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To inhibit the polysulfide-diffusion in lithium sulfur (Li-S) batteries and improve the

electrochemical properties, the commercial polypropylene (PP) was decorated by an

active carbon (AC) coating with lots of electronegative oxygenic functional group of –OH.

Owing to the strong adsorption of AC and the electrostatic repulsion between the –OH

and negatively charged polysulfide ions, the Li-S batteries demonstrated a high initial

discharge capacity of 1,656 mAh g−1 (approximately 99% utilization of sulfur) and the

capacity can still remain at 830 mAh g−1 after 100 cycles at 0.2C. Moreover, when

the rate was increased to 1C, the batteries could also possess a discharge capacity of

1,143 mAh g−1. The encouraging cycling stability make clear that this facile approach

can successfully restrain the shuttle effect of polysulfides and make further progress to

the practical application of Li-S batteries.

Keywords: separator, active carbon, isopropyl alcohol, polysulfide adsorption, lithium-sulfur battery

INTRODUCTION

In order to meet the ever increasing demand for high-capacity, long cycle life and stable
rechargeable batteries, more and more electrochemical workers are starting to pay attention to
lithium sulfur batteries, which possess a high theoretical capacity (1,675mAh g−1) and high specific
energy (2,600Wh kg−1) (Zhang et al., 2015; Zhou et al., 2015). Compared with the conventional Li-
ion battery, Li-S cell displays more advantages such as cost-effective, rich reserve and environment-
friendly (Zu andManthiram, 2013;Wang et al., 2014, 2016a,b; Gong et al., 2016; Zhang et al., 2018).
Nevertheless, some intrinsic properties still hindered the massive implementation of Li-S cells: (1)
poor electric and ionic conductivity of S8 and its final reaction products (Li2S2/Li2S), (2) severe
diffusion of the polysulfide intermediates (Li2Sx, 4≤ × ≤8), (3) low electrochemical utilization of
the active materials (Cai et al., 2015; Lai et al., 2015; Wang et al., 2015; Zhu et al., 2016).

Tremendous efforts have been devoted to solve these scientific issues in Li-S cells by holding
sulfur in various composites with special structures or exploiting new electrolytes. Although
significant progress has been made in the utilization of elemental sulfur and the cyclic stability,
the synthetic methods are usually relatively complex, which not only need a variety of additives
but also have a higher requirements for the manufacturing processes (Xiong et al., 2012; Huang
et al., 2013; Wang et al., 2013; Hu et al., 2014; Zhang et al., 2014; Deng et al., 2015; Lee et al., 2015;
Liu et al., 2016; Lu et al., 2016; Nersisyan et al., 2016; Yang et al., 2016). Alternatively, modifying
the commercial separators have been proved to be a facile and commendable strategy to improve
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the electrochemical performance through effective regulation of
polysulfide shuttle (Chung and Manthiram, 2014a,b; Li G. C.
et al., 2015; Balach et al., 2016; Conder et al., 2016; Fan et al.,
2016). Especially the introduction of functional groups on the
surface of separator is gradually studied. For instance, Yu X et al.
modified the separator with carboxyl functional group through a
sequence of hydroxylating, grafting and hydrolyzing processes to
bring about a negatively charged environment in Li-S cells (Yu
et al., 2016). In order to constrain the diffusion of electronegative
polysulfides, Li Z et al. introduced oxygenic functional groups
(-OH, -COOH) onto the surface of separator by O2 plasma
treatment (Li Z. et al., 2015). Similarly, a method of one-step
plasma-induced graft co-polymerisation was used to develop
negatively charged –SO−

3 onto the microporous membrane and
this separator showed a good ability to inhibit the shuttle effect
(Conder et al., 2015).

In this study, we present a facile approach to achieve a
high-performance active carbon coated separator with hydroxyl
groups, which can perform excellent physical adsorption and
electrostatic exclusion at the same time, bringing about a strong
inhibition of soluble electronegative polysulfides. In comparison
to the batteries assembled using pristine PP separator, the Li-S
batteries with modified separator exhibit significantly enhanced
cyclic stability and rate capability.

EXPERIMENTAL SECTION

Materials Preparation
First, 1.0 g active carbon was added to 30mL isopropyl alcohol
(IPA) and magnetic stirred for 24 h to permeate IPA into the
pores of active carbon. Then the prepared solution was dried at
60◦C for 6 h to obtain IPA/AC composite material.

A slurry method was used to coat the PP (Celgard 2400)
separator with the IPA/AC composite. A mixture of IPA/AC
composite and polyvinylidene fluoride (PVDF) (8:1, bymass) was
placed in N-methy-2-pyrolidone (NMP) to form slurry, which
was subsequently coated on the cathode side of the pristine PP
separator. The IPA/AC modified separator was then dried in
vacuum oven at 60◦C for 4 h. In addition, AC modified separator
was prepared in the same way for comparison.

Material Characterization
The morphology was characterized by a field emission scanning
electron microscopy (SEM, HTTAHIS-4800). Energy dispersive
spectrometer (EDS) was employed to identify the distribution of
the elements on the surface of the IPA/AC-coated separators. The
chemical state of the carbon and oxygen in samples were tested
with X-ray photoelectron spectroscopy (XPS, ESCA LAB 250Xi).

Battery Assembly and Electrochemical
Measurement
A solid solution method was used to fabricate the active
composite materials with a mixture of S8 and AC (7:3,
by mass). Sulfur cathode was made of as-prepared S/AC
composite, acetylene black and PVDF dissolved in NMP
with a mass ratio of 7:2:1. The obtained homogeneous
slurry was coated onto aluminum foil with a doctor blade,

followed by drying in a vacuum oven at 60◦C for 12 h.
The active substance sulfur loading was about 3.17mg
cm−2.

CR-2025-type button cells were assembled in an argon-filled
glove box with pristine separators, AC-coated separators and
IPA/AC modified separators for comparison. Lithium metal was
used as the counter electrode. The electrolyte consisted of 1.0 wt%
LiNO3 and 1.0M LiTFSI in a mixed solvent of DME and DOL at
the volume ratio of 1:1.

Cyclic voltammetry (CV) were measured by a CHI750E
electrochemical workstation at a scan rate of 0.1mV s−1 within
the voltage range of 1.5–3.0V. Electrochemical impedance
spectroscopy (EIS) of the cells was carried in the frequency range
of 10 mHz−100 kHz with a perturbation amplitude of 5mV. In
addition, galvanostatic charge-discharge tests and rate capability
were conducted to evaluate the cycle stability of Li-S cells on
the basic of S8 at different current densities under LAND test
instrument.

RESULTS AND DISCUSSION

Characterization of IPA/AC Modified
Separators and Pristine Separators
The shuttling effect inhibition principle in Li-S cell is showed in
Scheme 1. In the battery with pristine separator, the polysulfide
ions of Sn2− (4≤n≤8) can freely shuttle back and forth between
the two poles. But the shuttle effect can be effectively suppressed
in the battery with IPA/ACmodified separator. From Scheme 1B

we can see the IPA/AC coating is on one side of the bare separator,
facing the sulfur cathode and act as a surface barrier. This
barrier contains porous active carbon with strong adsorption
and electronegtive oxygenic functional group of –OH, which
can simultaneously take advantage of physical adsorption and
electrostatic repulsion to prevent the diffusion of polysulfide ions
to the lithium anode.

To investigate the functional groups that exist in IPA/AC
composites, we performed the FTIR characterizations on the
samples. Figure 1 gives the FTIR spectrum of AC and IPA/AC.
The wide peak in the FTIR spectrum of IPA/AC at 1,150 cm−1

is the characteristic peak of –OH, by comparing the intensity
and width of the peaks, we can confirm that hydroxyl groups are
successfully introduced into the IPA/AC composites.

The content of C1s and O1s in active carbon materials
and IPA/AC composites were measured by X-ray photoelectron
spectroscopy (XPS). Figures 2A,B show the intensity of C1s and
O1s in IPA/AC (9 and 3.8, respectively) are obviously higher
than those in AC (8 and 3, respectively), indicating that IPA/AC
contains more C1s and O1s. High-resolution O1s XPS spectra
of IPA/AC is shown in Figure 2D, three peaks can be easily
identified at the binding energy 531.71, 533.08, and 533.17 eV,
corresponding to O = C-O, C-OH and O = C-O groups,
respectively (López et al., 1991; Stevens et al., 2014), which are
similar to the spectrum of AC in Figure 2C. To determine how
much C-OH was introduced, we calculated the percentage of
its peak area. The result shows the C-OH in IPA/AC is 40%,
higher than that of AC (30%). This consequence reveals that
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SCHEME 1 | (A) Polysulfide diffusion in Li-S cells with pristine separator and (B) Inhibition of polysulfide-diffusion in Li-S cells with the IPA/AC modified separator.

hydroxyl group was successfully introduced in to the active
carbon particles.

SEM was used to examine the morphology of the original
separator and IPA/AC modified separator, as given in
Figures 3a,b. A smooth surface with uniformly substantial
slit pores structure is presented for routine separator, which
promotes ion conduction but restricts the transportation of
electron (Gong et al., 2009). In comparison with the bare
separator, the surface of IPA/AC modified separator is covered
with micrometer active carbon particles. These particles have a
large specific surface area and superior conductivity, which can
not only provide rich attachment points for polysulfide ions but
also contribute to reducing the internal resistance of Li-S battery.

Figure 3c reveals the cross-section of IPA/AC modified
separator. From the image we know the IPA/AC coating is

FIGURE 1 | FTIR spectra of AC and IPA/AC.

about 12.5µm and in good contact with the Celgard separator.
Figure 3d shows the electrolyte affinity test of the routine
separator and IPA/AC modified separator. As seen, the droplet
is not dispersed on the routine separator, whereas the IPA/AC
modified separator wetted a large area. It can be predicted that
the electrochemical performance of Li-S battery with IPA/AC
modified separator would be significantly improved, during to an
increased rate of ion transmission.

To ascertain the utility of IPA/AC coating, the morphological
changes before and after cycling were observed, as summarized
in Figures 4a,b. Before cycling, the surface of IPA/AC particles
is relatively smooth (Figure 4a), while after 100 cycles the
surface turns rough with clumps of different sizes, which
indicates the effective physical adsorption and electrostatic
repulsion of free dissolved polysulfides in cathode region
(Figure 4b). For further supporting this conclusion, the contrast
of elemental mappings before and after 100 cycles at 0.2C
is conducted by energy dispersive spectrometer (EDS). As
given in Figures 4c,d, only very weak elemental signals of
O, F and S could be detected on the IPA/AC coating
before cycling (Figure 4c), and these faint element signals
may come from the impurities in active carbon materials.
After cycles these signals became obvious and distributed
evenly, which can be attributed to the fully infiltration of the
electrolyte and the mass attachment of the polysulfides as well
(Figure 4d).

Electrochemical Performance of Batteries
With IPA/AC Modified Separator
The function of IPA/AC modified separator on electrochemical
performance is investigated based on CR-2025-type button
cells. Cyclic performance at different discharge current rate
of Li-S batteries using IPA/AC modified separator, AC-coated
separator and original separator for comparison are presented
in Figures 5A–D. As anticipated, the cell with IPA/AC modified
separator reveals a significant enhancement at each current rate.
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FIGURE 2 | XPS survey spectrum of (A) AC and (B) IPA/AC. High-resolution O1s XPS spectra of (C) AC and (D) IPA/AC.

FIGURE 3 | SEM images of (a) pristine Celgard separator and (b) the IPA/AC coated separator. (c) Cross-sectional SEM image of IPA/AC modified separator. (d)

Wetting behavior of electrolyte on the pristine separator and IPA/AC modified separator.
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FIGURE 4 | High-magnification SEM images of the IPA/AC modified separator (a) before cycles and (b) after 100 cycles at 0.2C. SEM images and elemental

mapping of the IPA/AC coated separator (c) before cycles and (d) after 100 cycles at 0.2C.

The initial discharge capacities of the cells with IPA/ACmodified
separators are 1,656, 1,246, 1,190 and 1,143 mAh g−1 at 0.2C,
0.3C, 0.5C, and 1C, respectively, which are much higher than
those of the other two cells at these current rate, as given in
Table 1. In particular, after 50 cycles at high current rate of 1C,
the capacity of Li-S cell with IPA/AC modified separator can
maintain at 584 mAh g−1, and the Coulombic efficiency is above
98%. Therefore, we can conclude that the reaction intermediates
are largely trapped within the IPA/AC coating, which effectively
reduces the irreversible loss of active substances.

Figure 5E presents the rate performance of
three Li-S batteries at a vary current rate of
0.2C→0.3C→0.5C→1C→0.5C→0.3C→0.2C. From this
chart we can see the cell with IPA/AC modified separator
delivered the highest initial discharge capacity of 1,650 mAh g−1

at 0.2C, demonstrating the high utilization of sulfur which can be
ascribed to the easy penetration of electrolyte and the significant
blocking effect of the IPA/AC coating. When increased the

current rate to 1C, the capacity of this battery is as high as 927
mAh g−1, while only 781 and 427 mAh g−1 could be obtained
from the cells with AC-coated separator and bare separator,
respectively. In addition, after 35 cycles, the capacity of IPA/AC
sample still retained at 1066 mAh g−1 (approximately 65% of the
initial reversible capacity), attesting to the efficient electrostatic
repulsion between the –OH and negatively charged polysulfide
ions, leading to a excellent rate performance of Li-S cell.

The initial discharge profiles of the Li-S batteries using
IPA/AC modified separator, AC-coated separator and pristine
separator at 0.2 C are exhibited in Figure 6A. It is found
that each profiles consists of two typical discharge potential
plateaus corresponding to the reduction from elemental sulfur
to long-chain polysulfides at high voltages and from long-chain
polysulfides to short-chain Li2S2/Li2S (Jianrong et al., 2014;
Guo et al., 2017). However, there are distinctly differences in
the height and length of the plateau. Apparently, the IPA/AC
separator battery possesses the highest and longest voltage
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FIGURE 5 | The cycling performance of Li-S cells with pristine separator, AC coated separator and IPA/AC modified separator at (A) 0.2C, (B) 0.3C, (C) 0.5C, and

(D) 1C. (E) Rate performance of Li-S cells with pristine separator, AC-coated separator and IPA/AC modified separator.

platform, revealing the considerable utilization of activematerials
along with a thorough chemical reaction. Figure 6B gives the
initial cyclic voltammetry curves (CV) of the three batteries at
a scanning rate of 0.1mV s−1. One anodic peak and two cathodic
peaks can be discerned from these CV curves. And the positions
of these two cathodic are consistent with the discharge potential
plateaus of discharge profiles (Xiao et al., 2015). Moreover, one
thing we should pay attention is that in IPA/AC battery the

position of cathodic peaks are higher than those of the other two
batteries, while the position of anodic peak is lower, indicating
that the IPA/AC coating can not only reduce the charge voltage
but also make a great improvement on the discharge depth,
displaying the admirable transport kinetic of ions and electrons.

The enhanced electrochemical performance is further verified
by the electrochemical impedance spectrum (EIS) measurement
within a frequency range of 10 mHz−100 kHz and the equivalent

Frontiers in Chemistry | www.frontiersin.org 6 June 2018 | Volume 6 | Article 222

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Guo et al. IPA/AC Modified Separator for Lithium-Sulfur Batteries

TABLE 1 | The cycling performance of Li-S cells with IPA/AC modified separators, AC-coated separators and pristine separators at different current rates (mAh g−1).

Sample 0.2C 0.3C 0.5C 1C

1st 100th 1st 100th 1st 100th 1st 50th

IPA/AC separator 1,656 830 1,246 719 1,190 618 1,143 584

AC separator 1,339 602 1,042 575 1,063 558 918 479

Pristine separator 747 452 741 417 589 333 462 265

FIGURE 6 | (A)Initial discharge profiles of Li-S cells with pristine separator, AC-coated separator and IPA/AC modified separator at 0.2C. (B) Cyclic voltammetry of

Li-S cells with pristine separator, AC-coated separator and IPA/AC modified separator at a 0.1mV s−1 scanning rate.

FIGURE 7 | Electrochemical impedance spectrum (EIS) of the cells with pristine separator, AC-coated separator and IPA/AC modified separator (A) before and (B)

after 100 cycles at 0.2C.

circuit is acquired by Z-view software. In the equivalent circuit,
R1 denotes the resistance of the electrolyte, R2 is the charge
transfer resistance, CPE1 represents the constant-phase elements,
and W1 is the Warburg diffusion impedance (Figure 7 inset)
(Hou et al., 2017). From Figure 7, a semicircle can be saw at
high and medium frequency, representing the charge transfer
resistance (Rct) (Li G. C. et al., 2015). From the diameter of
the semicircle we know the cells with AC-coated separator and
pristine separator have a larger Rct than IPA/AC sample both
before and after cycles, demonstrating the reduction of the charge
transfer resistance by the special function of the IPA/AC coating,

which can act as a surface collector to reserve enough electrolyte
and accelerate the diffusion of lithium ion.

In order to visual observe the retention of polysulfide
species by the introduced IPA/AC separator, we conducted the
polysulfide diffusion test for the three separator samples, as
shown in Figure 8. The polysulfide solution in glass tubes was
made by adding 7.77mg S8 and 2.23mg Li2S into 5ml DME:DOL
(1:1,v:v), and solution in beakers was 4ml DME:DOL (1:1,v
:v). As expected, the pristine separator does not suppress the
diffusion of polysulfides, thus the color of DME:DOL solution
already changed to yellow after 5min of rest. In contrast, the

Frontiers in Chemistry | www.frontiersin.org 7 June 2018 | Volume 6 | Article 222

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Guo et al. IPA/AC Modified Separator for Lithium-Sulfur Batteries

FIGURE 8 | Polysulfide diffusion test of pristine separator, AC separator and IPA/AC separator.

IPA/AC separator largely suppressed the diffusion of polysulfide
species, therefore even after 30min of rest only a little change
in color was observed, indicating that the porous active carbon
coating with hydroxyl groups has good retention capability of
polysulfide, which is attributed to the physical adsorption of
porous carbon structure and the electrostatic repulsion between
the hydroxyl and negatively charged polysulfide ions.

CONCLUSION

In conclusion, the IPA/AC modified separator successfully
integrates the strong physical adsorption of active carbon and
the electrostatic repulsion between the hydroxyl and negatively
charged polysulfide ions to obstruct the shuttle effect in the
Li-S battery. With this special coating, the battery can present
a apparent improvement on the storage of electrolyte, ion
conduction and the utilization of active substances, leading

to a stable cycle ability and excellent rate performance. In
addition, the modification method only acquires active carbon
and isopropyl alcohol, which is environment-friendly and easy to
operate, indicating that the IPA/AC modified separator provides
a great potential in the commercial production of lithium sulfur
battery.
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