimate the Resolving Power of a sensory system,

considering non-linear sensors and heteroscedastic sensor noise. We use the definition

introduced by Shannon in the field of communication theory to quantify the number

of symbols in a noisy environment, and its version adapted by Gardner and Barlett

for chemical sensor systems. Our method combines dimensionality reduction and the

use of algorithms to compute the convex hull of the empirical data to estimate the data

volume in the sensor response space. We validate our methodology with synthetic data

and with actual data captured with temperature-modulated MOX gas sensors. Unlike

other methodologies, our method does not require the intrinsic dimensionality of the

sensor response to be smaller than the dimensionality of the input space. Moreover,

our method circumvents the problem to obtain the sensitivity matrix, which usually is

not known. Hence, our method is able to successfully compute the Resolving Power of

actual chemical sensor arrays. We provide a relevant figure of merit, and a methodology

to calculate it, that wasmissing in the literature to benchmark broad-response gas sensor

arrays.

Keywords: gas sensor array, MOX sensors, Resolving Power, sensor resolution, dimensionality reduction,

machine olfaction

INTRODUCTION

Analytical figures of merit are well understood for mature chemical instrumentation (Olivieri,
2014). For univariate zero order chemical sensors, figures of merit can be estimated as well using
conventional recommendations from IUPAC (Justino et al., 2010). However, the computation of
figures of merit is not clear in many scenarios in which researchers and practitioners prefer to
address the problems using arrays of solid-state chemical sensors, particularly in gas phase. Solid
state sensors usually do not have peak shape responses as it may happen in chromatography,
spectrometries, and spectroscopies. These sensors are typically characterized by very poor
selectivity, non-linearities, and sensor instabilities (Hierlemann and Gutierrez-Osuna, 2008).
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Similarly, conventional analytical instrumentation show
degraded performance when miniaturized using microsystems
technologies. Examples are the integration of Non-Dispersive
Infrared Sensors with overlapping sensitivities across the
spectral domain (Calaza et al., 2003; Rubio et al., 2006, 2007;
Fonollosa et al., 2009) the integration of mass spectrometers
in MEMS technologies (Syms and Wright, 2016) or the
integration of miniature Gas Chromatographers (Zampolli
et al., 2009). Figures of merit also need reconsideration for
direct-sampling fast-analysis techniques, such as Ion Mobility
Spectrometry (Borsdorf and Eiceman, 2006) or Direct Analysis
Real Time-Mass Spectrometry (Gross, 2014). In many of these
instrumental configurations, the interest is not targeted selective
detection of certain analytes, but global fingerprint analysis using
chemometrics (Pavlovich et al., 2016; Szymanska et al., 2016).

The definition of figures of merit for chemical sensor arrays
was first considered in the pioneering work of Davide et al. (1993)
and later by Snopok (Snopok and Kruglenko, 2002). In most
occasions, figures of merit for chemical sensor arrays have been
proposed in the context of sensor array design (Johnson and
Rose-Pehrsson, 2015). The direct translation of tensorial figures
of merit to sensor systems has been used by Marth (Marth et al.,
1999). However, most classical definitions assume linearity of
response and this limits their applicability in non-linear sensors.
Recently, Burgués et al. studied the application of the Limit of
Detection (LOD) definitions by IUPAC to metal oxide sensors
(MOX), since most of the underlying statistical hypothesis of
the theoretical development may not hold for chemical sensors
(Burgués andMarco, 2017; Burgués et al., 2018). Also concerning
LOD, Fonollosa et al. propose an information theory approach
to weigh the uncertainty of the sensor response with the prior
knowledge about the probability of analyte presence in the
sample (Fonollosa et al., 2014). Similarly, Johnson and Knapp
have proposed alternative definitions of selectivity based on the
Cramer-Rao lower bounds (Johnson and Knapp, 2017).

Resolving Power (RP) and Resolution (R) are two key figures
of merit in chemical instrumentation. However, there is some
confusion between these two terms, and sometimes they are
mixed up (Cohen et al., 2008). IUPAC has done, over the years, a
tremendous effort to clarify terminology in chemical sciences.

In analytical chemistry theory, Resolving Power measures
are usually defined for peak-shaped signals. Nevertheless, in
sensor arrays, and due to the poor sensor selectivity, analyte
discrimination is often based on the use of pattern recognition
algorithms, as already acknowledged in the classic definition of
electronic nose introduced by Gardner (Gardner and Bartlett,
1994). For the interested reader, the use of pattern recognition
algorithms for chemical sensor arrays has been reviewed by
Gutierrez-Osuna (2002) and Marco (Marco and Gutierrez-
Galvez, 2012).

Today, the combination of analytical instrumentation and
sensor systems for the identification of complex chemical objects
using pattern recognition and machine learning techniques is
widespread. One can find hundreds of examples in the literature,
but just for illustration purposes, we will mention only a
few. Kuske et al. used chemical sensor arrays to discriminate
mold species growing on building materials (Kuske et al.,

2006). Garrido-Delgado et al. used Ion Mobility Spectrometry
to classify wines according to their Certified Brand of Origin
(CBO) (Garrido-Delgado et al., 2011). Cauchi et al. used
Gas Chromatography Data in combination with Partial Least
Squares-Discriminant Analysis (PLS-DA) for the diagnosis of
diverse gastrointestinal diseases using various body samples
(Cauchi et al., 2014). Vaclavik et al. have used Direct Analysis in
Real Time Mass Spectrometry (DART-MS) in combination with
Fisher Discriminant Analysis for authenticity assessment in olive
oil samples (Vaclavik et al., 2009).

Over the years, heuristic measures of the Resolving Power of
chemical sensor arrays have been proposed. In most cases, they
are versions of the Fisher score that compute a ratio between the
mean distance between classes and the mean dispersion of the
classes (Doleman et al., 1998; Muezzinoglu et al., 2010; Xu et al.,
2010; Vergara and Llobet, 2012; Magna et al., 2018).

From a formal point of view, the discrimination of classes
in a multidimensional space is similar to the detection of
symbols in digital communication theory. Claude Shannon, in
his mathematical theory of communication in the presence of
noise (Shannon, 1984), posed the problem of the number of
signals (or symbols) that can be distinguished by the receiver
despite the presence of noise. He proposed a ratio between the
power of the signal plus noise and the power of the noise in a
multidimensional setting.

Along the same lines, Gardner and Bartlett (1996) introduced
the “range” as a ratio between the signal span in the input feature
space and the noise hyper-volume. This concept was further
developed by Pearce et al. (Pearce, 2000; Pearce and Sánchez-
Montañés, 2004) and they proposed the means to calculate the
hyper-volume of the signal span based on the sensor sensitivity
matrix for linear sensors and the integration of the Jacobian
matrix for non-linear sensors.

However, years later, no practical applications of the method
can be found in the literature. We believe that this particular
situation is caused by three reasons: First, their method
experiences a notable increment of complexity when it is applied
to arrays of non-linear sensors and/or to arrays subjected to
heteroscedastic sensor noise. Second, the application of the
technique is limited to discrimination tasks where the amount
of sensor features does not exceed the number of pure gases.
This restriction constitutes a severe shortcoming since current
sensor arrays tend to provide large amounts of data per sample
(LaFratta and Walt, 2008; Beccherelli et al., 2010; Marco et al.,
2014). Third, it is not easy to obtain the sensitivitymatrix between
chemical stimuli and the sensor responses, especially for non-
linear sensors. The sensitivity matrix is then used to compute the
hyper-volume of the sensor space.

In this work, we present a practical approach to the estimation
of the Resolving Power as defined first by Shannon and for
chemical sensor arrays by Gardner and Barlett. Our method
combines dimensionality reduction and proposes the use of
algorithms to compute the convex hull of the empirical data
to estimate the signal volume in the input feature space. We
explore this concept first with synthetic data and then with
empirical data from temperature modulated MOX sensors.
We explore how this concept can be practically applied to
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mild non-linear sensors by the partition of the input feature
space.

RESOLVING POWER AND RESOLUTION IN
CHEMICAL SENSOR ARRAYS

IUPAC definitions of Resolving Power and resolution are
linked to certain analytical techniques. For instance, in mass
spectrometry and for a single peakmade up of singly charged ions
at massm in a mass spectrum, the resolution may be expressed as

1m

m
(1)

where 1m is usually the full width half maximum (FWHM)
and m is the mass center of the peak (Todd, 1991). On the
other hand, the IUPAC definition of Resolving Power is: “For
two peaks of equal height with masses m1 and m2 when there is
overlap between the two peaks to a stated percentage of either peak
(10% is recommended), then the Resolving Power is defined as
m1/(m1-m2)” (Nič, 1997). Note that a smaller resolution means
an enhanced figure of merit, while the contrary holds for the
Resolving Power.

Instead, for chromatography, IUPAC uses the term
peak resolution with a meaning closer to the concept of
Resolving Power. In particular, peak resolution is defined in
chromatography as a characteristic separation of two adjacent
peaks.

RAB = 2
|tA − tB|

|wA + wB|
(2)

where RAB is peak resolution and tA and tB are the retention times
for compounds A and B and wA and wB are the widths of the
peaks at the base (Nič, 1997).

In optical spectroscopies, according to the IUPAC, the
Resolving Power is the transition wavenumber (or wavelength or
frequency) divided by the resolution. The transition wavenumber
is the difference between two energy states and the resolution
is defined as the minimum wavenumber, wavelength or
frequency difference between two lines in a spectrum that
can be distinguished (Nič, 1997). We can notice that in mass
spectrometry resolution is a dimensionless quantity, but the
definition of resolution for optical spectroscopies has physical
units (wavelength, wavenumber, or frequency).

For ion mobility spectrometry, Rokushika et al. (1985) define
resolution as:

R =
t

2W
(3)

where t is the drift time of the ion pulse andW is the width of the
ion pulse at FWHM.

On the other hand, we have to consider as well, that the term
resolution is also used in Metrology and Measurement Science as
the “smallest quantity being measured that causes a perceptible
change in the corresponding indication.” See, for instance,
the definition issued by the Bureau International des Poids et

Measures (BIPM) in the document “International vocabulary
of metrology: basic and general concepts and associated terms”
(Joint committee for Guides in Metrology, 2012). This definition
is commonly accepted in sensor science, where the perceptible
change is related to the noise level in the sensor output. For
instance, for univariate sensors, resolution is defined by D’Amico
(D’Amico and Di Natale, 2001) as:

Res(x) = lim
Vout→Vn

Vout(x)

S(x)
(4)

where Res(x) is the resolution, Vout(x) is the corresponding
sensor output and S(x) the sensitivity at the working point x,
being x the sensor input. Vn is the noise level and it is taken
as kσ, where σ is the standard deviation of the noise and k is
a multiplicative factor. In sensor science there is no consensus
on the value of k, though common values are k = 1, k = 3,
or even k = 10. With these considerations in mind, when
reporting resolution, it is important to state the working point
for non-linear sensors and the used value of k. At this point
it is easy to link the evaluation of resolution at the blank level
with the definitions of the limit of detection (LOD) and limit
of quantification (LOQ) in analytical chemistry (Olivieri, 2014;
Desimoni and Brunetti, 2015; Burgués et al., 2018).

In this context, a related concept is the signal-to-noise ratio.
Faber et al. have proposed a definition for signal-to-noise ratio
in a tensorial framework (Faber et al., 1997). For first-order
calibration they define the signal to noise ratio as:

S

N
=

rNASi

σ
(

rNASi

) (5)

where the system response for analyte i is taken as the Net
Analyte Signal (NAS) (Bro and Andersen, 2003; Ferré and Faber,
2003), and the noise is evaluated as the standard deviation of the
measurement noise in the NAS projection. Usually, the NAS is
taken to be a unidimensional vector.

In occasions, instead of the signal-to-noise ratio, the sensor
community prefers to use the dynamic range (DR), defined as the
maximum concentration with respect to the LOD:

DR =
max(C)

LOD
=

Range

LOD
(6)

where Range is the maximum concentration C at which
the detector is still sensitive. In other occasions, researchers
prefer the term linear dynamic range, and then the maximum
concentration refers to the maximum concentration of the
analyte that keeps the calibration curve linear.

In this context, a different approach to the estimation of
the joint discrimination power and resolution is needed. This
definition should be established in the input space taking into
account the span of the feature vectors and the noise intensity
for each cluster.

From a formal point of view, the discrimination of classes
in a multidimensional space is similar to the detection of
symbols in digital communication theory. Claude Shannon, in his
mathematical theory of communication in the presence of noise
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(Shannon, 1984), posed the problem of the number of signals
(or symbols) that can be distinguished by the receiver despite
the presence of noise. He proposed that this number could be
estimated as follows. If the signal has a power S and the noise has
a power N, the number of signals that can be well-distinguished
is:

K

√

S+ N

N
(7)

where the noise is assumed to be additive. K is a constant close
to 1 that depends on the allowed error to separate the different
signals.

Gardner and Barlett Proposal
Gardner and Bartlett (1996) introduced a concept that they
named range defined as the maximum number of input
conditions that can be discriminated in sensor space in the
presence of noise:

Nn =

∏n
i = 1 FSD (Si)

Vn
(8)

From our point of view, this definition can be better described by
the term “Resolving Power,” and this is how from now on, we will
refer to this definition. In order to avoid confusion, we will use
the term “range” only to refer to the maximum concentration at
which the sensor remains sensitive.

Here, the sensor space is a space spanned by the sensor signals,
n is the number of sensors,

Vs =

n
∏

i = 1

FSD (Si) (9)

is the full-scale deflection of the output Si of the i-th sensor, and
Vn is the hyper-volume of noise in the sensor space and is defined
by Equation (10):

Vn =
2π

n
2
∏n

i = 1 σi

nŴ
(

n
2

) (10)

where the σi is the standard deviation of noise for i-th sensor
and Ŵ is the Gamma function. It is worth noticing that Vn is a
function of the sensor output and thus is not in general uniform
over the whole sensor space. Gardner and Barlett just introduced
the theoretical framework to quantify the ability of a chemical
sensor array to discriminate sensor stimuli but did not present a
methodology that can implement it. In this work, the Resolving
Power of a sensor array is estimated adapting the computation
of the figure of merit in case of: (a) large sensor arrays, (b)
non-linear sensor, (c) heteroscedastic sensor noise.

Estimation of the Hyper-Volume of Sensor
Space
According to Pearce (2000) in order to obtain the hyper-volume
of sensor space, a simple linear analytical model was used to
model the mapping relationship between n such sensors, each

with potentially different sensitivity terms sij (i= 1, 2,. . . , n; j= 1,
2,. . . ,m), andm stimuli. That means the stimuli space and sensor
space are related through a space transformation dictated by the
sensitivity matrix S. Here, the stimuli space is defined as all the
combinations of chemical stimuli that are possible. It must be
remarked that such transformation is local if non-linearities are
present in the sensors’ responses. However, for the simplified case
of linear sensors, S is a matrix of constant coefficients and the
transformation becomes global:

X = SY (11)

where X is the response of sensors (sensor space) and Y would be
defined as concentrations to every single chemical source (stimuli
space). From empirical data Smay be estimated by classical least
squares if one knows all the constituents of the sample.

The element xki represents, the response of the i-th sensor to
the k-th stimuli. Note that Pearce and Sánchez-Montañés (2004)
considered only sensor arrays in which each of the individual
sensors provided a single feature. This notation is not constrained
to any particular type of sensor or number of elements in the
sensor array. It can be extended to the case in which sensors
operate under some parameter modulation (e.g., temperature
in MOX sensors), since each of the working conditions can be
considered as a virtual sensor in the array, and in turn, a new
feature to the sensor space (or, in other words, a new column in
the matrix X).

The hyper-volume spanned by the gas mixtures in the stimuli
space (Vo) can be projected onto the sensor space, giving rise to
the hyper-volume of sensor space (Vs). In Pearce work (Pearce,
2000), the computation ofVs is straightforward for linear sensors.
If S is a square matrix, namely if the number of pure chemical
sources equals to the number of features, Vs is computed as:

Vs = Vo

∣

∣det (S)
∣

∣ (12)

The reader is referred to Pearce (2000) for extended study of
non-square matrices.

The method developed by Pearce to estimate Vs requires
knowing the sensitivity matrix obtained by fitting a direct
classical least squares (CLS) model that relates stimuli and sensor
spaces to project Vo onto the sensor space (Equation 12). It is
worth to mention that this information is not usually available.
In most practical cases direct classical least squares models (CLS)
are not fit, because the full set of compounds in the sample
is unknown. Consequently, inverse calibration models are the
preferred approach.

On the contrary, what we usually know is the set of sensor
responses to a collection of mixtures, that is, the sensor space.
Thus, a direct computation of Vs from the sensor space seems to
be a reasonable alternative. One way to estimate Vs consists in
computing the convex hull of the sensor space. The convex hull
problem is one of the main issues in computational geometry.
Computing the convex hull stands for creating a univocal
effective representation of a convex shape. The computational
cost of estimating the convex hull of a finite set of points depends
on the parameters n and h, which are, respectively, the number
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of points to be enclosed and the number of points on the
convex hull. In this sense, the worst case scenario for convex
hull computation appears when the points are distributed on a
hyper-surface, since h equals n. Convex hull algorithms can be
used to estimate areas, volumes and hyper-volumes. Regarding
the planar case, a number of algorithms to solve the convex
hull problem have been developed, including: Gift wrapping -
O(nh), Graham scan -O(nlogn), Andrew’s algorithm -O(nlogn),
Divide andConquer -O(nlogn), Chan’s Algorithm -O(nlogn), and
Quickhull -O(nlogn), among others (De Berg et al., 2000). For
the case of spaces of dimension three of higher, the computation
of volumes and hyper-volumes is generally performed using the
Quickhull algorithm (Barber et al., 1996).

In this work, we compute the convex hull utilizing the
Quickhull algorithm. Our choice for this algorithm is based on its
ability to efficiently estimate hyper-volumes in two-dimensional
spaces and in higher dimensionalities as well. Consequently,
Quickhull algorithm allows computing Vs of sensor arrays
comprising several sensor units, provided that sensor space
contains data points properly sampled. In a nutshell, the
Quickhull algorithm computes the convex hull in the following
way: (1) First, it finds the n samples with the most extreme
coordinates of the space (where n is the dimension of the space).
(2) Next, it generates a hyper-plane using these n samples that
halves the space into two subsets of samples. (3) After that, it
seeks for the farthest sample with respect to the hyper-plane.
The previous n samples along this one define a facet. (4) The
samples within the facet are ignored by the algorithm in next
steps because they do not belong to convex hull. (5) Steps (3) and
(4) are repeated on the edges of the facet, with the exception of
the initial hyper-plane. (6) The process continues until recursion
termination and the selected samples generate the convex hull.
The pseudo-code of the employed algorithm is shown in Table 1.

Estimation of the Hyper-Volume of Noise
Theoretically, the value of Vs is computable in sensor spaces
of any dimensionality, but it is unpractical for high-dimension

TABLE 1 | Pseudo-code of the Quickhull algorithm, used to compute the

hyper-volume.

Algorithm 1 Estimate convex hull.

1: procedure QUICKHULL(A)

2: STEP 1) Find the n samples with the most extren1e coordinates of the space.

3: STEP 2) Define hyper-plane using these n samples that splits the space in

two subsets of samples.

4: STEP 3) Find the farthest sample with respect to the hyper-plane. This sample

together with the samples defining the hyper-plane form a facet.

5: STEP 4) Ignore the samples within the facet because they do not belong to

convex hull.

6: STEP 5) Repeat steps 3) and 4) on the edges of the facet, with exception of

the initial hyper-plane.

7: STEP 6) The process continues until recursion termination and the selected

samples generate the convex hull.

8: end procedure

spaces. This is because estimatingVs requires sampling the whole
space, and the number of samples needed grows exponentially
with the dimension of the space (Gutierrez-Osuna, 2002).
The same applies to the estimation of Vn. Consequently,
it is preferable to reduce the dimensionality of the sensor
space for obtaining better estimations of Vs, Vn, and Nn.
It is worth to mention that for the case of multi-sensor
platforms, in which each sensor in the array follows a different
transducing mechanism, sensor auto-scaling may be necessary
before reducing the dimensionality of the sensor space. The
dimensionality reduction of the sensor space can be conducted
applying projection techniques such as Principal Component
Analysis (PCA). Figure 1 shows the stimuli space and the
corresponding responses of the sensors for different sensor and
noise behaviors. In the case of linear sensor responses, the sensor
space becomes an equally spaced grid. However, in the general
case of non-linear responses, the grid becomes non-uniform
for the same change of the input intensity. Similarly, for the
case of homoscedastic noise, the dispersion caused by the noise
effects is the same around any of the points in the sensor space.
However, for the general case of heteroscedastic noise, the shape
and size of the “cloud” change across the sensor space. Only, in
the case of linear sensors under homoscedastic noise conditions,
the estimation of the hyper-volume of noise is constant along the
sensor space. For the general scenario of non-linear sensors, one
needs another approach to estimate the hyper-volume of noise.

The estimation of the hyper-volume of noise Vn cannot in
general be computed with Equation (10), because it, does not
consider the correlation among sensors or features. In particular,
assuming homoscedastic noise, we estimated the hyper-volume
of noise from the square root of the determinant of the pooled
covariance matrix.

Proposed Methodology to Estimate the
Resolving Power in a Sensor Array
Hence, our approach to estimate the Resolving power of a sensor
array begins with a dimensionality reduction using Principal
Component Analysis. Then, the hyper-volume of sensor space,
Vs, is estimated from the convex hull that encloses the sensor
responses in the new space. The pooled covariance is used to
estimate the volume of noise, Vn. Finally, the Resolving power, or
the number of input stimuli that can be distinguished becomes
the ratio of the hyper-volume of noise over the hyper-volume of
the sensor space. Figure 2 summarizes the workflow to estimate
the Resolving Power of a sensor array. It is worth to note that,
in the case of non-linear sensors with heteroscedastic sensor
noise, one can always split the region of interesting sub-regions,
in which the Resolving Power can be estimated again. This
partitioning of the region enables the estimation of the Resolving
Power in non-linear scenarios.

MATERIALS AND METHODS

Synthetic Datasets
We generated 2001 synthetic datasets to evaluate the impact of
sensor similarity on the Resolving Power of an array of sensors.
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FIGURE 1 | (A) Stimuli space, (B) Image of the stimuli space (sensor space) in case of partially selective linear sensors, (C) Image of the sensor space in case on

partially selective non-linear sensors, (D) Sensor space with homoscedastic sensor noise, (E) Sensor space with heteroscedastic noise. The computation of the

Resolving Power Nn is trivial only for the combination of cases (B,D).

FIGURE 2 | Workflow for estimating the Resolving Power of an array of sensors.

To simulate the response of an array of sensors to a gas mixture,
we employed the Clifford-Tuma MOX sensor model (Clifford
and Tuma, 1983) (Equation 13):

Xi =



1+

n
∑

j = 1

KjC
αj
j





−β

(13)

where Xi denotes the output resistance of the i-th sensor, Cj

(j = 1, 2, ···, n) denotes the concentration of the j-th compound
of the gas mixture, n is the number of gases, Kj is the sensitivity
coefficient of the sensor to the j-th compound, αj is and integer
or fractional power for the concentration of the j-th compound,
and β is a non-integer exponent for the power law nature of the
MOX sensors.

In our research, we limited for convenience both the number
of sensors and the number of gases (n) to two, and we supposed
that α1 = α2 = 1 and β = 0.5. Consequently, synthetic data
was computed from the simplified sensor models X1 = (1 +

K11C1 + K12C2)
−0.5 and X2 = (1 + K21C1 + K22C2)

−0.5.
The range of concentration was the same for the two gases:
Cj ε [100, 1,000] ppm. Note that, according to their models,
both sensors exhibit the same response to one mixture when
K11 = K21 and K12 = K22. Furthermore, the first and second
sensors tend to be more selective, respectively, toward the
first and second gases when |K11 – K21| >> 0 and |K22 –
K21| >> 0. Hence, the Resolving Power of the array can be
modified by tuning the sensibility parameters: K11, K12, K21, and
K22.

We changed the sensitivities of both sensors using 2001
combinations of Kij, obtaining 2001 different sensor datasets.
This was done by setting that the first sensor had a high
sensitivity to the first gas and hardly any to the second in
the beginning. Then, we decreased K11 and increased K12

according to the exponential rules K11[k] = 0.121+k·0.001, and
K12[k] = 0.125−k·0.001, where k = 0, 1, 2, ···, 2,000. For
the second sensor, we implemented the opposite changing
rule from the first sensor. That is, the second sensor was
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FIGURE 3 | Response of Sensor 1 and Sensor 2 to the binary mixtures of two

gases (Gas 1, and Gas 2). The concentration of Gas 1 is represented by the

line color (see legend) and the concentration of Gas 2 can be read in the

x-axis. Sensor parameters for Sensor 1 and Sensor 2 were, respectively: (A)

K11 = 3.3·10−3; K12 = 9.1·10−4 and (B) K21 = 9.1·10−4; K22 = 3.3·10−3.

selective to for the second gas at first, and then K21 and
K21 increased and decreased, respectively, as K11 and K12.
For k = 2,000, K11 = K12 = K21 = K22 = 0.123, which
means that both sensor present the same sensitivities for both
gases.

Figure 3 shows an example of the synthetic data
for the particular combination of sensor sensitivities:
K11 = K22 = 3.3·10−3; K12 = K21 = 9.1·10−4. We can see
the normalized resistance of the sensors along the concentration
of first gas (First sensor on the left and second sensor on the
right). For each plot, distinct colors and line types represent
different concentration levels of the second gas.

Experimental Dataset
We used a portion of the experimental dataset which is described
in detail in Burgués et al. (2018). Therefore, only a brief
description is given in this section. Two commercial MOX
sensors (SB-500-12 and TGS 3870-A04, provided by FIS and
Figaro, respectively) were exposed to dynamic mixtures of
CO (0–20 ppm) and humid synthetic air (15–70% RH) in a
gas chamber. The heater voltage was modulated in the range
0.2–0.9V, following the manufacturer recommendations. The
sensor output was sampled at 3.5Hz and then interpolated
to 100 sample points. We take as sensor output the full
response waveform. Consequently, each sensor provides a high
dimensional multivariate output (dimension 100), where each
sample point is considered a feature.

The sensor resistance was measured continuously using
a voltage divider with a load resistor of 1 M�, once the
concentration had reached the steady state in the measurement
chamber. Figure 4 shows the logarithmic sensor resistance
patterns of the SB-500-12 sensor under different gas conditions.
It can be observed that, for certain features, the noise is

heteroscedastic because the standard deviation of the sensor
response depends on the CO concentration. For example, toward
the end of the heating pattern, the variance at 20 ppm is higher
than at 11 ppm. Similarly, a non-linear effect of humidity at
different concentration levels was found in our dataset: the
cross-sensitivity to humidity varied along the heating pattern
noise. Therefore, the assumption of some models that the noise
has the same standard deviation for each concentration level
is unrealistic in our case, and this might lead to a decrease in
performance.

Case Studies
Case Study I: Resolving Power Against Selectivity

and Noise Level
In Case Study I, we aim to analyze how the Resolving Power
depends on the selectivity (sel) of a sensor array. Here we are using
the definition of selectivity for an array of non-specific sensors
proposed by Johnson and Knapp (2017). Formally, the selectivity
of a sensor array is defined as the Cramér-Rao bound analog of
the Bayes’ rule (Equation 14):

selα,β =
CRB

(

Yα|Yβ

)

· CRB
(

Yβ |Yα

)

CRB (Y)
(14)

where Yα and Yβ are, respectively, two subsets of chemical
stimuli to be distinguished, Y is the whole stimuli space, and
CRB(Y) is the Cramér-Rao bound analog of the Bayes’ rule
operator that gives the joint bound of Yα and Yβ . The reader is
referred to Johnson and Knapp (2017) for further details.

According to the previous definition, the selectivity of a sensor
array measures to what extent the error in the estimation of
the concentration is independent of the stimuli. The selectivity
of a sensor array ranges from 0 to 1. When the sensors of
the array are fully specific, the estimation of concentration is
independent among stimuli and the selectivity of the sensor array
is 1. Conversely, when the sensors of the array become more and
more unspecific to the set of mixtures, their responses tend to
be undistinguishable and the selectivity value of the array decays
to 0.

We corrupted the synthetic data generated in section
Synthetic Datasets (2001 sensor-pair combinations) with
independent Gaussian noise (µi = 0, σi = 0.5, where i =1, 2 is
sensor index). Using this data we estimated Vs and Vn for each
sensor-pair. Note that, since the dimensionality of the sensor
space was two, Vs and Vn were areas. Finally, we computed Nn,
and sel for each sensor-pair.

Case Study II: Estimation of the Resolving Power for

Multivariate Response Pattern
In Case Study II, we project a highly dimensional sensor space
onto lower dimensionality space so as to obtain more accurate
estimations of Vs, Vn, and hence Nn. In particular, our sensor
space is defined by the concatenation of features of two sensors
units (SB-500-12 and TGS 3870-A04) modulated in temperature
and exposed to the CO-H2O gas mixtures described is section
Experimental Dataset. Notice that, due to the temperature
profiling we obtained 100 features per sensor (200 features in
total), upon which our methodology can be applied.
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FIGURE 4 | (A) Collection of measurements obtained from the SB-500-12 sensor after exposing it to the experimental dataset. Data is represented as a plot of the

resistance of the sensor along the acquisition time. The color of the curves represents the concentration of CO. The plot also includes the heater profile applied to the

sensor. (B) Curves corresponding to concentrations of CO of 0, 11, and 20ppm, colored by their level of relative humidity (RH). Observe the non-linearities introduced

in the pattern due to humidity, and the heteroscedasticity of noise for different concentration levels of CO.

We used Principal Components Analysis (PCA) projection
to reduce the input dimensionality of the sensor space, that is,
to create a new set of sensor features (Principal Components,
a.k.a. PCs) from the original ones according to their contribution
to explain the variance of the dataset. We truncated the PCA
model of the data to 2 PCs in order to capture the intrinsic
dimensionality of the stimuli space. This criterion is also followed
in the rest of sensor spaces generated along the paper (we only
create 2-dimensional sensor spaces). If the dimensionality of the
stimuli space is not known a priori, the optimum complexity
of the PCA model can be estimated by inspecting its plot of
eigenvalues against the number of PCs, looking for a “knee” on
the line. Once we obtained the new reduced sensor space, we
computed its Resolving Power.

Case Study III: Feature Selection Based on Resolving

Power
In Case Study III, we use the Resolving Power as a figure of merit
to select themost relevant features for gas mixture discrimination
from an array of two temperature modulated MOX sensors
exposed to CO-H2Omixtures.

We constructed three sets of two-dimensional sensor spaces
combining selected features from the TGS 3870-A04 and SB-500-
12 sensors (from now on TGS and SB sensors). In the first and
second sets, the two features came from the same type of sensor
(TGS and SB, respectively), whereas in the third set the sensor
space was generated joining one feature from each of the sensors.
For the sake of simplicity, these sets were called: TGS1-TGS2,
SB1-SB2, and TGS-SB. Next, we computed the Resolving Power
Nn for all the pair-wise combinations of features in a set of sensor
spaces.

Case Study IV: Feature Selection Based on Resolving

Power: Non-linear Sensors
In Case Study IV, we present a similar study Case study III. It
is similar in the sense that we select relevant features from two

MOX for CO-H2Omixture discrimination. However, in this case
we also consider the effect of non-linearity in sensor responses
and the presence heteroscedastic sensor noise for estimating
the Resolving Power of the array. The basic idea consists of
partitioning the stimuli space in smaller regions so that their
corresponding sensors spaces exhibit linearized sensor responses
and homoscedastic sensor noise.

Therefore, we divided the stimuli space into four portions
according to the midpoints of the concentrations of CO and the
RHs, obtaining four gas mixture “subspaces” corresponding to:
low concentration of CO and low RH (L-L), low concentration of
CO and high RH (L-H), high concentration of CO and low RH
(H-L) and high concentration of CO and RH (H-H), respectively.
Then, we generated four sets of TGS-SB two-dimensional sensor
spaces, one per each for each portion of the stimuli space.
Finally, we computed the Resolving Power Nn for all sensor-pair
combinations in a set of sensor spaces.

RESULTS AND DISCUSSION

Case Study I: Resolving Power Against
Selectivity and Noise Level
The results of Case Study I are shown in Figure 5, where we
represent the Resolving Power against selectivity for all the
sensor-pairs. Additionally, we include the sensor space in three
particular cases: (a) sensors are totally selective (sel = 1), (b)
sensors are totally non-selective (sel = 0), and (c) sensors are
partially selective (sel = 0.5).

From the figure, it is evident that when the selectivity tends
to 1, the Resolving Power increases dramatically, and on the
contrary, when the selectivity tends to 0, the Resolving Power
also tends to 0. In the case limits (a) and (b) the responses
of the two sensors are, respectively, orthogonal and collinear.
These two cases represent the maximum a minimum value of
hyper-volume of sensor space. For the intermediate cases, the
Resolving Power increases smoothly with the selectivity of the
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FIGURE 5 | Resolving Power for the set of synthetic sensor-pairs against their selectivity value. The plot includes the sensor space constituted by the sensor pairs for

(A) totally non-selective sensors, (B) partially selective sensors, and (C) totally selective sensors. Observe that the area of the sensor space strongly depends on the

selectivity of the sensors.

sensor array, and so does the sensor space hyper-volume [as
can be seen for case (c)]. Notice that if the Resolving Power is
smaller than one no gas mixtures can be distinguished because
the volume of the sensor space is smaller than the hyper-volume
of noise. If the power of sensor noise was increased, we would
obtain a curve with the same shape to the one of Figure 5 but
shifted toward lower values of Resolving Power (not shown).
Thus, to obtain the same level of Resolving Power in both curves,
we would need a higher degree of selectivity on the noisier
one.

Case Study II: Estimation of the Resolving
Power for Multivariate Response Patterns
The highly dimensional sensor space of Case Study
II (200 features) is reduced to a 2-dimensional sensor
space by means of PCA projection. The result of this
data transformation is shown in Figure 6, where we can
see the scores plot of the data samples seen from the
new set of sensor features (namely PC1 and PC2). We
colored and selected the marker type of the samples
according, to respectively, their concentration of CO and

RH level. The lower/higher the concentration of CO the
bluer/redder the color of the sample. Regarding the RH
level, low/medium/high humidity (20–30% RH; 50–55% RH;
65–70% RH) were represented using circle/cross/diamond
markers.

Observing the plot, we realize that there are two main

directions for the spread of data: South-East to North-West
(SE-NW), and South-West to North-East (SW-NE). Both
directions have clear chemical meaning: While in SE-NW
samples follow the gradient of CO concentration, in SW-NE they
follow the gradient of RH level. If we turn now our attention
the distribution of samples along these directions, we discover
two totally different behaviors: (1) samples are distributed almost
linearly and their dispersions seem constant to be independent
with respect CO concentration following SE-NW direction, and
(2) samples are distributed non-linearly with the RH level, and
their dispersions tend to increase to high RHs. We computed
the Resolving Power for this reduced sensor space obtaining
Nn = 62. From the previous considerations regarding the
heteroscedasticity sensor noise, it is acceptable to think that the
Resolving Power of this space is underestimated.
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FIGURE 6 | Reduced sensor space obtained from the projection of the original high-dimension sensor space to a 2-dimension space through a PCA projection.

Samples were colored according to their concentration of CO, while the marker type represents the level of RH.

Case Study III: Feature Selection Based on
Resolving Power
Figures 7a–c shows the color maps for the collection of Resolving
Power obtained from each set of sensor spaces: (a) TGS1-TGS2,
(b) SB1-SB2, and (c) TGS-SB. Colors biased toward red/blue
tones denote higher/lower values of the parameter. Note that the
distribution of values ofNn is symmetric with respect to the swap
of times for Figures 7a,b.

One can confirm similar dependencies between Nn and
the features for TGS and SB sensors comparing their
distributions in Figures 7a,b. For both sensors, best CO-
H2O mixture discrimination occurs either combining
features obtained at times below 5 s among them (high
sensor temperatures) or combining one of these “early”
features with another one acquired within the time range
that goes from 15 to 25 s (low sensor temperatures).
However, none of the sensors achieved Resolving Power
above 60 by means of binary combinations of their own
features.

When using features of both sensors, we can achieve much
higher Nn values, as can be observed in Figure 7c. In particular,
the maximum Resolving Power on the figure (Nn = 105)
was obtained for the combination of features acquired with the
TGS and SB sensors at 12.5 and 1.5 s, respectively. Interestingly,
combining features of both sensor types broadens the regions
on the colormap were Nn presents high values and variates
gracefully. That fact suggests that within these regions the sensors
become more specific to the compounds of the mixture, and
that they present similar selectivity values. Noteworthy, the
Resolving Power for the best binary combination of sensor
features outperforms the Resolving Power obtained in Case Study

II, where we used the full waveform and PCA projection to obtain
a new 2-dimensional sensor space.

Case Study IV: Feature Selection Based on
Resolving Power: Non-linear Sensors
The Resolving Power of an array of sensor changes for
different partitions of the stimuli space when sensors are non-
linear (it modifies Vs) and sensor noise is heteroscedastic and
dependent on gas concentration (it modifies Vn). This effect
can be appreciated in the colormap plots of Figures 8a–d,
where we show the four different collection Resolving Powers
obtained from the 2-dimensional TGS-SB sensor spaces, and
corresponding the stimuli space partitions: (a) L-L, (b) L-H,
(c) H-L, and (d) H-H. To compare the most discriminative
sensor-pair combinations among stimuli space partitions,Nn was
normalized to its maximum value in each of the colormap plots.
The color notation is the same as in Figure 7.

For low concentrations of CO (Figures 8a,c), feature
combinations with high Nn tend to concentrate for acquisition
times of the SB sensor between 0.5 and 5 s. However, when
the concentration of CO increases (Figure 8b), the major
part of combinations with high Nn transfer to acquisitions
times between 5.5 and 15 s of the same sensor (although the
distribution of Nn is not unimodal along the acquisition time).
Regarding the RH, low RH levels (Figures 8c,d) obtain a
broader scope of features than high RH levels. This behavior is
particularly evident for the TGS sensor. The maximal Nn values
obtained from the four different stimuli space partitions are
47 (L-L), 21 (L-H), 64 (H-L), and 48 (H-H), respectively. It is
worth noting that the sum of the Resolving Power of the four
stimuli space partitions (Nn = 180), is much higher than the
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FIGURE 7 | Resolving Power (Nn) obtained for all binary combinations of

sensor features from (a) the TGS sensor, (b) the SB sensor, and (c) both

sensors. High/Low values of the Resolving Power are colored in red/blue tone,

respectively. It is observed an overall increment of Nn in case (c) with respect

to (a,b) due to the combination of features from two different sensor types.

Resolving Power for the whole stimuli space obtained in Case
Study III (Nn = 105). That happens because the combination
of features that optimizes the Resolving Power of the sensor
array for the whole stimuli space is biased to the discrimination
of CO-H2O mixtures with low concentrations levels of CO. It
may happen too that sensor noise was overestimated for specific
concentration ranges.

CONCLUSIONS

In this paper, we have addressed from a practical point of view the
relevant problem of finding a figure of merit that characterizes
the Resolving Power of a chemical sensor array. The proposed
figure of merit is based on the intuitive idea of computing the
ratio of the hyper-volume spanned by the sensor signals and that
spanned by the noise. Based on this idea, Gardner and Bartlett
(1996) and Pearce (Pearce, 2000; Pearce and Sánchez-Montañés,
2004) coined the term range of the sensor arrays developing a
theoretical framework for the application of this figure of merit to
chemical sensor arrays. Since the term range has other meaning
in sensor science, we propose to designate this figure of merit as
Resolving Power.

Their work was an important advance, but presented
significant limitations when applying the Resolving Power to
actual sensor array signals. First, the intrinsic dimensionality
of the sensor response is limited to the dimensionality of
the stimuli space since we have as many independent sources
of variance as gases. Even though the dimensionality of
sensor/feature space will be higher, we have to compute the
hyper-volume with a method that considers only the lower
dimensional manifold spanned by the sensor responses. Second,
the noise of different types represents new and independent
sources of variance with respect to stimuli and makes the
sensor responses to move slightly outside the manifold spanned
by stimuli. Third, the non-linear nature of chemical sensor
responses introduces a high degree of complexity in the
transformation from stimuli to sensor space that has not
been considered in depth in previous studies (Gardner and
Bartlett, 1996; Pearce, 2000; Pearce and Sánchez-Montañés,
2004). Finally, the heteroscedasticity of noise in chemical sensor
arrays has not been considered either in previous studies
where it has been assumed to be homoscedastic (Gardner and
Bartlett, 1996; Pearce, 2000; Pearce and Sánchez-Montañés,
2004).

The methodology proposed in this paper to compute the
Resolving Power of the chemical sensor array overcomes these
limitations in the following way. First, it finds the hyper-volume
spanned by the sensor responses by computing that of its
convex hull in sensor space. This captures in a natural way the
hyper-volume of the lower dimensional manifold generated by
sensor responses. Second, we reduce the dimensionality of the
sensor space to match the intrinsic dimensionality of the stimuli
space by projecting it to its first principal components. These
first two steps of the method allow to successfully computing
the Resolving Power of the real chemical sensor array. The
fact that the dimensionality reduction is performed before the
estimation of the hyper-volume makes it not necessary very
intensive computational power. This has been first studied
with synthetic data and then with real chemical sensor data.
We used datasets with two sensors to illustrate the non-
linearity of the sensor responses and the heteroscedasticity of
the sensor noise, although our approach can be extended to
more complex datasets. Actually, third and fourth limitations
of other approaches are addressed by following a stepwise
approach dividing the original stimuli space into sub-spaces that
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FIGURE 8 | Normalized Resolving Power for all pair-wise combinations of sensor features from a TGS-SB sensor space, and obtained for the partitions of the stimuli

space (a) L-H, (b) H-H, (c) L-L, and (d) H-L, where L and H denote, respectively, low and high concentrations and their position for each gas type, namely, CO and

H2O. The Resolving Power is represented using the same color code as Figure 7. The optimum Resolving Power is obtained at different combinations of sensor

features for different partitions of the stimuli space.

provide a more local measure of the Resolving Power. Due to
the non-linear response of sensors to gas concentrations and
the heteroscedasticity of noise it is preferable to characterize
locally the Resolving Power of the chemical sensor array
since this will vary with concentration. In Case Study IV, we
show the need for a local measure of the Resolving Power
since there are differences between the results in the four
partitions.

In conclusion, the method proposed is able to successfully
compute the Resolving Power of chemical sensor arrays
providing a relevant figure of merit that was missing to evaluate
these systems.
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