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Three small-molecule non-fullerene electron acceptors containing different numbers of

fluorine atoms in their end groups were designed and synthesized. All three acceptors

were found to exhibit relatively narrow band gaps with absorption profiles extending

into the near-infrared region. The fluorinated analog exhibited enhanced light-harvesting

capabilities, which led to improved short-circuit current densities. Moreover, fluorination

improved the blend film morphology and led to desirable phase separation that facilitated

exciton dissociation and charge transport. As a result of these advantages, organic

solar cells based on the non-fullerene acceptors exhibited clearly improved short-circuit

current densities and power conversion efficiencies compared with the device based

on the non-fluorinated acceptor. These results suggest that fluorination can be an

effective approach for the molecular design of non-fullerene acceptors with near-infrared

absorption for organic solar cells.

Keywords: organic solar cells, non-fullerene, small molecule electron acceptors, fluorination, near-infrared

absorption

INTRODUCTION

Bulk heterojunction organic solar cells (OSCs) are a promising technology for solar energy col-
lection and have attracted much interest owing to their unique advantages for the fabrication of
lightweight and flexible devices (Li et al., 2016b, 2017a, 2018a,b; Zhao et al., 2016; Zhang et al.,
2017b, 2018; Cheng et al., 2018; Hou et al., 2018; Zhang, 2018). Over the past several years, although
fullerene derivatives have been extensively used as electron-acceptor materials for OSCs, their var-
ious intrinsic limitations, such as poor absorption in the visible-light region, a difficult-to-adjust
molecular structure and morphological instability, have impeded the further development of OSCs
(He and Li, 2011). To circumvent this constraint, considerable progress has been achieved recently
due to the development of non-fullerene acceptors (NFAs) for high-performance non-fullerene
OSCs, as NFAs have high absorption coefficients and suitable frontier molecular orbital energy lev-
els that facilitate both the harvesting of solar photons and charge separation (Bin et al., 2016; Du
et al., 2017; Fan et al., 2017; Kan et al., 2017b; Xu et al., 2017; Cui et al., 2018; Gao et al., 2018; Luo
et al., 2018; Zhang et al., 2018; Zhu et al., 2018).

Typically, to achieve high photovoltaic performance of OSCs based on novel NFAs, much
effort has been devoted to the use of advanced device structures and sophisticated film-processing
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techniques (Li et al., 2016a, 2017c; Meng et al., 2016; Bao
et al., 2017; Kan et al., 2017a; Zhang et al., 2017a; Wu et al.,
2018). It is well established that the light-harvesting capabil-
ity of OSCs plays a critical role in their photovoltaic perfor-
mance, as their power conversion efficiencies can be enhanced
by expanding the absorption spectrum of the photoactive layer
in the near-infrared (NIR) region. Therefore, NFAs with absorp-
tion spectra extending into the NIR region have been explored,
especially with respect to their potential applications in semi-
transparent organic photovoltaics and tandem OSCs (Li et al.,
2017b; Yao et al., 2017, 2018). Furthermore, the fluorination of
conjugated semiconductors has proved to be an effective syn-
thetic strategy for developing efficient photoactive-layer mate-
rials for OSC applications. The introduction of fluorine atoms
into small molecules or polymers can not only optimize their
optical and electrical properties but also promote intermolecu-
lar interactions via the formation of non-covalent F···S and F···H
bonds, resulting in enhanced charge mobility (Wang et al., 2013;
Jo et al., 2015; Dai et al., 2017). More importantly, fluorination
can be used to fine-tune the hydrophobicity and polarity of con-
jugated semiconductors, thus permitting control over the inter-
facial interactions in blend films (Pagliaro and Ciriminna, 2005).
The combination of these advantages leads to improved film
morphology with appropriate phase domains and larger interfa-
cial areas, which facilitates exciton dissociation and charge trans-
port and thus enhances the overall photovoltaic performance of
OSCs.

In this work, we designed and synthesized a series of non-
fullerene electron acceptors (BT-IC, BT-F, and BT-2F) with dif-
ferent numbers of fluorine atoms on their end groups. The
strong intramolecular charge transfer between the electron-
rich cores and electron-deficient end groups of these accep-
tors was found to result in intense absorption in the NIR
region. The sequential fluorination of the end groups not only
enhanced the light-harvesting capabilities of BT-F and BT-
2F but also simultaneously increased their electron mobili-
ties, leading to a higher short-circuit current density (JSC).
More importantly, the fluorinated acceptors exhibited more
favorable phase separation after blending with a medium-
band-gap conjugated polymer. The combination of these phe-
nomena led to improved short-circuit current density and
thus enhanced the photovoltaic performance of the resulting
devices.

EXPERIMENTAL

Instrumentation
1H and 13C NMR were characterized with Bruker-500 spec-
trometer in deuterated chloroform solution at 298K. Chemical
shifts were recorded as δ values (ppm) with the internal stan-
dard of tetramethylsilane (TMS). Mass spectra were collected on
a MALDI Micro MX mass spectrometer, or an API QSTAR XL
System. Number-average (Mn) and polydispersity index (PDI)
were determined on a Polymer Laboratories PL-GPC 220 using
1,2,4-trichlorobenzene as eluent at 150◦C vs. polystyrene stan-
dards. Thermogravimetric analyses (TGA) were performed on a
Netzsch TG 209 under nitrogen at a heating rate of 10◦C min−1.

Differential scanning calorimetry (DSC) was performed on aNet-
zsch DSC 204 under nitrogen flow at heating/cooling rates of
10/10◦C min−1. The absorption coefficients of films are calcu-
lated by dividing the film thickness with the maximum absorp-
tion peak. The thin films with thickness of about 100 nm (mea-
sured by the profilometer) is spin-coated from chloroform solu-
tion on the top of quartz. Then the absorption spectra of these
films were recorded by a HP 8453 spectrophotometer. Cyclic
voltammetry (CV) was performed on a CHI600D electrochem-
ical workstation with a glassy carbon working electrode and a Pt
wire counter electrode at a scanning rate of 50mV s−1 against
an Ag/Ag+ reference electrode with a nitrogen saturated anhy-
drous solution of tetra-n-butylammonium hexafluorophosphate
in acetonitrile (0.1mol L−1). Atomic force microscopy (AFM)
measurements were carried out using a Digital Instrumental DI
Multimode Nanoscope III in a taping mode. TEM images were
characterized with a JEM-2100F instrument.

Photovoltaic Device Fabrication
The non-fullerene organic solar cells with a conventional device
structure of ITO/PEDOT:PSS/active layer/PFN-Br/Ag were
fabricated. Here PFN-Br represents poly[(9,9-bis(3′-((N,N-
dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-
(9,9-dioctylfluorene)] dibromide, which functioned as the
cathode interlayer to facilitate electron extraction from the
active layer. Before fabrication of the device, the indium tin
oxide (ITO)-coated glass substrates were cleaned by ultrasonic
treatment in deionized water, acetone, isopropyl alcohol, and
dried in oven at 80◦C for 12 h before used. After PEDOT:PSS
(30 nm) layer was spin coated onto the substrate, and dried
at 150◦C for 15min in air. Then, the ITO substrates were
transferred into a nitrogen protected glovebox where the H2O
concentration is ≤ 0.5 ppm and O2 concentration is ≤ 20 ppm.
The thin film of active layer was spin-coated from a solution of
PTZPF:non-fullerene acceptor blend in chlorobenzene. A thin
PFN-Br layer (5 nm) was then spin coated onto the active layer as
the cathode interface layer. The substrates were then transferred
to a vacuum thermal evaporator, followed by deposition of the
Ag cathode at a pressure of 2 × 10−7 Torr through a shadow
mask. Before the J-V test, a physical mask with an aperture with
precise area of 0.04 cm2 was used to define the device area. The
J-V curves were measured on a computer-controlled Keithley
2,400 source meter under 1 sun, the AM 1.5G spectra came from
a class solar simulator (Enlitech, Taiwan), and the light intensity
was 100 mWcm−2 as calibrated by a China General Certification
Center-certified reference monocrystal silicon cell (Enlitech).
The external quantum efficiency (EQE) spectra measurements
were performed on a commercial QE measurement system
(QE-R3011, Enlitech).

Materials
The monomers of thieno[3′,2′:4,5] cyclopenta[1,2-b] thieno[2′′,
3′′:3′,4′] cyclopenta[1′,2′:4,5] thieno[2,3-f ][1] benzothiophene-
2,8-dicarboxaldehyde, 5,11-bis[(2-ethylhexyl)oxy] -4,4,10,10-
tetrakis(4-hexylphenyl)-4,10-dihydro (1) were synthesized
according to the reported procedures (Li et al., 2017b). And the
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donor polymer PTZPF was synthesized via Stille polymeriza-
tion (Scheme S1, supporting information, SI, with molecular
structure shown in Figure 1A). 2-(3-Oxo-2,3-dihydro-1H-
inden-1-ylidene)malononitrile (2), a mixture of 2-(5-fluoro-3-
oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile and 2-(6-
fluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile
(3) and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)
malononitrile (4) were obtained from commercial sources and
used without further purification. The small-molecule acceptors
were prepared as the following procedures as below.

Synthesis of BT-IC
2-(3-Oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2)
(194.2mg, 1.0 mmol) was added into the mixture of thieno[3′,
2′:4,5] cyclopenta[1,2-b] thieno[2′′,3′′:3′,4′] cyclopenta[1′,2′:
4,5] thieno[2,3-f ][1] benzothiophene-2,8-dicarboxaldehyde,
5,11-bis[(2-ethylhexyl)oxy] -4,4,10,10-tetrakis(4-hexylphenyl)-
4,10-dihydro (1) (133.2mg, 0.1 mmol) in chloroform (50mL)
with pyridine (1mL). The reactant was refluxed for 6 h under
nitrogen atmosphere. After cooling to room temperature, the
reactant was poured into methanol and the precipitate was
filtered off. The crude product was purified by silica gel using a
mixture of hexane/dichloromethane as the eluent to give a blue
black powder (121.2mg, 73%). 1H NMR (400 MHz, CDCl3, δ

): 8.79 (s, 2H), 8.64 (m, 2H), 7.87 (m, 2H), 7.70 (m, 4H), 7.48
(s, 2H), 7.31 (m, 8H), 7.08 (m, 8H), 3.48 (t, 4H), 2.57 (t, 8H),
1.60-1.53 (m, 2H), 1.35-1.28 (m, 48H), 0.96 (t, 6H), 0.87 (m,
18H). 13C NMR (100 MHz, CDCl3, δ): 188.56, 164.46, 160.31,
157.20, 153.89, 146.22, 142.16, 142.14, 140.67, 139.93, 138.69,
138.45, 138.23, 136.81, 135.89, 135.01, 134.30, 128.51, 128.50,
128.31, 125.25, 123.61, 121.32, 114.81, 68.40, 63.94, 39.38, 35.56,
31.71, 31.26, 31.24, 29.54, 29.21, 28.77, 23.34, 22.68, 22.59, 14.21,
14.10, 10.78. MS (MALDI-TOF) calcd for C110H114N4O4S4,
1684.386; found, 1683.622.

Synthesis of BT-F
A similar procedure was followed as that described for BT-IC, a
mixture of 2-(5-fluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)
malononitrile and 2-(6-fluoro-3-oxo-2,3-dihydro-1H-inden-1-
ylidene)malononitrile (3) (212.2mg, 1.0 mmol) and thieno
[3′,2′:4,5] cyclopenta[1,2-b] thieno[2′′,3′′:3′,4′] cyclopenta[1′,
2′:4,5] thieno[2,3-f ] [1]benzothiophene-2,8-dicarboxaldehyde,
5,11-bis[(2-ethylhexyl)oxy] -4,4,10,10-tetrakis(4-hexylphenyl)-4,
10-dihydro (1) (133.2mg, 0.1 mmol) were used. BT-F was
obtained as a blue black solid (149.2mg, 88.0 %). 1H NMR (400
MHz, CDCl3, δ): 8.79 (s, 2H), 8.68 (m, 0.5H), 8.36 (m, 1.5H),7.88
(m, 1.5H), 7.52 (m, 2.5H), 7.40 (m, 2H), 7.30 (m, 8H), 7.08 (m,
8H), 3.48 (m, 4H), 2.53 (m, 8H), 1.60-1.54 (m, 2H), 1.35-1.28 (m,
48H), 0.96 (t, 6H), 0.87 (m, 18H). 13C NMR (100 MHz, CDCl3,
δ): 187.10, 167.69, 165.65, 165.19, 164.64, 164.61, 159.23, 158.89,
157.55, 157.50, 154.55, 154.39, 146.29, 142.28, 142.22, 142.19,
140.66, 140.62, 139.94, 139.88, 138.74, 138.69, 138.42, 138.29,
135.97, 135.79, 133.01, 128.50, 128.48, 128.39, 128.33, 127.76,
125.75, 125.67, 122.13, 121.67, 121.48, 121.15, 121.08, 114.81,
114.65, 114.50, 114.36, 112.89, 112.68, 110.75, 76.77, 69.09, 68.18,
63.95, 39.37, 35.55, 31.70, 31.25, 31.23, 29.56, 29.22, 28.78, 23.38,

22.71, 22.60, 14.22, 14.11, 10.80. MS (MALDI-TOF) calcd for
C110H112F2N4O4S4, 1720.367; found, 1719.595.

Synthesis of BT-2F
A similar procedure was followed as that described for
BT-IC, 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)
malononitrile (4) (230.2mg, 1.0 mmol) and thieno[3′,2′:4,5]
cyclopenta[1,2-b] thieno[2′′,3′′:3′,4′] cyclopenta[1′,2′:4,5] thieno
[2,3-f ][1] benzothiophene-2,8-dicarboxaldehyde, 5,11-bis[(2-
ethylhexyl)oxy] -4,4,10,10-tetrakis(4-hexylphenyl)-4,10-dihydro
(1) (133.2mg, 0.1 mmol) were used. BT-2F was obtained as a
black solid (138.6mg, 80.0 %). 1H NMR (400 MHz, CDCl3, δ):
8.78 (s, 2H), 8.52 (m, 2H), 7.64 (t, 2H), 7.50 (s, 2H), 7.31 (dd,
8H), 7.08 (d, 8H), 3.49 (t, 4H), 2.57 (t, 8H), 1.60-1.54 (m, 2H),
1.36-1.28 (m, 48H), 0.96 (t, 6H), 0.86 (m, 18H). 13C NMR (100
MHz, CDCl3, δ): 186.22, 164.72, 160.58, 158.12, 155.49, 146.38,
142.47, 142.28, 140.62, 139.08, 138.95, 138.75, 138.35, 136.53,
136.03, 135.70, 134.62, 128.56, 128.48, 128.36, 120.53, 115.13,
114.39, 112.46, 68.67, 63.78, 39.40, 35.56, 31.72, 31.26, 31.24,
29.54, 29.21, 28.77, 23.34, 22.68, 22.59, 14.21, 14.10, 10.76. MS
(MALDI-TOF) calcd for C110H110F4N4O4S4, 1756.348; found,
1755.581.

RESULTS AND DISCUSSION

Synthesis and Characterization
The synthesis of the target compounds BT-IC, BT-F, and BT-2F
is outlined in Scheme 1. These small-molecule acceptors were
prepared via Knoevenagel condensation between thieno[3′,2′:
4,5] cyclopenta[1,2-b] thieno[2′′,3′′:3′,4′] cyclopenta[1′,2′:4,5]
thieno[2,3-f ][1] benzothiophene-2,8-dicarboxaldehyde, 5,11-bis
[(2-ethylhexyl)oxy] -4,4,10,10-tetrakis(4-hexylphenyl)-4,10-
dihydro (1) and 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)
malononitrile (2) or its fluorinated derivatives at 60◦C in the
presence of a catalytic amount of pyridine. It is worth not-
ing that the monofluorinated compound 3 consisted of two
regioisomers, namely, 2-(5-fluoro-3-oxo-2,3-dihydro-1H-inden-
1-ylidene)malononitrile and 2-(6-fluoro-3-oxo-2,3-dihydro-
1H-inden-1-ylidene)malononitrile. As these two isomers have
very similar molecular structures and polarities, they could not
be separated, and thus the resulting BT-F was obtained as a
mixture of isomers. All three acceptors exhibited good solubility
in typical organic solvents, such as chloroform, chlorobenzene
and ortho-dichlorobenzene, at room temperature. The chemical
structures of the three acceptors were confirmed by nuclear mag-
netic resonance spectroscopy and mass spectrometry (Figures
S7–S12).

The thermal properties of these resulting NFAs were eval-
uated by thermogravimetric analysis and differential scanning
calorimetry (DSC) under a nitrogen atmosphere (Figures S1,
S2,). All of these NFAs exhibited excellent thermal stabilities with
onset decomposition temperatures (Td) higher than 310◦C. The
DSC curves were obtained by heating from 30 to 250◦C in the
second heating/cooling cycle. It was found that BT-IC exhib-
ited a melting peak at 127◦C, whereas no phase-transition signals
were observed during the DSC measurements of the other two
materials.
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Optical, Electrochemical, and
Electron-Transport Properties
Figure 1B shows the UV–vis absorption spectra of thin films
of the donor polymer and acceptor molecules. All three NFAs
showed similar absorption profile cut-offs in the NIR region

(up to 866 nm) in the solid state. Such absorption profiles

are complementary with a medium band gap conjugated poly-

mer, namely PTZPF, which has the absorption onset of 620 nm

(Figure 1D). Note that the complementary absorption is ben-

eficial for the harvesting of solar photons to achieve a high

FIGURE 1 | (A) Chemical structure of PTZPF; (B) UV–vis absorption spectra and (C) energy level diagrams of BT-IC, BT-F, BT-2F, and PTZPF; (D) UV–vis spectra of

PTZPF:NFA blend films.

SCHEME 1 | Synthetic route of the small-molecule non-fullerene acceptors.
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TABLE 1 | Optophysical and electrochemical properties of active layer materials.

Materials λabs (nm) film λabs (nm) onset aEg
◦pt (eV) Eox (V) Ered (V) bEHOMO (eV) cELUMO (eV)

BT-IC 760 866 1.43 1.05 −0.62 −5.55 −3.88

BT-F 774 872 1.42 1.07 −0.53 −5.57 −3.97

BT-2F 778 878 1.41 1.10 −0.50 −5.60 −4.00

PTZPF 528 620 2.00 0.91 −1.08 −5.41 −3.42

aCalculated from the onset of UV-vis absorption as pristine thin films; bEHOMO = –e (Eox + 4.50) (eV); cELUMO = –e (Ered + 4.50).

short-circuit current density. The fluorinated small molecules
BT-F and BT-2F exhibited slightly red-shifted absorption edges
compared with BT-IC. An optical band gap of 1.43 eV was
obtained for BT-IC, which slightly decreased to 1.42 and
1.41 eV for BT-F and BT-2F, respectively. Importantly, the
absorption coefficients were slightly enhanced from 1.05 ×

105 cm−1 for BT-IC to 1.12 × 105 cm−1 and 1.22 × 105

cm−1 for BT-F and BT-2F, respectively (Figure 1B), indicat-
ing that the introduction of fluorine atoms into these accep-
tors enhanced their light-harvesting ability through improved
intermolecular interactions (Yang et al., 2013; Wolf et al.,
2015).

The electrochemical properties and energy levels of the poly-
mer acceptors were investigated by cyclic voltammetry. Here we
used the potential ferrocene/ferrocenium (Fc/Fc+) redox couple
as the standard. Under the current measurement conditions, the
potential of Fc/Fc+ couple was measured as 0.30V regarding to
the reference electrode. Assuming that the Fc/Fc+ redox cou-
ple has an absolute potential of −4.80V to vacuum, the highest
occupied molecular orbital energy levels (EHOMO) is calculated
as EHOMO = –e (Eox + 4.80 – 0.30) (eV), and the lowest unoc-
cupied molecular orbital energy levels (ELUMO) is calculated as
ELUMO = –e (Ered + 4.80 – 0.30) (eV). The energy level dia-
grams of all of the materials are depicted in Figure 1C and the
corresponding electrochemical data are summarized in Table 1.
The calculated ELUMO/EHOMO values of BT-IC, BT-F and BT-
2F were −3.88/−5.55 eV, −3.97/−5.57 eV and −4.00/−5.60 eV,
respectively. Both the ELUMO and EHOMO levels of these accep-
tor molecules gradually decreased with the increasing number
of fluorine atoms, indicating that fluorination of the end groups
of small-molecule NFAs can effectively decrease the ELUMO and
EHOMO levels owing to the strongly electron-withdrawing char-
acteristics of fluorine atoms (Dutta et al., 2014). The ELUMO

and EHOMO levels of the polymer donor PTZPF were −3.42
and −5.41 eV, respectively, which ensures an adequate driving
force for efficient exciton dissociation (Scharber et al., 2010). The
charge carrier mobilities of the pure films of acceptors were mea-
sured by the space-charge-limited current (SCLC) method using
the Mott–Gurney equation (Figure S5). The measurements are
carried out by fabricating electron-only devices with architec-
ture of ITO/Ag/active layer/Ag structure. The pure film based
on BT-2F exhibited the electron mobility (µe) of 9.64 × 10−5

cm2 V−1 s−1, which is higher than those of BT-F (µe = 5.53
× 10−5 cm2 V−1 s−1) and BT-IC (µe = 2.28 × 10−5 cm2

V−1 s−1).

Photovoltaic Performances
To elucidate the effects of fluorination on the photovoltaic
properties, OSC devices were fabricated using PTZPF as the
electron-donor material and BT-IC, BT-F, or BT-2F as the
electron-acceptor material. The devices were fabricated with
the conventional configuration of ITO/PEDOT:PSS/active
layer/PFN-Br/Ag, and the device performances were measured
under simulated AM 1.5G illumination at 100 mW cm−2.
Poly[(9,9-bis(3’-((N,N-dimethyl)-N-ethylammonium)propyl)-
2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] dibromide (PFN-Br)
was used as the cathode interfacial layer to facilitate charge
carrier collection (Zhang et al., 2017c). The initial optimisation
of device performance was carried out by screening the weight
ratios of the donor:acceptor (D:A) blend, film thickness of the
photoactive layers and the effects of additives to the process-
ing solvents (Figure S6 and Table S1). All of the photoactive
layers of the devices were processed under the optimized
conditions, which consisted of a D:A weight ratio of 1:1, spin
casting of the films from chlorobenzene containing 0.5 v/v%
of 1-chloronaphthalene (CN) as additive, and annealing of the
fabricated films at 120◦C for 10min. The current density–voltage
(J–V) curves are presented in Figure 2A and the corresponding
data are summarized in Table 2.

Interestingly, the photovoltaic parameters of the resulting
devices were strongly dependent on the number of fluorine sub-
stituents. The device based on BT-IC as the acceptor exhibited
a moderate power conversion efficiency (PCE) of 5.63%, with an
open-circuit voltage (VOC) of 0.93V, a JSC of 12.27mA cm−2 and
a fill factor (FF) of 49.0%. In contrast, the devices based on the
fluorinated acceptors BT-F and BT-2F exhibited clearly enhanced
PCE values of 7.27% (VOC = 0.88V, JSC = 16.64mA cm−2 and
FF = 49.0%) and 8.54% (VOC = 0.84V, JSC = 19.29mA cm−2

and FF= 53.0%), respectively. It should be noted that despite the
decrease in the VOC of the resulting devices upon the incorpo-
ration of fluorine substituents into the acceptors, which is con-
sistent with the down-shifted ELUMO levels observed for BT-F
and BT-2F (Brabec et al., 2010; Kang et al., 2012), the JSC values
were dramatically enhanced. The combination of these effects led
to the clearly enhanced PCE values of the devices based on the
fluorinated acceptors.

To investigate the obvious enhancement of JSC, we analyzed
the absorption of PTZPF:BT-IC, PTZPF:BT-F and PTZPF:BT-
2F blend films (Figure 1D). Similar to the absorption of neat
films of BT-IC, BT-F, or BT-2F, the absorption coefficients of the
PTZPF:BT-F and PTZPF:BT-2F blend films were both slightly
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FIGURE 2 | (A) J–V curves and (B) EQE spectra of OSC devices measured under AM 1.5G illumination at 100 mW cm−2.

TABLE 2 | Photovoltaic parameters of OSCs measured under AM1.5 Illumination

at 100 mW cm−2.

Active layera VOC (V) JSC
b

(mA cm−2)

JSC, EQE
c

(mA cm–2)

FF (%) PCE (%)

PTZPF:BT-IC 0.93 12.27 12.23 49.0 5.63 (5.45)d

PTZPF:BT-F 0.88 16.64 16.36 49.0 7.27 (7.00)

PTZPF:BT-2F 0.84 19.29 18.88 53.0 8.54 (8.50)

aAll of the blend films are processed by CB with 0.5 vol % CN and treated with

120◦C for 10min; bObtained from J–V measurements; cObtained from the integra-

tion of EQE spectra; dAverage values across more than 6 devices. Device structure:

ITO/PEDOT:PSS/active layer/PFN-Br/Ag.

higher than that of the PTZPF:BT-IC blend film, which can be
correlated to the improved JSC of the devices based on fluorinated
acceptors. Furthermore, to confirm the accuracy of the observed
JSC, we measured the external quantum efficiencies (EQEs) of the
devices. It should be noted that the calculated JSC values from
the EQE spectra (Figure 2B) matched well with the JSC values
obtained from the J–V curves. The device based on BT-2F exhib-
ited a stronger photocurrent response from 400 to 870 nm, with
a maximum EQE of 75%, which was higher than those observed
for the devices based on BT-F and BT-IC (Figure 2B).

Charge Generation, Transport, and
Recombination
To study the charge generation process in the resulting bulk-
heterojunction films, we measured the photoluminescence (PL)
spectra of the neat and D:A blend films. The peak emission of
the pure PTZPF film was located at 640 nm upon excitation at
500 nm, whereas the acceptor molecules BT-IC, BT-F, and BT-
2F exhibited similar emission peaks at ∼845 nm upon excitation
at 720 nm. As shown in Figure 3A, the strong emission peak of
BT-IC was clearly observed in the PTZPF:BT-IC blend film, indi-
cating the low charge separation efficiency of the device based
on BT-IC. In contrast, the PL emission of the neat films was
effectively quenched in the PTZPF:BT-F and PTZPF:BT-2F blend

films, indicating that exciton dissociation and charge transfer
were remarkably enhanced by the introduction of fluorine atoms
into the acceptor moiety. A similar phenomenon can be observed
in Figure 3B, where the PL of BT-2F was quenched by 92.7% in
the blend film, which was more pronounced than the quench-
ing observed for the blend films based on BT-F (90.9%) or BT-IT
(86.4%).

The JSC and VOC values of the devices were measured as
a function of the light intensity (Plight) to elucidate the charge
recombination dynamics in the photoactive layer, as shown in
Figures 3C,D, respectively. For organic solar cells, the power-
law dependence of JSC on the illumination intensity can gen-
erally be expressed as JSC

∝(Plight)
S, where S is the exponen-

tial factor, which is close to unity when the bimolecular recom-
bination in the device is weak (Kyaw et al., 2013; Lu et al.,
2015). The extracted values of S were 1.058, 1.060 and 1.043
for the devices based on BT-IC, BT-F, and BT-2F, respectively,
all of which were close to unity, indicating the weak bimolecu-
lar recombination in these devices (Yang et al., 2016). Based on
the VOC-Plight plot, VOC was plotted against the natural loga-
rithm of Plight and the slope of nkT/q was calculated, where an n
value of unity implies predominantly bimolecular recombination
and an enhanced dependence of VOC on Plight (2kT/q) indicates
trap-assisted monomolecular recombination (Gasparini et al.,
2016). The calculated slopes were 1.32, 1.23, and 1.21 kT/q
for the devices based on BT-IC, BT-F and BT-2F, respectively.
The smaller slope value for BT-2F than the others suggests
less trap-assisted recombination, thus resulting in a higher FF
value.

Film Morphology
Tapping-mode atomic force microscopy (AFM) and transmis-
sion electron microscopy (TEM) measurements were performed
to determine the influence of fluorination on the film morphol-
ogy. Figures 4a–c shows topographical AFM images of active
layers of the different NFAs. The PTZPF:BT-IC blend film con-
tained large granular aggregates across the entire film with
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FIGURE 3 | (A,B) Photoluminescence spectra of pristine donor films (excited at 500 nm), pristine acceptor films (excited at 720 nm) and corresponding blend films

(excited at both 500 and 720 nm) with a film thickness of about 100 nm; (C,D) plots of (c) JSC and (d) VOC vs. light intensity for devices based on PTZPF:NFA blend

films.

FIGURE 4 | AFM height images (10µm ×10µm) of (a) PTZPF:BT-IC, (b) PTZPF:BT-F, and (c) PTZPF:BT-2F; TEM images of (d) PTZPF:BT-IC, (e) PTZPF:BT-F, and (f)

PTZPF:BT-2F.
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a root-mean-square (RMS) roughness of 6.32 nm (Figure 4a),
whereas the blend films gradually became smoother as the num-
ber of fluorine atoms increased, with RMS roughness values of
3.50 nm and 2.19 nm for BT-F and BT-2F, respectively, suggesting
that the incorporation of fluorine atoms led to a smoother film
morphology. The phase separation of the blend films with differ-
ent electron acceptors was also readily apparent from the TEM
images. Figure 4d shows that the PTZPF:BT-IC blend film exhib-
ited large-scale phase-separation features across the entire film,
which is unfavorable for charge transfer at the donor–acceptor
interface. Interestingly, the degree of phase separation of the
blend films gradually decreased as the number of fluorine atoms
increased. Consequently, the PTZPF:BT-2F blend film exhibited
a smoother surface morphology with favorable phase separation
(Figure 4f), which induced desirable exciton dissociation and
thus simultaneously enhanced the JSC and FF values.

CONCLUSIONS

In summary, three NIR-absorbing electron acceptors containing
different numbers of fluorine atoms were designed and synthe-
sized. The results revealed that the fluorinated acceptors out-
performed their non-fluorinated counterpart BT-IC. Sequentially
increasing the number of fluorine atoms on the end groups of
the acceptor molecules led to a dramatic improvement in the JSC
of the resulting photovoltaic devices. Non-fullerene OSCs based
on the fluorinated acceptor BT-2F exhibited an improved PCE
of 8.54% with a high JSC of 19.29mA cm−2, regarding to the
device based on BT-IC (PCE = 5.63%, JSC = 12.27mA cm−2)
that does not contain fluorine atom. The improved photovoltaic
performances of devices based on fluorinated acceptors can be
correlated to the broad absorption profile extending into the NIR

region, favorable film morphology and efficient charge transfer.
These results demonstrate that fluorination can be an effective
technique in the design of efficient electron-acceptor materials.
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