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Herein we present the algorithm and performance assessment of our newly developed

conformer generator iCon that was implemented in LigandScout 4.0. Two data sets of

high-quality X-ray structures of drug-like small molecules originating from the Protein

Data Bank (200 ligands) and the Cambridge Structural Database (481 molecules) were

used to validate iCon’s performance in the reproduction of experimental conformations.

OpenEye’s conformer generator OMEGA was subjected to the same evaluation and

served as a reference software in this analysis. We tested several setting patterns in order

to identify the most suitable and efficient ones for conformational sampling with iCon;

equivalent settings were also tested on OMEGA in order to compare the results obtained

from the two programs and better assess iCon’s performance. Overall, this study proved

that iCon is able to generate reliable representative conformational ensembles of drug-like

small molecules, yielding results comparable to those showed by OMEGA, and thus is

ready to serve as a valuable tool for computer-aided drug design.

Keywords: conformer generation, conformational analysis, drug design, pharmacophore modeling, virtual
screening

INTRODUCTION

Conformer generation still represents a remarkably important topic within the Computer-Aided
Molecular Design (CAMD) field. The exploration of the conformational space of small molecules
is a challenging task that is required for different applications ranging from the search for
the molecule conformation at its global energy minimum to the generation of conformational
ensembles that properly represent all possible low-energy spatial dispositions that molecules are
allowed to assume. Particularly, this latter analysis constitutes a fundamental step in many in-silico
studies comprising pharmacophore modeling and pharmacophore-based virtual screening (VS)
(Güner et al., 2004; Wolber and Langer, 2005), shape-based similarity searches (Hawkins et al.,
2007; Sastry et al., 2011), docking and other VS methods (Cross et al., 2010; McGann, 2012), as well
as different approaches like 3D and 4D QSAR modeling (Shim and MacKerell, 2011). Moreover,
these techniques require different levels and qualities of conformational sampling depending on
the specific goals they aim at. Therefore, it is important to balance speed and thoroughness of the
conformational sampling process depending on the size of the database to be screened, in order to
produce an appropriate conformational ensemble size that still guarantees reliable results. In this
context, automated clustering algorithms have been recently applied for resampling conformational
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ensembles of small molecules (Kim et al., 2017). Such clustering
approaches based on RMSD matrices, which can also find
application in post-processing docking results (Tuccinardi
et al., 2014), were employed to filter out unrepresentative
molecular conformers with the aim of reducing the size of
ensembles and data, but still providing a high coverage of
the ligand’s conformational space. These data highlight that
the conformational sampling of small molecules is still a
hot topic in CAMD. Due to the different tasks conformer
generators are asked for, it is not surprising that a substantial
number of programs based on different sampling algorithms
(Hawkins, 2017) belonging to both stochastic (Chang et al., 1989;
Treasurywala et al., 1996; Saunders, 1998; Güner et al., 2004;
Watts et al., 2010) and deterministic methods (Smelliem et al.,
2003; Renner et al., 2006; Li et al., 2007; Hawkins et al., 2010) have
already been developed. In particular, deterministic sampling
algorithms are used within several well-known conformer
generators employed for VS application, including CONAN
(Smelliem et al., 2003), ROTATE (Renner et al., 2006), CAESAR
(Li et al., 2007), and OMEGA (Hawkins et al., 2010; OpenEye
Scientific Software, 2013) whose performance has been widely
validated and compared to other software (Boström, 2001;
Good and Cheney, 2003; Loferer et al., 2007; Schwab, 2010;
Friedrich et al., 2017). Anyway, novel software is continuously
appearing on the CAMD scene, where always newer and more
efficient tools are needed, and they are tested for their ability
of mapping the conformational space and reproducing the
conformations of experimentally determined crystal structures
of drug-like small molecules (Miteva et al., 2010; O’Boyle et al.,
2011; Ebejer et al., 2012; Friedrich et al., 2017). Here we report
the algorithm and the performance assessment of the novel
conformer generator iCon implemented in LigandScout (Wolber
and Langer, 2005) which uses a systematic, knowledge-based
approach for the generation of conformational ensembles to be
employed in the generation of pharmacophore models and in
the creation of screening databases for pharmacophore-based
searches. With the aim of best analyzing iCon’s performance,
we evaluated representative data sets of test compounds to be
used in our study. Recently, Hawkins and co-workers reported an
algorithm validation of the conformer generator OMEGA for its
default settings by using two sets of high-quality crystallographic
structures of small molecules originating from the Protein
Data Bank (PDB) (Berman et al., 2000) and the Cambridge
Structural Database (CSD) (Allen, 2002) that were selected by
filtering larger data sets used in previous studies (Hawkins
et al., 2010). These data sets were then further refined after
an analysis aimed at better understanding their suitability for
conformational sampling (CS) validation as well as identifying
and studying OMEGA’s failures, showing that they were able
to well represent the torsion angle space of the parent sets
(Hawkins and Nicholls, 2012). Stimulated by these analyses, we

Abbreviations: CAMD, computer-aided molecular design; CS, conformational
sampling; CSD, Cambridge structural database; HA, heavy atom; MMFF94, Merck
molecular force field; NOC, number of conformers; PDB, protein data bank; RB,
rotatable bond; RMSD, root mean square deviation; TC, Tanimoto combo; VS,
virtual screening.

decided to use these data sets to validate the performance of iCon
regarding the reproduction of crystallographic conformations of
drug-like small molecules and to compare it to the corresponding
results obtained with OMEGA. A wide panel of different
settings has been tested for iCon in the attempt to identify
the most suitable ones. In particular, we analyzed the impact
of the main conformational sampling parameters on the size
and quality of the conformational ensembles generated by
iCon for the two data sets of small molecules using 20
different setting patterns. For each setting, the reliability of
the conformers generated by iCon for the test ligands was
evaluated based on the accuracy in the reproduction of their
experimental conformations, which was assessed by using two
different metrics of conformational similarity. The same analysis
was also performed using the software OMEGA, which is
one the best conformer generators available today and thus
served as the reference for iCon’s performance evaluation.
The quality of the conformational ensembles generated with
OMEGA using 20 setting patterns corresponding to those
tested with iCon was assessed and the results produced by the
two software packages were compared. Based on the whole
analysis, the reliability of the new conformer generator iCon was
demonstrated and the most suitable iCon’s setting patterns were
identified.

MATERIALS AND METHODS

Data Sets Preparation
Two different data sets comprising 200 X-ray ligand structures
originating from the Protein Data Bank and 481 X-ray structures
from the Cambridge Structural Database, representing the final
data sets of structures used by Hawkins and co-workers in
their reported analyses concerning OMEGA’s performance
(Hawkins and Nicholls, 2012), were employed in this
study.

For the creation of the PDB data set, we analyzed the PDB
complexes from which the ligands used in Hawkin’s study
were extracted (see Supplementary Material) to obtain the
corresponding ligand three-letter codes. The structures of all
ligands were downloaded from the RCSB Ligand Expo database
(www.ligand-expo.rcsb.org) in sd-file format. Hydrogen atoms
were added to the ligands by using LigandScout 4.0 (Inte:Ligand
GmbH, 2015) and then the molecules were visually checked
for correctness on the basis of their corresponding parent X-
ray complexes. For the creation of the CSD data set, the list of
CSD molecules used in Hawkin’s study was directly downloaded
from the CSD database (in sd-file format). The so obtained
experimental ligand conformations served as reference structures
in the computation of root mean square deviation (RMSD)
and Tanimoto Combo (TC) score values for the corresponding
conformers generated by iCon and OMEGA (vide infra). To
avoid any bias that could affect the conformer generation by
starting from 3D structures, the two data sets were converted
into SMILES notation by using OpenEye’s Babel 3.327 (OpenEye
Scientific Software, 2010). The obtained 681 SMILES codes
eventually served as the input for iCon and OMEGA and could
be processed without any issues by the two programs.
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Conformer Generation With iCon
Since OMEGA’s algorithm has been broadly discussed elsewhere
(Hawkins et al., 2010) here we describe the conformer generation
algorithm of iCon, which uses a systematic, knowledge-based
approach for the generation of conformer ensembles similar
to CAESAR (Li et al., 2007). The overall process is presented
schematically in Figure 1 and can be divided into four logical
phases that are described in more detail below.

Phase 1: Input Molecule Analysis and Fragmentation
When iCon starts to process an input molecule, the first step is
the perception of all the rotatable bonds within the molecule. A
rotatable bond is any single bond that is not a member of a ring
system and connects only non-terminal heavy atoms (e.g., a bond
to a methyl group or chlorine is not considered as rotatable).
For each detected rotatable bond, a lookup in the built-in torsion
rule database is performed to extract preferred relative torsions
that are characteristic for the substituents of the bond. If a
matching torsion rule cannot be found, one of the hard-coded
fallback rules is applied which provide default torsion angles
depending on the hybridization state of the bonded atoms. The
next step is the perception of any topological symmetry that may
occur in the input molecule. The thus obtained automorphism
mappings of the heavy atoms are used in the conformer build-
up stage for the detection of generated duplicate conformations
that need to be discarded. The last step in phase 1 is the logical
transformation of the input molecule into a tree-like hierarchy
of structure fragments (see Figure 1). This is done by splitting
the input molecule (which represents the root node of the tree)
at its most central rotatable bond (green bond) into two smaller
fragments of nearly the same structural complexity (fragments 1
and 2). The same procedure is then applied recursively to the two
initial fragments until only fragments that cannot be partitioned
any further remain. Those terminal fragments (fragments 3, 4, 5,
and 6) represent the smallest conformational units of the input
molecule and can be either simple heavy atom centers (e.g., -
CH2-), rigid chain fragments (e.g., >C=C<) or various kinds of
ring systems and combinations thereof.

Phase 2: Generation of Terminal Fragment

Conformations
Initial conformations assigned to the structural units at the leaf
nodes of the fragment-tree serve as the primary building-blocks
for the recursive assembly of fragment conformer ensembles on
higher tree-levels. Conformer 3D coordinates are generated by
the following procedure which is based on a distance geometry
approach: First, a distance bounds matrix is generated using the
connection table of the fragment. The distance constraints are
then augmented by volume constraints for defined chiral centers
and any planar moieties of the fragment. In the next step, random
3D coordinates are assigned to each atom and then optimized
to fulfill the distance and volume constraints. The thus obtained
raw coordinates are further refined using a modified version of
the static Merck Molecular Force Field (MMFF94s) (Halgren,
1996a,b,c,d, 1999a,b; Halgren and Nachbar, 1996) where
electrostatic interactions are not considered in the energy
calculation. In the case of terminal fragments representing

flexible ring systems, multiple conformations of the system may
be possible. If enabled (as by default, enum-rings option), the
geometry optimization procedure is therefore repeated many
times to obtain a set of multiple unique conformations of the ring
system until a maximum number of subsequently failed attempts
to generate a conformations or the timeout limit (max-frag-build-
time option) has been exceeded. Terminal fragments containing
invertible nitrogen atoms are also treated specially (if enabled as
by default with the enum-nitrogens option). For such fragments,
the substituents of each invertible nitrogen atom are simply
flipped and again refined in the force field to yield a second set of
fragment 3D coordinates. The generation of terminal fragment
conformations by the just described distance geometry/force
field optimization procedure is quite simple but rather time
consuming. For the speedup of the overall process, calculated
terminal fragment conformations get stored in a continuously
growing (up to an internal maximum size) dedicated cache.
Whenever a future input molecule with an already processed
fragment is encountered, the lengthy calculations can be
bypassed and the cached fragment conformations are used
instead.

Phase 3: Generation of Flexible Fragment

Conformers
Phase 3 is concerned with the recursive assembly of conformer
ensembles which is starting at the terminal fragments. For
an explanation of the process let us consider the assembly
of two fragments FX and FY at level L+1 of the tree into
the larger parent fragment FXY at level L. Fragments FX and
FY are connected by the rotatable bond BXY of the parent
fragment and the conformations of both child fragments are
available, either because assembled at a lower level or because
generated in phase 2. At this stage, all conformers of FX and
FY contain no duplicates, show no atom clashes, satisfy the
user specified energy window constraint (e-window option)
and are ordered by increasing MMFF94 energy. The assembly
of FX and FY comprises the following sub-steps: The first
step is to align the bond BXY in all conformers of both
FX and FY in a way that the bond has the same standard
orientation (e.g., in direction of the x-axis). In the next step, a
conformation from FX and one from FY is selected and their
coordinates are combined with a relative torsion angle taken
from the list of favorable torsions provided by the assigned
torsion library entry. Afterwards, the MMFF94 energy of the
new conformer candidate is calculated and compared with
the energies of the previously generated conformations. If the
difference between the candidate conformation energy and the
energy of the lowest energy conformer so far is larger than
the user specified energy window, the new conformation gets
rejected because any generated parent fragment conformations
will then also exceed the energy threshold. One thing to
note is that there is no explicit check for atom clashes in
iCon. Conformers with Van der Waals clashes show a rather
high MMFF94 energy that always exceeds the specified energy
window and in turn leads to their automatic exclusion from
any further processing. The next step is to make sure that
the generated conformer is not a duplicate of a previously
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FIGURE 1 | Conformer generation workflow for an example molecule with three rotatable bonds. In the first step, the input molecule is dissected recursively at each of

its rotatable bonds (marked in red, green, and blue) into a tree-like structure of fragments (tree nodes) of approximately equal structural complexity. Fragments at the

leaf nodes (fragments 3, 4, 5, and 6) represent the smallest rigid conformational units of the input molecule (like ring systems, atoms in chains, etc.) and are assigned

initial 3D coordinates by a distance geometry/force field optimization approach (purple arrows). To generate conformer ensembles for flexible fragments (fragment 1

and 2), the coordinates of the two leaf fragments are combined by relative rotations around the connecting rotatable bond (boxes with circular arrows) of the parent

fragment using the angles provided by a bond specific (or default) torsion rule. This procedure is repeated until a final set of candidate conformations for the root node

(input molecule) has been obtained from which the requested number of output conformations under the given energy window and RMSD constraints are selected.

generated conformation. Duplicates may always arise due to local
rotational symmetries and must be excluded from the final list of
fragment conformations. If the candidate conformation is not a
duplicate, it gets inserted into the list of intermediate fragment
conformers. If the inserted conformation is the new lowest
energy conformation found so far, any previously generated
conformations that now exceed the energy window are discarded.
The number of fragment conformers stored at each node
has an upper limit and is calculated dynamically depending
on the number of rotatable bonds, the number of requested

output conformations and the tree level. For the root node
the limit is set to max(PS, 5×N) where N is the number of
requested output conformation (max-num-confs option) and
PS is the value of the max-pool-size option. For an internal
node the maximum ensemble size depends on the number of
rotatable bonds in the subtree and on the number of requested
conformers of the parent node. If the maximum ensemble size is
exceeded by a new conformation, the highest energy conformer
is simply discarded to keep the ensemble size at its upper
limit.

Frontiers in Chemistry | www.frontiersin.org 4 June 2018 | Volume 6 | Article 229

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Poli et al. Conformational Sampling With iCon

Phase 4: Selection of Output Conformations
Once a pool of candidate low energy conformations of the
input molecule has been obtained, the requested number of
output conformations is selected under the specified RMSD
constraints (rms-thresh option). The selection algorithmworks as
follows: First, the list of root fragment conformations is ordered
by increasing MMFF94 energy value and the lowest energy
conformer is put into the list of output conformations. Using this
conformer as a reference, the list of fragment conformations is
searched in order of increasing energy to find a new conformer
whose heavy atom 3D coordinates differ at least by the specified
RMSD threshold. If such a conformation could be found, it is
put into the list of output conformers and the search for the
next sufficiently different conformation continues. This process
is repeated until the requested number of output conformations
or the end of the list of fragment conformations has been reached.

Conformational Model Generation
A total of 20 different setting patterns was used for the
generation of conformational models of the two compound
collections (Table 1). In each setting pattern, three parameters
that have an analogous meaning in iCon and OMEGA (version
2.4.6.35) were systematically modified, while all other parameters
were left unchanged. The parameters modified in the different
settings are: e-window, max-num-conf, rms-thresh in iCon
and ewindow, maxconfs, rms in OMEGA. The e-window and
ewindow parameters define the strain energy window allowed for
conformers to be included in the final ensemble of conformers.
Conformers with strain energy higher than the sum of the energy
of the global minimum conformer and the e-window/ewindow
value are rejected. The default ewindow value for OMEGA is 10
kcal/mol. The max-num-conf and maxconfs parameters define
the maximum number of conformers that can be included in
the final ensemble of conformers (the default maxconfs setting
for OMEGA is 200). If the number of conformers satisfying the
energetic criteria is higher than the allowed limit, conformers
with the highest strain energies are rejected until the threshold
value is reached. Rms-thresh and rms parameters define the
minimum RMSD of coordinates below which two conformers
are considered as duplicates. The default value for OMEGA’s
rms option is 0.5 Å. To simplify the analysis of results, the
settings patterns were divided in low, medium, and high accuracy
settings depending on the average number of conformers (NOC)
generated for the compounds of the PDB data set: up to 100
for low accuracy settings, from 100 to 200 for medium accuracy
settings and from 200 to 500 for high accuracy settings.

Computation of RMSD Values
RMSD values between the experimental ligand conformations
and the related ensembles of conformers generated by iCon
and OMEGA employing the different setting patterns were
calculated for each molecule. Only heavy atoms were considered
in the RMSD computation, without including anymass-weighted
term. For each molecule only the RMSD value between the
crystallographic conformation and the best-fitting conformer
was considered for performance analyses. For the actual
calculation of the heavy atom RMSD of two conformations

TABLE 1 | Setting patterns tested for conformer generation with iCon and

OMEGA.

Setting name MCa EWb (kcal/mol) RTc (Å)

LowAcc_1 25 10 0.8

LowAcc_2 25 15 0.5

LowAcc_3 50 10 0.5

LowAcc_4 50 15 0.5

LowAcc_5 100 15 0.8

LowAcc_6 100 15 0.5

LowAcc_7 200 20 0.8

MedAcc_1 200 10 0.5

MedAcc_2 200 15 0.5

MedAcc_3 200 20 0.5

MedAcc_4 350 15 0.5

MedAcc_5 350 20 0.5

MedAcc_6 400 25 0.8

HighAcc_1 400 25 0.5

HighAcc_2 500 20 0.5

HighAcc_3 500 25 0.5

HighAcc_4 500 25 0.2

HighAcc_5 800 30 0.5

HighAcc_6 800 35 0.5

HighAcc_7 800 25 0.2

aMC, max-num-conf/maxconfs; bEW, e-window/ewindow; cRT, rms-thresh/rms.

an alignment in 3D space is required. The alignment was
performed by a Java implementation of Kabsch’s algorithm
(Kabsch, 1976, 1978) which calculates the optimal rotationmatrix
that minimizes the RMSD between two paired sets of points
(positions of the heavy atoms). Rotational symmetries were
considered in the alignment and RMSD calculation by trying
all possible pairings of equivalent heavy atoms and then using
only the lowest obtained RMSD for the comparison of the two
conformations.

Computation of Tanimoto Combo Scores
The Tanimoto Combo (TC) represents a complementary metric
with respect to the RMSD to compare experimental and
generated ligand conformations. It comprises two different
scores: shape Tanimoto and color Tanimoto. Shape Tanimoto
refers to the structural shape similarity whereas color Tanimoto
refers to the matching of the ligands functional groups.
Each score provides a contribution ranging from 0 to 1 to the
TC score, which can thus assume values between 0 and 2. The
TC score relative to the superposition between the experimental
conformations of the test compounds and the related ensembles
of conformers generated by iCon and OMEGA were calculated
by using the Shape Toolkit (Haigh et al., 2005) implemented in
ROCS (Hawkins et al., 2007; OpenEye Scientific Software, 2012)
from OpenEye Scientific Software. Shell scripts were employed
to allow the automated calculation of the TC score values for
the conformer ensembles generated with the different tested
setting patterns. For each compound, only the TC score of the
superposition between the crystallographic conformation and the
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best-matching generated conformer was used for performance
analyses.

Hardware Specifications
All calculations considering computation time were performed
on a single Intel i7-3770K 3.50 GHz PC equipped with 8 GB RAM
running Linux Centos 5.8. All calculations were done in single
CPU mode.

RESULTS AND DISCUSSION

In order to evaluate the performance of iCon in reproducing
experimentally determined ligand conformations, two data sets
of high quality X-ray structures originating from the PDB and
CSD were created. These data sets comprise a total of 681
structures (200 for the PDB data set and 481 for the CSD data
set) and were selected by Hawkins and co-workers to validate the
performance of their conformer generator OMEGA (Hawkins
and Nicholls, 2012). The choice of these structures as test set for
iCon’s validation was also driven by the intention to use OMEGA
as a reference software, since it is one of the best conformer
generators available today.

Data Set Properties
The two data sets show different distributions of heavy atoms
and rotatable bonds among the test compounds. For the
ligands belonging to the PDB data set a quite homogeneous
distribution of the heavy atoms (HAs) was observed, especially
for compounds with up to 30 HAs (Figure 2A). On the contrary,
about 95% of CSD compounds showed a number of HAs ranging
from 15 to 30 and in particular almost 45% of molecules
presented 21–25 HAs. Regarding the distribution of the number
of rotatable bonds (RBs) in the data set compounds, PDB ligands
showed again a more homogeneous trend with respect to the
CSD structures (Figure 2B). In the CSD data set about 95%
of compounds had less than 7 RBs and no molecules with
more than 9 rotors were found, whereas 29% of PDB ligands
presented more than 7 RBs and 15% of compounds showed
an average of 13 rotors. All these data indicate that the PDB
data set comprises molecules with a larger range of molecular
weight compared to the CSD structures and with a higher
conformational freedom. This makes the conformations of PDB
ligands more challenging to reproduce with respect to the CSD
molecules.

Influence of the Sampling Parameters on
the NOC
The NOC generated by conformational sampling strongly
influences the performance of a conformer generator in
reproducing experimentally derived conformations; the higher
the NOC in a conformational ensemble, the higher the
probability that a conformer well-fitting the experimental one
can be found in that ensemble. On the other hand, the quality of
the sampling process also depends on the way the conformational
space of the molecules is sampled. For example, the generation
of an elevated number of redundant conformers does not help
in the exploration of all the dispositions that a molecule can

FIGURE 2 | Distribution of heavy atoms (A) and rotatable bonds (B) among

PDB and CSD compounds.

assume according to its conformational freedom, but increases
the calculation time and the data file size. This is the reason
why the different parameters influencing the NOC should be
reciprocally calibrated, so that the compounds conformational
space can be adequately covered according to the NOC generated
through the sampling process. To this aim, understanding how
the different parameters affect the conformational sampling of
different compounds is an important issue.

In Figure 3 the average NOC generated with iCon for the
two data sets by employing all the different setting patterns
is shown, together with some of the results obtained with
OMEGA by using the same settings. As expected according
to the molecular properties analyzed for the two data sets, a
higher NOC was always generated for the PDB ligands and this
difference increased along with the maximum NOC allowed for
the ensembles. This trend can be best observed by comparing the
results obtained with iCon forMedAcc_3 andHighAcc_2 settings,
differing only in the values of max-num-conf (200 and 500,
respectively). In fact, the difference between the average NOC
produced for CSD and PDB compounds increased more than
3.5 times passing from MedAcc_3 to HighAcc_2. Therefore, the
max-num-conf parameter showed to have a stronger influence on
conformer generation for PDB ligands than for CSD compounds.

Conversely, when the NOC was increased due to a lower
RMSD threshold allowed among the output conformers, the
difference between the NOC for CSD and PDB compounds was
found to be smaller. This is clearly shown by the comparison
of HighAcc_3 and HighAcc_4 settings, for which a reduction
of the rms-thresh value from 0.5 to 0.2 Å determined the
generation of a much higher NOC for both data sets, but
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FIGURE 3 | Number of conformers (NOC) generated by iCon and OMEGA for PDB data set (blue bars) and CSD data set compounds (red bars) with different

settings. For iCon all the tested settings are reported; for OMEGA only some representative settings are shown as a reference.

with a really smaller gap between them (PDB/CSD NOC with
HighAcc_3 settings = 232/171; PDB/CSD NOC with HighAcc_4
settings = 343/339). Interestingly, increasing the max-num-conf
value up to 800 in the HighAcc_7 settings raised the NOC
produced for the two data sets to almost 500 conformers per
ensemble although maintaining such a small gap. These findings
indicate that both max-num-conf and rms-thresh parameters
have a strong influence on the NOC. Anyway, for compounds
with less conformational freedom a low RMSD threshold has
a bigger impact for the production of large conformational
ensembles, even though it can lead to the generation of too
similar conformers.

The value for the energy window seemed to have a lesser
effect than the other two parameters on the NOC generated for
the PDB ligands. Raising the e-window from 10 to 15 and 20
kcal/mol without changingmax-num-conf and rms-thresh values
(passing from MedAcc_1 to MedAcc_2 and MedAcc_3 settings,
respectively) produced a 12 and 18% increase in the NOC,
respectively. Nevertheless, the energy window appears to have
a greater influence on the size of the conformational ensembles
produced for the CSD compounds, as the same changes resulted
in a 27 and a 44% increase in the NOC for these molecules.

All the considerations reported above are also valid for
OMEGA as the same trends relative to the variations of the
NOC generated for the two data sets are observed. OMEGA
always produced a higher NOC than iCon for all tested setting
patterns, especially for high accuracy settings (on average a 9.3,
20.1, and 24.0% higher NOC for low, medium and high accuracy
settings, respectively), with a corresponding wider gap between
the NOC generated for the CSD and PDB compounds (see also
Supplementary Figure 1).

Influence of Rotors on the NOC
The analysis of the variation of the average NOC as a function
of the number of rotatable bonds (RBs) clearly highlighted the
unsurprisingly strong dependence of the conformer generation
process on the conformational freedom of the compounds. For
molecules with 3 or less rotors, ensembles of up to 50 conformers
were generated for all the tested settings except for those where
the RMSD cutoff was set to 0.2 Å, which produced nearly a three-
fold higher NOC (Figure 4). For ligands with 8 or more rotors
ensembles comprising a minimum of 120 conformers (up to
several hundreds) were generated for medium and high accuracy
settings, where a wider conformational variability was allowed in
the sampling process (see Supplementary Figure 2). As shown in
Figure 4, the two conformer generators presented a similar trend
in the NOC generated for the analyzed compounds with respect
to their number of RBs. However, the increase in the number of
rotors produced a slightly steeper increase in the NOC generated
by OMEGA. This became even more evident when settings
patterns producing high average NOC were considered. Anyway,
setting the RMSD threshold to 0.2 Å reduced this difference, as
shown by the comparison of the NOC generated withHighAcc_3
and HighAcc_4 settings.

Performance Assessment
The ability of the software iCon to reproduce the crystallographic
conformation of the data set compounds was studied by using
two different metrics: the root mean square deviation (RMSD)
and the Tanimoto combo (TC) score, which were calculated
for the generated ligand conformers using the corresponding
experimental conformation as reference. These analyses were
carried out on the conformers generated by using all the 20
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FIGURE 4 | Average NOC generated by iCon and OMEGA, for some

representative setting patterns, as a function of the number of rotatable bonds

of PDB and CSD compounds. Due to the different rotor distribution in PDB and

CSD molecules, different scales have been considered for the two data sets.

different settings patterns reported in Table 1. Only the values
for the best-fitting conformers were taken into consideration, i.e.,
the lowest RMSD and the highest TC score obtained for each
ligand conformational ensemble. In the same way the conformers
generated by OMEGA using equivalent settings were analyzed, in
order to compare the performance of the two software packages.
To get a global overview of iCon’s performance as a function
of the various settings used and to compare it to OMEGA’s
performance, we calculated the average values of RMSD and TC
scores obtained for the best-fitting conformers of the PDB and
CSD compounds. Additionally, the number of ligands giving a
RMSD value higher than 2 Å (RMSD failures) and the number
of ligands giving a TC score lower than 1 (TC failures) were
also reported and used as a secondary metric for performance
assessment and comparison. The results obtained by applying
low, medium, and high accuracy settings for the conformer
generation of PDB and CSD ligands are reported in Tables 2–
4, respectively. As expected, the PDB data set showed to be
more challenging than the CSD data set, since for the CSD
compounds both conformer generators gave significantly better
RMSD and TC score values with respect to those produced for
the PDB ligands. Accordingly, the number of RMSD and TC
failures yielded by the two programs for the CSD data set were

consistently lower than those reported for the PDB data set,
which in fact contained a higher percentage of large compounds
with a higher conformational freedom (see section Data Set
Properties).

Influence of the Sampling Parameters on
iCon’s Performance
The influence of the sampling parameters on iCon’s performance
was in agreement with their effect on the NOC generated.
The max-num-conf parameter showed the strongest impact on
the quality of the conformational sampling outcome when low
accuracy settings were used. In this case, the maximum number
of conformers allowed was quite small and represented the main
limit to the generation of larger ensembles and to sampling
accuracy. The increase ofmax-num-conf from 25 in LowAcc_2 to
50 in LowAcc_4 settings gave a difference in mean RMSD and TC
score values of−11.0 and+3.57%, respectively, for PDB ligands,
while a difference of −11.86 and +2.38%, respectively, was
obtained for CSD compounds (Table 2). Moreover, this settings
change produced a strong reduction of the number of failures for
both data sets (from −25% up to −70%). This suggested that a
max-num-conf value lower than 50 is too restrictive even for the
generation of small ensembles, rejecting valuable conformers for
an adequate sampling of the molecule’s conformational space. By
doubling again the max-num-conf value in LowAcc_6 settings a
lower (although still substantial) improvement in performance
was obtained, in terms of both mean RMSD (−5.62% for PDB
and −5.77% for CSD compounds) and TC score values (+2.07%
for PDB and +1.26% for CSD data set). Finally, passing from
MedAcc_3 (max-num-conf = 200, Table 3) toHighAcc_2 settings
(max-num-conf = 500, Table 4) even smaller improvements
were obtained for both PDB (−3.95% in mean RMSD and
+1.99% in mean TC score) and CSD compounds (−4.35% in
mean RMSD and+0.57% in mean TC score).

An e-window value of 10 kcal/mol (OMEGA’s default ewindow
value) seemed to be too restrictive for iCon, since an increase of
5 kcal/mol lead to a substantial improvement in the quality of
the conformational ensembles generated with MedAcc_2 respect
to MedAcc_1 settings (Table 3), especially for the CSD data set.
WithMedAcc_2 settings iCon gave a mean RMSD of 0.47 Å and a
mean TC score of 1.75 for the CSD data set (−7.84% and+1.74%
compared to the results obtained with MedAcc_1 setting), while
for the PDB data set mean RMSD and TC score values of 0.78
Å (−4.88%) and 1.71 (+1.34%) were obtained. This was in
agreement with the deeper influence produced by this parameter
on the NOC generated for CSD compounds with respect to PDB
ligands (see section Influence of the Sampling Parameters on the
NOC). The better results obtained with the LowAcc_4 settings in
comparison with LowAcc_3 (Table 2), particularly for the CSD
compounds (−5.45% of mean RMSD and +1.78% of mean TC
score), suggested that an e-window of 15 kcal/mol might be also
suitable for the generation of small conformational ensembles
(depending on the molecular properties of the compounds to
be sampled), even if at the price of a slightly higher calculation
time. A further increase of e-window up to 20 kcal/mol was
considered more appropriate for larger ensembles, since when
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TABLE 2 | Mean RMSD and TC score values obtained for PDB and CSD data set compounds by using iCon and OMEGA with low accuracy settings.

Settings LAa_1 LA_2 LA_3 LA_4 LA_5 LA_6 LA_7

Parameters MCb
= 25 MC = 25 MC = 50 MC = 50 MC = 100 MC = 100 MC = 200

EWc
= 10 EW = 15 EW = 10 EW = 15 EW = 15 EW = 15 EW = 20

RTd = 0.8 RT = 0.5 RT = 0.5 RT = 0.5 RT = 0.8 RT = 0.5 RT = 0.8

iCon PDB mean RMSD 0.96 1.00 0.91 0.89 0.84 0.84 0.81

PDB RMSD failures 12 18 13 11 4 7 4

PDB mean TC 1.41 1.40 1.44 1.45 1.47 1.48 1.49

PDB TC failures 25 32 25 24 16 19 14

CSD mean RMSD 0.63 0.59 0.55 0.52 0.56 0.49 0.54

CSD RMSD failures 1 2 1 1 0 1 0

CSD mean TC 1.64 1.68 1.69 1.72 1.69 1.74 1.71

CSD TC failures 4 7 5 3 1 1 0

OMEGA PDB mean RMSD 0.94 0.97 0.90 0.89 0.82 0.80 0.78

PDB RMSD failures 11 15 12 12 5 6 3

PDB mean TC 1.43 1.45 1.48 1.49 1.50 1.53 1.52

PDB TC failures 27 29 26 26 12 20 7

CSD mean RMSD 0.64 0.61 0.56 0.54 0.57 0.50 0.54

CSD RMSD failures 4 7 3 3 2 3 0

CSD mean TC 1.63 1.66 1.69 1.71 1.68 1.73 1.70

CSD TC failures 8 12 5 4 3 3 0

aLA, LowAcc; bMC, max-num-conf/maxconfs; cEW, e-window/ewindow; dRT, rms-thresh/rms.

used inMedAcc_3 settings it did not seem to be worth the higher
costs in machine time (see section Computational Resources)
in light of the small improvements obtained in terms of mean
RMSD and TC scores with respect to the MedAcc_2 settings
(Table 3).

As far as the rms-thresh value is concerned, it showed to
have a quite different impact on the results obtained for the two
different data sets. For the generation of small conformational
ensembles an rms-thresh value of 0.8 Å allowed a substantial
reduction of both RMSD and TC failures obtained for PDB
ligands with LowAcc_5 settings with respect to LowAcc_6 (−43
and −26%, respectively), although accompanied by a marginal
reduction of the mean TC score (Table 2). On the contrary, the
results obtained for CSD compounds with LowAcc_5 setting were
considerably worse compared to those given by LowAcc_6 (mean
RMSD = 0.56 Å, +14.29%; mean TC score = 1.69, −2.87%).
When higher max-num-conf and e-window values were used, a
RMSD cutoff of 0.8 Å had a more deleterious effect on the size
and quality of the conformational ensembles generated for CSD
compounds especially in terms of mean RMSD values, for which
an increment of 22.73% was obtained passing from HighAcc_1
(mean RMSD = 0.44 Å, Table 4) to MedAcc_6 settings (mean
RMSD = 0.54 Å, Table 3). This change gave worse results also
for the PDB data set (mean RMSD = 0.79 Å, +8.22%; mean TC
score = 1.50, −2.60%), although without affecting the number
of failures. Finally, reducing the rms-thresh value to 0.2 Å for
the generation of very large conformational ensembles produced
improvements in the results relative to the CSD data set, as

observed for HighAcc_3 and HighAcc_4 settings (Table 4), which
gave mean RMSD and TC score values of 0.40 Å and 1.80,
respectively (−9.09% and +1.12%, compared to the HighAcc_3
values). For the PDB data set, instead, this settings change seemed
to result in the generation of ensembles comprising too similar
conformers (with the consequent rejection of valuable ones, for
some compounds), since it produced a higher number of failures
and a higher mean RMSD value (0.75 Å, +4.17%), with only a
marginal increase of mean TC score (1.55,+0.65%).

Taken together, these results show that in order to obtain
good quality conformational ensembles, independently from the
accuracy level required, it is not only necessary to reciprocally
adjust the different sampling parameters, but also to calibrate
them based on the molecular properties of the compounds to
be sampled. Among the medium accuracy settings, MedAcc_2
showed to be a good settings pattern for both data sets,
considering the results in terms of mean RMSD and TC scores
with respect to the average NOC generated, even though given
the machine time required for the sampling it might not be
particularly efficient for PDB-like molecules. For the same reason
LowAcc_4 seems to represent a good compromise between
accuracy and computational resources for CSD compounds, but
not for PDB ligands (see section Computational Resources).
Nevertheless, in order to get a certain improvement in the
quality of the conformational sampling of compounds with
molecular properties similar to PDB ligands, a small increase
of max-num-conf should be accompanied by a less strict
RMSD cutoff (as in LowAcc_5 setting), while for CSD-like
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TABLE 3 | Mean RMSD and TC score values obtained for PDB and CSD data set compounds by using iCon and OMEGA with medium accuracy settings.

Settings MAa_1 MA_2 MA_3 MA_4 MA_5 MA_6

Parameters MCb
= 200 MC = 200 MC = 200 MC = 350 MC = 350 MC = 400

EWc
= 10 EW = 15 EW = 20 EW = 15 EW = 20 EW = 25

RTd = 0.5 RT = 0.5 RT = 0.5 RT = 0.5 RT = 0.5 RT = 0.8

iCon PDB mean RMSD 0.82 0.78 0.76 0.75 0.74 0.79

PDB RMSD failures 5 4 4 3 3 2

PDB mean TC 1.49 1.51 1.51 1.52 1.53 1.50

PDB TC failures 15 14 15 13 14 13

CSD mean RMSD 0.51 0.47 0.46 0.46 0.44 0.54

CSD RMSD failures 0 0 0 0 0 0

CSD mean TC 1.72 1.75 1.76 1.76 1.77 1.71

CSD TC failures 3 1 0 1 0 0

OMEGA PDB mean RMSD 0.76 0.75 0.75 0.72 0.72 0.76

PDB RMSD failures 4 5 5 5 5 2

PDB mean TC 1.56 1.57 1.57 1.58 1.58 1.54

PDB TC failures 10 10 10 8 8 4

CSD mean RMSD 0.51 0.48 0.45 0.47 0.44 0.53

CSD RMSD failures 3 3 1 2 0 0

CSD mean TC 1.73 1.75 1.76 1.76 1.77 1.71

CSD TC failures 4 2 1 1 0 0

aMA, MedAcc; bMC, max-num-conf/maxconfs; cEW, e-window/ewindow; dRT, rms-thresh/rms.

compounds this change would only yield a negative effect.
For a more exhaustive sampling the use of a lower rms-thresh
value seemed more important than a considerable increase of e-
window andmax-num-conf parameters to improve the quality of
conformational ensembles of CSD-like compounds. In fact, the
best results for the CSD data set were obtained with HighAcc_4
and HighAcc_7 settings, while for PDB-like molecules, the best
results were obtained by using higher e-window and max-num-
conf values without reducing the RMSD cutoff (with HighAcc_5
and HighAcc_6 settings).

OMEGA and iCon: Overall Comparison of
the Results for PDB and CSD Data Sets
In general, despite the two conformer generators showed similar
performances, OMEGA seemed to be slightly more effective
in reproducing the bioactive conformation of PDB ligands,
independently from the setting patterns used, since the mean
RMSD values obtained with iCon were, on average, 3.23% higher
than those shown by OMEGA and the TC scores were 3.11%
lower (Figures 5A,B). Only with the LowAcc_4 settings iCon
showed the same mean RMSD values obtained with OMEGA.
The main difference among the results obtained with the two
programs for PDB data set concerned the number of TC failures,
which was however significantly high for both programs when
low accuracy settings were used, reaching a maximum of 16% for
iCon and 14.5% for OMEGA (with LowAcc_2 settings, Table 2).
Although the average gap between the mean TC scores given by
the two programs was quite small, the number of OMEGA’s TC

failures was about 40% lower than iCon’s ones for medium and
high accuracy settings (Figure 5D, Tables 3, 4). For low accuracy
settings instead, the number of TC failures was comparable
between the two conformer generators, with iCon giving less
failures than OMEGA with 4 out of these 7 settings (Table 2).
An inverse situation is observed regarding the number of RMSD
failures produced by the programs. By using low accuracy settings
iCon gave a lower number of RMSD failures only with LowAcc_4
and LowAcc_5 settings (Table 2). On the contrary, with almost
all the medium and high accuracy settings the number of iCon’s
RMSD failures was either lower or equal to the number of
OMEGA’s ones (Figure 5D, Tables 3, 4).

For the CSD data set, a different trend in the performance
of the two programs was observed depending on the group of
setting patterns tested. As reported in Table 2, by using low
accuracy settings iCon showed a slightly better performance with
respect to OMEGA in terms of both mean RMSD (−2.01%,
on average) and mean TC score (+0.59%, on average) values.
Moreover, for these settings iCon produced a number of RMSD
and TC failures corresponding, on average, to 50% of the failures
shown by OMEGA (see also Figures 5C,D). By using medium
accuracy settings the two conformer generators gave very similar
results: the mean TC scores were practically identical and the
differences in mean RMSD values minimal (Table 3, Figure 5A).
Notably, for all these settings the number of iCon’s RMSD and TC
failures was always lower or equal to the corresponding OMEGA
failures (Figures 5C,D). Finally, with high accuracy settings the
difference in performance of the two conformer generators
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TABLE 4 | Mean RMSD and TC score values obtained for PDB and CSD data set compounds by using iCon and OMEGA with high accuracy settings.

Settings HAa_1 HA_2 HA_3 HA_4 HA_5 HA_6 HA_7

Parameters MCb
= 400 MC = 500 MC = 500 MC = 500 MC = 800 MC = 800 MC = 800

EWc
= 25 EW = 20 EW = 25 EW = 25 EW = 30 EW = 35 EW = 25

RTd = 0.5 RT = 0.5 RT = 0.5 RT = 0.2 RT = 0.5 RT = 0.5 RT = 0.2

iCon PDB mean RMSD 0.73 0.73 0.72 0.75 0.71 0.70 0.72

PDB RMSD failures 2 3 2 5 2 2 4

PDB mean TC 1.54 1.54 1.54 1.55 1.56 1.56 1.56

PDB TC failures 13 13 12 14 11 11 12

CSD mean RMSD 0.44 0.44 0.44 0.40 0.43 0.43 0.39

CSD RMSD failures 0 0 0 1 0 0 0

CSD mean TC 1.78 1.77 1.78 1.80 1.78 1.78 1.80

CSD TC failures 0 0 0 0 0 0 0

OMEGA PDB mean RMSD 0.71 0.71 0.71 0.72 0.68 0.68 0.69

PDB RMSD failures 3 3 3 6 2 2 5

PDB mean TC 1.59 1.59 1.60 1.60 1.61 1.61 1.62

PDB TC failures 7 7 7 11 5 5 9

CSD mean RMSD 0.43 0.44 0.43 0.40 0.41 0.41 0.39

CSD RMSD failures 0 0 0 1 0 0 1

CSD mean TC 1.78 1.77 1.78 1.80 1.79 1.79 1.81

CSD TC failures 0 0 0 1 0 0 1

aHA, HighAcc; bMC, max-num-conf/maxconfs; cEW, e-window/ewindow; dRT, rms-thresh/rms.

seemed almost the opposite with respect to what observed for low
accuracy settings. In fact, iCon showed mean RMSD values and
mean TC scores that were, on average, 2.06% higher and 0.24%
lower than those obtained with OMEGA (Table 4), although
it never produced a higher number of RMSD or TC failures
(Figures 5C,D).

The overall comparison of iCon’s and OMEGA’s results
showed that iCon seemed more efficient in reproducing
crystallographic ligand conformations through small
conformational ensembles, since by using low accuracy
settings it slightly outperformed OMEGA in terms of RMSD
and TC scores (and corresponding failures) for the CSD data set.
Moreover, for the PDB data set, the difference in performance
with respect to OMEGA, which gave slightly better results, was
lower than that observed for the other groups of setting patterns.
When the generation of larger ensembles was allowed as in
medium and high accuracy settings, OMEGA seemed to perform
relatively better than iCon, although the differences were still
modest. This can be due to the facts that OMEGA always
produced a NOC considerably higher than iCon for these setting
patterns (see section Influence of the Sampling Parameters
on the NOC) and the built-in torsion library employed by
OMEGA which is biased toward PDB ligand conformations
(Hawkins et al., 2010). A reasonable explanation for the in
general higher NOC generated by OMEGA is the input molecule
fragmentation strategy that is adopted by OMEGA. In contrast
to iCon, OMEGA allows flexible terminal chain fragments
(see section Conformer Generation With iCon) with multiple
rotatable bonds which are in turn looked up in a built-in cache

of precalculated refined fragment conformations upon overall
molecule conformer assembly. This effectively reduces the
number of rotatable bonds when dealing with highly flexible
molecules and, as a consequence, will speed up the conformer
generation process in general and also decrease the chance
to produce rejected high energy conformations of the overall
molecule due to steric clashes. However, it is worth noting that
with medium and high accuracy settings OMEGA gave a higher
number of RMSD failures for both PDB and CSD data sets and
a lower number of TC failures only for PDB compounds, on
average.

OMEGA and iCon: Deep Comparative
Analysis of Representative Setting Patterns
Spreading of RMSD and TC Score Values
For a better insight into iCon’s performance and a more
accurate comparison with OMEGA, we analyzed the spreading
of the RMSD (Table 5) and TC score values (Table 6) that
were obtained for the generated conformers of both data sets
by using three representative setting patterns, one for each of
the three different setting groups: LowAcc_4, MedAcc_2, and
HighAcc_4 (see Supplementary Tables 1, 2 for the analysis
of other representative setting patterns). The results for both
metrics were divided into different classes representing different
levels of precision in the reproduction of the experimental
conformations. A RMSD smaller than 0.5 Å, as well as a TC
score higher than 1.75, correspond to an excellent matching
between two different conformations, thus denoting a perfect
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FIGURE 5 | Overall comparison of (A) mean RMSD values, (B) mean TC score values, (C) number of RMSD failure, and (D) number of TC failures obtained for PDB

and CSD data set compounds by using iCon and OMEGA with the different setting patterns. Black vertical lines are used to separate the three different groups of

settings.

reproduction of the compound’s crystallographic pose (TC scores
higher than 1.95 and RMSDs of about 0.1 Åmean conformational
identity). RMSD values between 0.5 and 1.0 Å correspond to a
very good matching, where all the compound’s functional groups
of the best-fitting generated conformers are correctly superposed
to the experimental ones; the same is valid for TC scores between
1.75 and 1.50. When the RMSD lies in the 1.0–1.5 Å range
and/or when the TC score is in the 1.50–1.25 range there is still a
good matching between the overlaid conformations. For RMSDs
between 1.5 and 2.0 Å, as well as for TC scores between 1.25
and 1.0, the representation of the crystallographic conformation
is less accurate, since some of the compounds’ chemical features
in the generated conformers might not be correctly oriented
with respect to the same moieties in the reference ligand pose,
but the overall superposition is still sufficiently good. RMSDs
above 2.0 Å and/or TC scores below 1.0 mean that the matching
between the generated and experimental conformers is not
good enough to consider the crystallographic pose as properly
reproduced.

The analysis of the results reported in Tables 5, 6 clearly
demonstrates a high performance for both programs using
the three setting patterns considered, since more than 50% of

the generated conformational ensembles produced a very good
matching with the ligand reference poses, giving TC scores≥1.50
and RMSD values ≤1.0 Å. Precisely, as the PDB data set is
concerned, for a minimum of 51.5% up to 68% of the ligands,
a TC score above 1.50 was obtained for iCon_LowAcc_4 and
OMEGA_HighAcc_4, respectively (Table 6), while the percentage
of molecules showing RMSD values below 1.0 Å (Table 5) ranged
from 69.5 up to 81.5%. Compared to iCon, OMEGA always
gave better results for the PDB data set in terms of TC score,
consistently with what observed in the overall comparison of the
two programs’ performance. OMEGA produced 58.0–68.0% of
conformational ensembles with TC scores ≥ 1.50, on average 8%
more than iCon (51.5–61.0%), for which a shift toward lower TC
score values was observed. Moreover, OMEGA yielded 25.0% of
ensembles with excellent fit (TC score ≥ 1.75) using LowAcc_4
settings and 45.0% with HighAcc_4, whereas those obtained with
iCon for the same settings were 22.0 and 34.5%, respectively. The
RMSD values revealed a slightly different situation (Table 5). Not
only the difference in the percentage of ensembles with RMSD ≤

1.0 Å generated by iCon and OMEGA was marginal (69.5–79.5
and 73.0–81.5%, respectively) but iCon also produced a number
of ensembles with RMSD ≤ 0.5 Å (31.5–39.5%) higher than that
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TABLE 5 | Percentage spreading of RMSD values calculated for conformers of PDB and CSD compounds generated by iCon and OMEGA using three representative

setting patterns.

Setting pattern Data set <0.1 <0.5 <1.0 <1.5 <2.0 <3.0 >2.0 Mean

RMSD (Å)

iCon_LowAcc_4 PDB 0.0 31.5 38.0 16.5 8.5 5.0 5.5 0.89

OMEGA_LowAcc_4 PDB 0.0 25.0 48.0 12.0 9.0 5.5 6.0 0.89

iCon_LowAcc_4 CSD 0.8 61.0 29.7 6.4 1.9 0.2 0.2 0.52

OMEGA_LowAcc_4 CSD 0.2 59.3 32.8 5.8 1.3 0.6 0.6 0.54

iCon_MedAcc_2 PDB 0.0 35.5 42.5 14.0 6.0 1.5 2.0 0.78

OMEGA_MedAcc_2 PDB 0.0 32.5 48.0 11.0 6.0 2.5 2.5 0.75

iCon_MedAcc_2 CSD 0.8 68.8 25.8 3.7 0.8 0.0 0.0 0.47

OMEGA_MedAcc_2 CSD 0.2 69.0 26.4 3.3 0.4 0.6 0.6 0.48

iCon_HighAcc_4 PDB 0.0 39.5 40.0 12.5 5.5 2.0 2.5 0.75

OMEGA_HighAcc_4 PDB 0.0 37.5 44.0 10.5 5.0 2.5 3.0 0.72

iCon_HighAcc_4 CSD 1.2 76.6 18.5 2.9 0.6 0.2 0.2 0.40

OMEGA_HighAcc_4 CSD 0.4 75.1 21.6 2.5 0.2 0.2 0.2 0.40

TABLE 6 | Percentage spreading of TC score values calculated for conformers of PDB and CSD compounds generated by iCon and OMEGA using three representative

setting patterns.

Settings pattern Data set >1.95 >1.75 >1.50 >1.25 >1.0 >0.75 <1.0 Mean

TC score

iCon_LowAcc_4 PDB 1.0 21.0 29.5 20.5 16.0 11.0 12.0 1.45

OMEGA_LowAcc_4 PDB 1.0 24.0 33.0 18.0 11.0 11.0 13.0 1.49

iCon_LowAcc_4 CSD 7.5 48.2 27.0 12.9 3.7 0.6 0.6 1.72

OMEGA_LowAcc_4 CSD 6.7 49.3 24.3 14.6 4.4 0.8 0.8 1.71

iCon_MedAcc_2 PDB 1.0 24.5 32.5 23.5 11.5 7.0 7.0 1.51

OMEGA_MedAcc_2 PDB 1.0 29.0 38.5 15.5 11.0 4.0 5.0 1.57

iCon_MedAcc_2 CSD 7.5 54.7 26.2 9.4 2.1 0.2 0.2 1.75

OMEGA_MedAcc_2 CSD 6.9 56.3 25.4 8.3 2.7 0.4 0.4 1.75

iCon_HighAcc_4 PDB 3.0 31.5 26.5 23.0 9.0 6.5 7.0 1.55

OMEGA_HighAcc_4 PDB 3.5 41.5 23.0 16.0 10.5 4.5 5.5 1.60

iCon_HighAcc_4 CSD 14.1 57.6 19.1 7.9 1.2 0.0 0.0 1.80

OMEGA_HighAcc_4 CSD 16.4 54.9 20.4 5.8 2.3 0.2 0.2 1.80

shown by OMEGA (25.0–39.0%). In particular, with LowAcc_4
settings iCon produced 6.5% more excellent-fitting conformers
with respect to OMEGA. Similar results were obtained by the
analysis of LowAcc_3,MedAcc_1, andHighAcc_3 setting patterns
(see Supplementary Tables 1, 2). These results underline the
complementarity of the two different metrics, which are based
on two different methods of structure superposition and thus
gave different results that seemed to be the more divergent the
higher the dimensions and the conformational freedom of the
considered compounds.

Concerning the CSD data set, a higher number of compounds
with a very good matching between generated and experimental
conformations was obtained by the two programs, with respect
to the PDB ligands (consistent with the higher mean TC scores
and lower mean RMSD values), but the results in terms of
the two metrics were more similar to each other. For instance,
the number of CSD compounds for which a TC score ≥

1.50 and a RMSD ≤ 1.0 Å was obtained ranged from 80.2%
(OMEGA_LowAcc_4) to 91.7% (OMEGA_HighAcc_4) and
from 91.5% (iCon_LowAcc_4) to 97.1% (OMEGA_HighAcc_4),
respectively. With LowAcc_4 and MedAcc_2 settings iCon
generated a higher number of perfect fitting conformers with
respect to OMEGA in terms of both metrics, with 0.8% of
compounds showing a RMSD ≤ 0.1 Å and 7.5% presenting a
TC score ≥ 1.95 (compared to 0.2% and 6.7–6.9%, respectively,
as obtained for OMEGA), as well as a lower percentage of
failures. ForHighAcc_4 settings, for which the two programs gave
equal values of mean RMSD and TC scores, iCon produced less
ensembles comprising perfect fitting conformers than OMEGA,
in terms of TC score (14.1%, and 16.4% for OMEGA) but more in
terms of RMSD (1.2 vs. 0.4%). For all these settings iCon showed
a small enrichment in compounds with RMSD ≤ 0.5 Å (ranging
from 61.8 to 77.8%) with respect to OMEGA (59.5–75.5%), but
gave a marginally higher number of molecules with TC score
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≥ 1.75 only with HighAcc_4 settings (71.7, 71.3% reported for
OMEGA).

Overall, the obtained data indicate that both software packages
actually perform in a similar way, with OMEGA giving only
slightly better results when a medium-to-high quality sampling
of larger and more flexible compounds is carried out; also, these
differences are mainly relative to the TC score.

Influence of Rotors in RMSD and TC Score Values
To better assess how the conformational freedom of the data
set compounds influenced the performance of the two programs
in reproducing experimental conformations, we plotted the
obtained results in terms of RMSD and TC scores for PDB
and CSD molecules by using MedAcc_2 settings (as a reference
setting) as a function of the number of rotors of the compounds
(Figure 6). As expected, quite different trends were observed
for the two data sets. For CSD molecules almost no correlation
was found between the number RBs and the relative RMSD
and TC score values given by iCon and OMEGA, which
showed an almost identical distribution of the results with
respect to both metrics (Figures 6A,C). For PDB ligands an
appreciable correlation between conformational freedom and
sampling performance was identified for both programs and
particularly in terms of RMSD values, for which RBs/RMSDs
correlation coefficients of 0.42 and 0.54 were calculated for
OMEGA and iCon, respectively (Figure 6C). iCon’s performance
seems to be more influenced by the number of rotors compared
to OMEGA, in accordance with what observed in the previous
analyses. However, the difference in R2 values was quite small and
the distribution of the results in terms of both metrics was pretty
similar for the two programs, which again showed a comparable
behavior.

Computational Resources
To compare iCon’s efficiency in terms of computation time
with OMEGA and to understand how it is affected by the
different settings, we reported the average time required by the
two programs for the conformational sampling of PDB and
CSD compounds by using the various settings patterns. Both
conformer generators proved to be fast, especially in the sampling
of the CSD data set (Figure 7B), which required <0.4 s per
compound (s/cpd) for all the low accuracy settings and <0.6
s/cpd for all the medium accuracy settings. OMEGA showed
generally a better efficiency with respect to iCon, even though
for this data set the differences in the average elapsed time
were substantial only for HighAcc_4 and HighAcc_7 settings,
where a RMSD cutoff for saving conformers of 0.2 Å was used.
Using these two settings OMEGA was particularly fast (0.371
and 0.478 s/cpd, respectively) considering the elevated number
of conformers generated. On the contrary, when a RMSD cutoff
of 0.8 Å was used in MedAcc_6 settings iCon was found to be
faster than OMEGA (0.450 and 0.522 s/cpd, respectively) while
for LowAcc_7 settings the difference between the two programs
was marginal. With the CSD data set, LowAcc_4 and MedAcc_2
confirmed to be efficient setting patterns for iCon (compared to
the other low and medium accuracy settings), considering the
performance in terms of mean RMSD and TC score with respect

to the calculation time and the average NOC generated. The same
can be said for HighAcc_4 among the high accuracy settings,
which proved to be particularly efficient also for OMEGA. In fact,
OMEGA employed less than half of the sampling time required
by iCon using these parameters and was faster even with respect
to theMedAcc_4-6 settings.

The sampling of the PDB data set took, in general, a
longer time for both programs. This is in accordance to the
higher conformational freedom of these ligands with respect
to the CSD molecules. For this data set the gap between
iCon and OMEGA was more evident, the latter being 26%
faster, on average. Nevertheless, such a difference can be
attributed to iCon’s caching strategy, which was designed in
order to allow a conformational sampling that is getting faster
with a growing number of compounds in the database to be
sampled. Precisely, the conformations generated by iCon for
the compounds terminal fragments are continuously stored in
a cache, thus having no necessity to be recalculated when the
same fragments are encountered in further input compounds
during the sampling process (see section Conformer Generation
With iCon). However, the performance results clearly show that
it might be worth thinking about changing the current caching
strategy toward a prebuilt start fragment cache (like OMEGA
has one) that is updated with newly encountered fragments.
This would allow for overall faster calculations also for small
compound libraries where the current caching strategy does not
provide any significant speedup in the conformational sampling
process. The influence of the various setting parameters on the
efficiency of the two programs was much stronger with PDB
data set (Figure 7A). OMEGA was remarkably affected by the
rms parameter, showing again a faster sampling for rms = 0.2 Å
(HighAcc_4 andHighAcc_7 settings) and a substantial increase in
computation time when an rms value of 0.8 Å instead of 0.5 Å
was used (e.g., MedAcc_6 vs. HighAcc_1). On the contrary, this
effect was not observed for iCon, which was appreciably faster
than OMEGA for MedAcc_6 settings and seemed to be mostly
affected by the e-window value, in particular for the generation of
medium- and small-sized conformer ensembles. With LowAcc_1,
LowAcc_3, and MedAcc_1 settings, for which an e-window value
of 10 kcal/mol was used, iCon showed very similar calculation
times (from 0.456 to 0.516 s/cpd) although the average NOC
ranged from 17.5 to 102.2 compounds per ensemble, respectively
(see also Figure 3). Similarly, in LowAcc_2, LowAcc_4-6, and
MedAcc_2 settings the e-window was set to 15 kcal/mol and the
sampling time only ranged from 0.650 to 0.733 s/cpd even though
the average NOC was raised from 22.2 to 114.4 compounds
per ensemble. When larger ensembles were generated, the e-
window seemed to have a smaller impact on iCon’s efficiency
compared to the other parameters. These results also showed that
the improvement in iCon’s performance obtained by increasing
e-window of 5 kcal/mol was paid with an increase of computation
time of nearly 40% the for PDB data set. This makes LowAcc_4
andMedAcc_2 settings not really convenient for the sampling of
PDB-like molecules compared to the LowAcc_3 and MedAcc_1
settings, respectively. Anyway, MedAcc_1 showed to be a very
efficient setting for PDB ligands, requiring just a 12.7% longer
sampling time than LowAcc_3 but with much better results in
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FIGURE 6 | Distributions of TC score values as a function of the number of rotatable bonds for CSD (A) and PDB compounds (B). Distributions of RMSD values as a

function of the number of rotatable bonds for CSD (C) and PDB compounds (D).

FIGURE 7 | Average time required for the conformational sampling of PDB (A) and CDS (B) compounds with iCon and OMEGA, by using the different setting

patterns. Black vertical lines are used to separate the three different groups of settings.

terms of both RMSD and TC score values, making it suitable
not just for medium-sized databases but also for large ones,
despite the higher NOC generated. For the high accuracy settings,
HighAcc_3 seemed to have a good efficiency, giving results
nearly as good as HighAcc_5-6 but in less time (averagely
−31.6%).

Notes on Using the Reproduction Ability of

Crystallographic Conformations as a Performance

Measure
Before concluding the performance assessment of iCon it is worth
mentioning the induced folding problem, i.e., the structural
adaptation of the target protein to the ligand in order to
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form an optimal complex. The ligand-induced folding of the
target receptor, which can be observed particularly in flexible
protein such as tyrosine kinases after drug-target association,
is a well-known issue in drug design (Fernández, 2016). Due
to this effect, it is unlikely that the conformation of the target
protein remains unchanged upon interaction with different
ligands. Therefore, the target protein should not be considered
as a rigid body in structure-based drug design studies: the
flexibility of the corresponding target should be taken into
account in combination with the conformational space of the
ligand. However, the conformational flexibility of the protein
is usually studied through computationally expensive molecular
dynamic simulations which allow a thorough evaluation of the
conformational motion of both ligand and protein at the same
time. On the contrary, in docking studies the structure of the
protein is normally treated as a rigid body allowing at most just
a movement of residue side chains. Thus the conformational
sampling of the docking algorithm only considers the ligand as
flexible and largely neglects the adaption ability of the receptor.
Moreover, in pharmacophore modeling and pharmacophore-
based virtual screening, as well as in ligand-based similarity
approaches, the protein structure is not even considered except
for the generation of receptor-based pharmacophore models,
and in this latter case only a single conformation of the protein
is usually used. Therefore, all common conformer generators,
especially those used for virtual screening purposes such as iCon
and OMEGA, perform only the conformational sampling of
small molecules in a way that is totally independent from the
structure of any possible target protein. Indeed, there is no need
to consider the conformational variability of the protein because
it is intrinsically taken into account due to the fact that the output
of the conformer generation is not a single conformer of a drug-
like molecule but an ensemble of conformers that covers many
structurally different protein conformations. For this reason,
our performance assessment of iCon was only based on the
reproduction of experimental structures of small molecules, a
methodology that is widely used and reported in literature
(Hawkins et al., 2010; Miteva et al., 2010; O’Boyle et al., 2011;
Ebejer et al., 2012; Hawkins and Nicholls, 2012; Friedrich et al.,
2017).

CONCLUSIONS

In this study we report the algorithm of the novel conformer
generator iCon implemented in LigandScout 4.0 and the
assessment of its performance in comparison to OMEGA by
using two different data sets of high-quality crystal structures
from the PDB and CSD databases. We evaluated iCon’s efficacy
in reproducing the experimentally determined conformation of
the test compounds in terms of RMSD and TC score values for
20 different setting patterns and we compared the results with
those obtained with OMEGA using equivalent settings. The three
parameters changed in these setting patterns showed to affect the
size and the quality of the conformational ensembles generated
by iCon for the two data sets in a different manner. The results
indicate that in order to obtain an adequate sampling of the

conformational space, a max-num-conf lower than 50 should be
avoided, even for the generation of small ensembles. Moreover,
an e-window value not lower 15 kcal/mol is recommended to
improve iCon’s performance, but this might be paid with an
increase of computation time that might not be suitable for high-
throughput conformational sampling. An rms-thresh value of 0.5
Å showed to be quite appropriate for all kind of conformational
ensembles, even though some small adjustments based on the
molecular properties of the sampled compounds can lead to
better results. LowAcc_3-4 and MedAcc_1-2 settings proved to
be good for a high-throughput and average quality sampling,
while for a more thorough conformational analysis HighAcc_3-4
settings represent a better choice.

Compared to OMEGA, iCon showed its best performance
in the reproduction of crystallographic poses of less flexible
molecules through small conformational ensembles, slightly
outperforming OMEGA in the results obtained for CSD
compounds with low accuracy settings. With the CSD data set,
iCon yielded high quality results also when larger ensembles were
generated, showing a lower or equal number of failures with
respect to OMEGA for most of the setting patterns. Also, the
spreading of RMSD and TC score values proved to be extremely
similar. OMEGA is more effective in the sampling of ligands with
higher conformational freedom, since with PDB data set it always
produced better results than iCon, whose performance is more
influenced by the number of rotors of the sampled compounds.
However, the observed differences were still small, particularly
when settings yielding small conformational ensembles were
considered; also, such differences were primarily related to the
TC scores. OMEGA proved to be always slightly faster than
iCon, particularly in the conformer generation of PDB ligands
but, on the basis of its algorithm, iCon’s computation times
decrease when larger databases are sampled. Moreover, iCon
always showed to generate smaller conformational ensembles
than OMEGA for equivalent settings, which can speed up
any analysis based on iCon’s conformational sampling, like
pharmacophore modeling or virtual screening processes. Overall,
the study herein reported proved that iCon represents a solid
and well validated new conformer generator that comes free
of additional charge with LigandScout 4.0 and is seamlessly
integrated in all pharmacophore modeling and virtual screening
related workflows of LigandScout. For a further improvement of
iCon, the adoption of a different input molecule fragmentation
and terminal fragment caching strategy is planned. This will
not only speed up the conformer sampling process in general
but will also lead to better results when it comes to the
reproduction of bioactive conformations of larger and more
flexible molecules.
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