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In this work, we explored to use chemometrics-based Fourier transform infrared (FTIR)

spectroscopy to investigate the plasma biochemical changes due to acute lead poisoning

(ALP) in a rat model. We first collected the FTIR spectra of the plasma samples from

the rats with and without suffering from ALP. We then performed the chemometric

analysis of these FTIR spectra using principal component analysis (PCA) and partial

least squares discriminant analysis (PLS-DA). We found that the chemometrics-based

FTIR spectroscopy can discriminate the rats with and without ALP. Further analysis

on the PLS-DA regression coefficient revealed that the spectral changes, in particular,

corresponding to the biochemical changes of proteins in the plasma may be used

as potential spectral biomarkers for the diagnostics of lead poisoning. Our work

demonstrates the potential of chemometrics-based FTIR spectroscopy as a promising

tool for the biochemical analysis of plasma that could consequently enable an objective,

convenient and non-destructive diagnostics of lead poisoning. To the best of our

knowledge, this work is the first application of chemometrics-based FTIR spectroscopy

in the diagnostics of lead poisoning.

Keywords: FTIR spectroscopy, infrared spectroscopy, chemometrics, lead poisoning, acute lead poisoning,

principle component analysis, partial least squares discriminant analysis

INTRODUCTION

Lead is an omnipresent metal that has been used since prehistoric times. Prior to the industrial
revolution, human exposure to lead in the environment was relatively low, but significantly
increased over time due to modern industrial activities. It is estimated that over 300 million tons of
lead has been released to the environment by human activities (Tong et al., 2000), which leads to a
rapid increase in lead exposure to the environment. A previous study indicated that the lowest
levels of human blood lead in industrial era were 50–200 times higher than preindustrial era
(Flegal and Smith, 1992b). As for lead poisoning, in 1839, Tanqueral des Planches described the
symptoms of acute lead poisoning (ALP) and studied the signs of ALP in adults (Hunter, 1978).
In the middle and late nineteenth century, lead poisoning became a serious health problem among
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Britain workers. British Parliament eventually enacted relevant
laws and regulations to prevent lead poisoning (Hunter, 1978;
Smith, 1984;Winder, 1984; Tong et al., 2000). Lead poisoning can
be caused by human ingestion and respiration of lead and related
products such as lead-containing paints. Lead can cause a series
of physiological and biochemical changes within human body,
affecting central and peripheral nervous system, cardiovascular
system, reproductive system, immune system, gastrointestinal
tract, liver, kidney and brain (Hunter, 1978; Smith, 1984;Winder,
1984; Kazantzis, 1989; Goldstein, 1992; Tong, 1998; Tong et al.,
2000).

The basic principle in lead poisoning diagnostics is based
on the determination of lead level in human body. There are
currently several methods available for measuring lead in blood
samples. For example, one common method is the so-called
blood film method, in which the morphology of the red blood is
examined with a microscope to reveal basophilic stippling of red
blood cells (i.e., red blood cells with dots in their morphologies).
However, this method is not very specific because other unrelated
conditions (such as folate and vitamin B12 deficiencies) can also
give basophilic stippling of red blood cells. Lead level can be
evaluated indirectly by measuring erythrocyte protoporphyrin
(EP) in blood samples. It is noted that such EP measurement
is not very sensitive and specific because an increase in EP
level can also be observed in the case of iron deficiency. X-ray
fluorescence method can be used to determine the cumulative
exposure and total body burden of lead. However, this method
is not so convenient because X-ray fluorescence instrument is
not widely available in clinic. Apparently, the current methods
in lead poisoning diagnostics still have some limitations and
disadvantages (Patrick, 2006; Brodkin et al., 2007). Searching for
a specific, rapid, convenient, objective and cost-effective method
for lead poisoning diagnostics is no doubt very meaningful
(Flegal and Smith, 1992a).

In recent years, Fourier transform infrared (FTIR)
spectroscopy has been widely used in the biochemical analysis
field (Baker et al., 2014). FTIR spectroscopy is a simple,
convenient, non-destructive, rapid and low-cost detection
method to sample biological materials such as blood and tissue
for diagnostic purposes (Deleris and Petibois, 2003; Ellis and
Goodacre, 2006; Krafft et al., 2007, 2009; Gasper et al., 2009;
Gajjar et al., 2013; Baker et al., 2014; Mitchell et al., 2014;
Ollesch et al., 2014; Sheng et al., 2015; Staniszewska-Slezak
et al., 2015; Depciuch et al., 2017; Elmi et al., 2017; Ghimire
et al., 2017; Guo et al., 2017; Le Corvec et al., 2017; Li et al.,
2017; Liu et al., 2017; Paraskevaidi et al., 2017; Roy et al.,
2017; Sarkar et al., 2017; Titus et al., 2017; De Bruyne et al.,
2018; Rai et al., 2018). When combined with chemometric
analysis, FTIR spectroscopy can be further empowered in disease
diagnostics. Now, FTIR spectroscopy has been used in many
studies to detect the physiological states and disease-specific
biomarkers in the blood. For example, Staniszewska-Slezak et al.
established the rat models for pulmonary arterial hypertension
and systemic hypertension, and then collected the FTIR spectra
of rat plasma samples. By using FTIR spectroscopy combined
with principal component analysis (PCA), they found that they
could distinguish the two different hypertension states as well as

the healthy state. They also envisioned that chemometrics-based
FTIR spectroscopy could potentially provide some spectral
biomarkers for disease diagnostics (Staniszewska-Slezak et al.,
2015). Roy et al. recently used attenuated total reflection Fourier
transform infrared (ATR-FTIR) spectroscopy in combination
with partial least squares discriminant analysis and partial least
squares regression to identify malaria parasites, blood glucose
and urea levels in whole blood samples (Roy et al., 2017). Titus
et al. recently proposed an FTIR approach combined with cluster
and heterogeneity analyses to rapidly screen colitis without
using biopsies or in vivo measurements (Titus et al., 2017).
Paraskevaidi et al. recently demonstrated an excellent diagnostic
performance of chemometrics-based ATR-FTIR spectroscopy by
analyzing plasma samples from patients with Alzheimer’s disease
(Paraskevaidi et al., 2017).

In our work, we focused on the biochemical changes of plasma
after lead poisoning using a rat model suffering from ALP. The
main goal of this study was to find the plasma biochemical
changes induced by lead in rats by FTIR spectroscopy combined
with chemometric approaches such as PCA and partial least
squares discriminant analysis.

EXPERIMENTAL

ALP Rat Model
Male Wister rats (240 ± 20 g) were purchased from the Vital
River Lab Animal Technology Co., Ltd. (Beijing, China). Animals
were housed under constant temperature, humidity and lighting
(12 h per day) and were allowed free access to food and water.
The animal experiment was carried out in accordance with the
guidelines for the care and use of laboratory animals and the
relevant ethical regulations of the Animal Ethics Committee of
Tianjin Tasly Institute. The protocol was approved by the Animal
Ethics Committee of Tianjin Tasly Institute.

The rats (N = 4) before lead injection were used as the control
group and these rats after lead injection used as the test group. To
induce ALP, the rats were intraperitoneally injected with PbCl2
saline solution (5mg lead per kg). For chemometric modeling,
blood samples were collected from the control group and the test
group 24 h post-injection. Blood samples were also collected from
the test group 36 and 48 h post-injection for model validation.
In addition, another control group (N = 4), namely a group
with acute cadmium poisoning, was studied by intraperitoneally
injecting the rats with CdCl2 saline solution (5mg cadmium per
kg). The blood samples from this control group were collected
24 h post-injection. The blood samples were stored at about −80
◦C for further treatment. Both PbCl2 and CdCl2 of analytical
grade were obtained from local vendors.

Plasma Sample Preparation
The blood sample was centrifuged at 3,000 rpm for 10min, and
a 10-µl aliquot of supernatant plasma was pipetted on the top of
a piece of 1 × 1 cm aluminum foil. Each blood sample was used
to prepare five replicate samples on aluminum foil. The foil was
then placed in an oven set at 37◦C for 2 h, and the obtained dry
plasma film was subsequently used for FTIR measurement.
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FTIR Measurement
FTIRmeasurements were carried out on a Bruker Vertex 70 FTIR
spectrometer (Ettlingen, Germany) equipped with a DLaTGS
detector in attenuated total reflection (ATR) mode. 4 cm−1

resolution and 32 scans were used for each measurement.
A Pike Technologies MIRacle single-reflection ATR accessory
(Madison, USA) with a diamond element was employed.
When performing spectral acquisition, the plasma sample was
pressed against the diamond crystal using a pressing device
from Pike Technologies for a close contact. For each piece of
aluminum foil with blood sample, at least seven FTIR spectra
were taken by measuring signals at different locations on the
foil.

Spectral Pretreatment
The obtained FTIR spectra of the plasma samples were first
screened to remove some error-based large deviation spectra. In
ATR-FTIR mode, the contact between the sample and diamond
crystal has a significant effect on the spectral quality, e.g., a poor
contact will lead to poor quality FTIR spectra (abnormally low
absorbance). These spectra need to be removed from the spectral
dataset before chemometric analysis. Such spectral deviation
is not due to the intrinsic deviation of one sample from its
group (i.e., the control or test groups), but purely related to
the spectral artifact caused by an improper contact between
the sample and diamond crystal. These “abnormal” spectra
could be easily identified visually with OPUS software and they

FIGURE 1 | Plasma FTIR spectra of the rat group without ALP (A) and with ALP (B) after spectral pretreatment such as smoothing, baseline correction, and vector

normalization. The spectra with ALP were collected 24 h post-injection and there are a total of 139 spectra included in (A) and a total of 125 spectra included in (B).

FIGURE 2 | Plasma FTIR second derivative spectra of the rat group without ALP (A) and with ALP (B) in the 3,100–2,800 and 1,750–900 cm−1 spectral regions.

FIGURE 3 | Two-dimensional score plots of PC-1 vs. PC-2 (A), PC-1 vs. PC-3 (B), and PC-2 vs. PC-3 (C) obtained after PCA applied to the FTIR second derivative

spectra of the rat groups without and with ALP.
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were then removed from the spectral dataset manually. The
remaining spectra were used for chemometric analysis after
being subjected to spectral pre-treatment including smoothing,
scattering correction, vector normalization and second derivative
treatment with chemometric software.

Chemometric Analysis
Chemometric analysis was performed using Unscrambler
software (version 10.4) for PCA and partial least squares
discriminant analysis (PLS-DA). In our study, we selected the
data from the second derivative FTIR spectra in the regions of
3,100–2,800 and 1,750–900 cm−1 for PCA. In addition, we also
used 4-fold cross validation to test rat inter-individual variability
on the spectra. The above-mentioned chemometric approach is
relatively simple and sufficiently powerful to help differentiate the
rat groups with and without ALP, spectroscopically.

RESULTS AND DISCUSSION

Figure 1 shows the plasma FTIR spectra of the rat groups
without and with ALP after spectral pretreatment such as
smoothing, baseline correction, and vector normalization. On
the other hand, Figure 2 shows the second derivative spectra
of the plasma FTIR spectra presented in Figure 1. These
second derivative spectra were the dataset used in the following
chemometric analysis. The reason to have derivative treatment
on the absorbance spectra in Figure 1 is 2-fold. First, the second
derivative treatment can further magnify the spectral changes
and differences between the control and test groups. Second,
the second derivative treatment can also eliminate possible
interference of the baseline in chemometric analysis. In addition,
in Figure 2, we have only included the spectral regions of 3,100–
2,800 and 1,750–900 cm−1 and removed the spectral region of
2,800–1,750 cm−1 (as this region contains very limited spectral
information). The 3,100–2,800 cm−1 region corresponds to
the C-H stretching absorptions; whereas the 1,750–900 cm−1

corresponds to the protein amide I and amide II regions, and
the fingerprint region. The displayed spectral regions in Figure 2

contain most of the spectral information that is highly correlated
to the ALP-induced biochemical changes in the plasma, thus
making them suitable in our chemometric analysis.

As for the control and test group spectra datasets, we first used
the most basic chemometric approach, PCA, to perform data
analysis.We found the contribution rates of the first five principal
components (namely PC-1, PC-2, PC-3, PC-4, and PC-5) are 64,
20, 7, 3, and 2%, respectively. The cumulative contribution rate of
these five principal components reaches 96%, indicating that they
can reflect most of the spectral variations and differences among
the spectra of the control and test groups.

The two-dimensional score plots of PC-1 vs. PC-2, PC-
1 vs. PC-3 and PC-2 vs. PC-3 were respectively shown in
Figures 3A–C. Among the three score plots, we can clearly see
that the two groups are well separated (Figure 3A) or they still
have some significant overlaps (Figures 3B,C). Figure 3A gives
the best discriminant result for the control and test groups. Our
chemometric analysis study obviously demonstrates that with

just some simple chemometric approaches such as PCA and PLS-
DA, FTIR spectroscopy can be used to discriminate the rat groups
with and without ALP.

For 4-fold cross validation on our data, each sample was used
once as a test set while the remaining samples formed the training
set. The results show that (i) there are significant differences
between the test and control groups of plasma due to ALP and (ii)
rat inter-individual variability has little influence on the spectral
differences between the two groups. First, we analyzed the regions
of 3,100–2,800 and 1,750–900 cm−1 with PLS-DA. As displayed
in Figure 4, the Y-variance plot shows that the line was basically
leveled at PC7, and the more PCs could be overfitting; so seven
PCs were selected for further analysis. Figure 5 shows that PLS-
DA could distinguish between health and ALP rats completely
with seven PCs. However, the blue and red models of cross
validation (CV) were not well matched. So, the fingerprint region
of 1,750–900 cm−1 was selected. As displayed in Figure 6, the Y-
variance plot shows that seven PCs should be selected for further
analysis. Figure 7 shows not only that PLS-DA can distinguish
between health and ALP rats completely with seven PCs, but also
that the blue model fits well with the red CV model. In addition,
the health andALP groups in the red CVmodel are well separated
by the 0.5 threshold line. In summary, the plasma spectra of
health and ALP rats were distinctly different and inter-individual
variability had no impact on the discrimination analysis of health
and ALP rats.

The selectivity and robustness of our proposed PLS-DAmodel
were also tested with additional controls to evaluate whether this
model can give a correct discrimination when (i) when the rats
suffer from another heavy metal poisoning and (ii) when the rats
suffer from different extents of ALP. To address the first issue,
we developed an acute cadmium poisoning rat model. Rats were
injected with CdCl2 solution to induce acute poisoning and the
blood samples were collected 24 h post-injection. The plasma
FTIR spectra and corresponding derivatives of this control group
are presented in Figure S1 in the Supplementary Material. The

FIGURE 4 | PLS-DA Y-variance plot in the 3,100–2,800 and 1,750–900 cm−1

spectral regions.
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data with this control group were tested with our PLS-DAmodel.
As we have mentioned above, the 0.5 value line is the threshold
in the PLS-DA model in Figure 7. For data points above this
line, the model predicts the rats are in ALP status; for data
points below this line, the model predicts the rats are not in ALP
status. As displayed in Figure 8, the predicted values for the rats
suffering from acute cadmium poisoning are all below the 0.5
threshold, indicating that our PLS-DA model predicts that the
rats suffering from cadmium poisoning are not in ALP status.
This is a correct discrimination. To address the second issue, we
performed a time-dependent study (up to 48 h post-injection)
on the ALP rat model. The rats exposed to lead poisoning for
different periods of time would suffer from lead poisoning to
different extents. The plasma FTIR spectra and corresponding
derivatives of this control group are presented in Figures S2, S3
in the Supplementary Material. We tested the 36 and 48 h data
with our PLS-DAmodel. As we can see in Figure 9, the predicted

FIGURE 5 | PLS-DA predicted and reference plots in the 3,100–2,800 and

1,750–900 cm−1 spectral regions.

FIGURE 6 | PLS-DA Y-variance plot in the 1,750–900 cm−1 spectral region.

values for these two control rat groups are all above the 0.5
threshold, indicating that these samples are in ALP status. This
is a correct discrimination. These additional control experiments
support the fact that our PLS-DA model is robust for ALP
prediction.

Basically, some lead-induced biochemical changes in the
plasma can be sensitively captured with chemometrics-based
FTIR spectroscopy. To gain more insight into the biochemical
changes induced by ALP in the plasma, the PLS-DA regression
coefficient plot could be used to reflect corresponding spectral
changes. As shown in Figure 10, this plot corresponds to
the ALP-induced change in the composition and structure
of the biochemical components in the plasma including
biomacromolecular constitutes (such as proteins, DNAs and
RNAs) as well as small molecular constitutes and metabolites

FIGURE 7 | PLS-DA predicted and reference plot in the 1,750–900 cm−1

spectral region.

FIGURE 8 | Discrimination of the rats with acute cadmium poisoning using the

proposed PLS-DA model for ALP.
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FIGURE 9 | Discrimination of the rats suffering from different extents of ALP using the proposed PLS-DA model: (A) 36h post-injection; (B) 48h post-injection.

FIGURE 10 | PLS-DA regression coefficient plot in the 1,750–900 cm−1

spectral region.

(such as lipids and carbohydrates). These plasma constitutes have
characteristic vibrational absorptions in the PLS-DA regression
coefficient plot. For example, through the spectral analysis of
the 1,700–1,600 cm−1 amide I region, we could obtain the
information relevant to proteins; through the spectral analysis of
the 1,300–1,000 cm−1 region, we could obtain the information
relevant to DNA and RNA. In addition, the intensity of the PLS-
DA regression coefficient plot in different spectral regions could
also provide information about the most prominent changes in
the plasma. A summary is provided in Table 1 for the spectral
assignments for prominent peaks (either positive or negative)
in the PLS-DA regression coefficient plot. They are based on
the assignments in previous studies (Barth and Zscherp, 2002;
Zandomeneghi et al., 2004; Zou et al., 2013; Staniszewska-Slezak
et al., 2015). The peaks in the amide I (1,700–1,600 cm−1) and
amide II (around 1,550 cm−1) correspond to absorptions of
plasma proteins. In this region, we observed several prominent
peaks in the PLS-DA regression coefficient plot including the
amide I and amide II peaks at 1,706, 1,689, 1,672, 1,656, 1,643,
1,613, 1,550, and 1,534 cm−1. This observation in the PLS-DA
regression coefficient plot suggests that ALP induced significant

compositional and structural changes of the proteins in the
plasma of the ALP rat model. Such changes may be due to the
direct coordination effect of lead ion with protein or be due to
the perturbation of lead ion on the biosynthesis of proteins in the
rat. In addition, lead ion may interact (or coordinate) with the
side chains of some amino acids (such as tryptophan, histidine,
aspartic acid, and glutamic acid) or affect the biosynthesis of these
amino acids. Such interactions or perturbations are suggested by
the observation of the peaks at 1,505, 1,354, and 1,241 cm−1

(corresponding to the side chain of tryptophan), at 1,583 and
1,433 cm−1 (corresponding to the side chain of histidine) and
at 1,417 cm−1 (corresponding to the side chains of aspartic acid
and glutamic acid). The PLS-DA regression coefficient plot also
suggests that the nucleic acid, DNA and RNA changes in the
plasma as the peaks at 1,221, 1,120, 1,080, and 1,062 cm−1 are
observed in the regression coefficient. These peaks correspond
to the PO−

2 and C-O absorption of DNA and RNA. At last, the
peaks at 1,034 cm−1 (which may be related to the metabolism
of glucose and polysaccharides) and at 989 and 972 cm−1 (which
corresponds to the phosphorylation modification of proteins) are
also observed in the regression coefficient plot. In summary, on
the one hand, the PLS-DA regression coefficient plot suggests
a very complex biochemical changes that occurred in the body
of the lead-poisoned rats; one the other hand, ALP-induced
protein changes seem to be the most important cause for the rat
poisoning. This finding further implies that the spectral changes
corresponding to the biochemical changes of proteins may be
used as potential spectral biomarkers for the diagnostics of ALP.

CONCLUSION

In this exploratory study, we have demonstrated that FTIR
spectroscopy empowered with PCA and PLS-DA analysis
can capture ALP-induced biochemical changes in the plasma
spectroscopically and is capable of differentiating the rats with
and without suffering fromALP. Furthermore, the revealed FTIR
spectral changes, in particular, corresponding to the biochemical
changes of proteins, may be used as potential spectral biomarkers
for the diagnostics of lead poisoning. Our method has sufficient
discriminant ability and the potential to be employed as a blood-
based objective, convenient, and non-destructive diagnostic tool
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TABLE 1 | Spectral assignment for the observed peaks in the PLS-DA regression

coefficient plot.

Peak position (cm−1) Spectral assignment

1,706 Protein amide I

1,689 Protein amide I

1,672 Protein amide I

1,656 Protein amide I

1,643 Protein amide I

1,613 Protein amide I

1,583 C=C vibration of histidine

1,562 Protein amide II

1,550 Protein amide II

1,534 Protein amide II

1,505 Indole vibration of tryptophan

1,433 C-N vibration of histidine

1,417 C-C, C-H, and N-H vibrations of tryptophan

1354 Indole vibration of tryptophan

1,241 C-H and C-C vibrations of tryptophan

1,221 PO−

2 antisymmetric stretch of nucleic acids, DNA,

and RNA

1,120 C-O stretch of DNA and RNA

1,080 PO−

2 vibrations of nucleic acids, phospholipids, and

saccharids

1,062 PO−

2 symmetric stretch of nucleic acids, DNA, and

RNA

1,034 C-O-H bend of glucose and polysaccharide

989 Protein phosphorylation

972 Protein phosphorylation

for lead poisoning. To the best of our knowledge, this work is the
first application of chemometrics-based FTIR spectroscopy in the
diagnostics of lead poisoning. We hope the chemometrics-based

FTIR spectroscopy can evolve into an objective, convenient,
cost-effective and non-destructive disease diagnostics tool in the
future.
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