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Photocatalytic systems based on colloidal semiconductor nanocrystals have gained

considerable attention owing to potential benefits that include a visible-range light

extinction and a low spatial overlap of photoinduced charges. When coupled to metal

catalysts, nanocrystal sensitizers have demonstrated a compelling performance in

homogenous photoreduction reactions, including the degradation of organic dyes and

hydrogen generation. Going beyond half-cycle reactions, however, the progress in the

field of nanocrystal photocatalysis has been rather limited. Here, we review some of

the challenges associated with photocatalytic applications of colloidal semiconductor

nanocrystals and highlight possible directions aimed toward their resolution. A particular

emphasis was made on new paradigms in this field, including the possibility of harvesting

triplet excitons and utilizing nanocrystal assemblies to accumulate multiple charges at the

reaction site.
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The prospect of employing colloidal semiconductor nanocrystals (NCs) in photocatalytic
applications is inspired by unique advantages of quantum confined semiconductors over more
traditional systems based on transition metal oxides (Schultz and Yoon, 2014) and precious
metal coordination compounds (Concepcion et al., 2009). The benefit of inorganic nanocrystal
catalysts lies in the combination of tunable redox energies and a large density of states across
the visible spectrum, which gives rise to the energetic feasibility for overall water splitting (e.g.,
CdS, CdSe). While the photooxidation of water by semiconductor colloids has not yet been
realized at a meaningful performance level, the photoreduction half-cycle reactions were shown
to reach turnover numbers (TONs) in excess of 105, which was attributed to an efficient charge
separation between the semiconductor domain and an appended metal catalyst [Ni (Simon et al.,
2014; Chai et al., 2016), Pt (Bao et al., 2008; Berr et al., 2010), Pd (Raza et al., 2017), or Au
(Costi et al., 2008)]. Such metal-semiconductor assemblies were also deemed cost effective as most
semiconductor colloids contained no precious metals with several architectures featuring heavy
metal-free compositions [CuInS2 (Zhou et al., 2017), Cu2ZnSnS4 (Yu et al., 2014a), CuIn1−xGaxS2
(Yu et al., 2014b) NCs].

One of the early successful demonstrations of nanocrystal-based photocatalytic systems
represents a heterostructured combination of a CdS nanocrystal sensitizer coupled to a Pt
reduction co-catalyst. This architecture was shown to be up to 60% efficient in catalyzing
the sacrificial reduction of protons (Costi et al., 2008; Zhou et al., 2017), and organic
molecules (Brown et al., 2016; Jensen et al., 2016) under visible radiation (λ ≈ 450 nm).
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A compelling performance of the CdS/Pt assembly was attributed
to the two key aspects of this hybrid architecture: (i) the fast
removal of photocorrosive holes from the CdS domain (Acharya
et al., 2011), aided by electron-donating surface ligands, and
(ii) a significant driving force for the electron injection into
the metal catalyst (Khon et al., 2011). Further increases in
the proton reduction quantum yield were made possible by
employing heterostructured CdSe/CdS and ZnSe/CdS nano-
interfaces within the sensitizer component (Zhu et al., 2012;
Kalisman et al., 2016), which allowed increasing the spatial extent
of the photoinduced charge separation between hole-rich (CdSe,
ZnSe) and electron-rich (Pt) domains (see Figures 1a–c; Hewa-
Kasakarage et al., 2009; O’Connor et al., 2012; Kalisman et al.,
2016).

FIGURE 1 | (a) CdSe/CdS nanorods appended with a Pt co-catalyst that serves the role of an electron sink for the accumulation of photoinduced electrons at a single

reductive site. Adapted with permission from Kalisman et al. (2016). Copyright 2016 American Chemical Society. (b,c) TEM images of CdSe/CdS nanorods selectively

tipped with a Pt catalyst on one side. Based on the location of the CdSe bulb, Pt appears to grow on an opposite end. Adapted with permission from Khon et al.

(2013). Copyright 2016 American Chemical Society. (d) Photoelectrochemical hydrogen evolution from aqueous Na2S solution with over 100% of incident

photon-to-current efficiency (IPCE). PbS NC-based active region of the working electrode (right, brown spheres) where one photon may be converted into two

electron-hole pairs via MEG (Yang et al., 2014). Energized electrons are then transferred to the dark electrode (left) for H2 production and sulfide ions are oxidized by

the holes. (d) Illustration of the H2 evolution on CZTS-Pt heterostructured nanoparticles in the presence of S2− and SO2−
3 hole scavengers. Adapted with permission

from Yu et al. (2014a).

While Pt remains to be the most efficient co-catalyst, other
compounds have also been explored in combination with
semiconductor colloids to drive sacrificial reduction reactions.
For instance, Ni-based heterostructures comprising a CdS
sensitizer have enabled up to 50% of the H2 production internal
efficiency (Simon et al., 2014; Zhukovskyi et al., 2015). Non-noble
metal co-catalysts, including Ni2P, Co2P, FePt metal phosphides,
and bimetallic compounds appended to CdS nanocrystals, have
also been investigated as an alternative to Pt (Cao et al., 2014,
2015; Cheng et al., 2016). Regarding the sensitizer component,
attempts to reduce the Cd content have led to its partial
replacement by Cu in Cu1.94S–ZnxCd1−xS heteronanorods
(Chen et al., 2016), or a complete removal of Cd in CZTS/Pt
heterostructures (see Figure 1e). Photocatalytic applications of
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semiconductor nanocrystal assemblies have been attempted as
well (Warren et al., 2013; Yang et al., 2014). As an interesting
example of an emerging paradigm, photoelectrodes comprising
PbS semiconductor nanocrystal solids were shown to generate
multiple photoinduced electrons-hole pairs from a single UV
exciton, a phenomenon known as themultiple exciton generation
(MEG) (Yan et al., 2017; Zamkov, 2017). A particular advantage
of the MEG effect in photoelectrochemical cells over the same
phenomenon in photovoltaic devices (Beard et al., 2013) was the
reverse anode architecture that did not filter the excitation light
through the oxide hole-blocking layer (Yan et al., 2017).

Many years of extensive research on photocatalytic
applications of semiconductor nanocrystals has identified the
key performance-limiting factors of these systems, most of which
could be traced to the instability of inorganic semiconductors
under catalytic conditions. Depending on a particular material,
the catalytic performance of corresponding nanocrystals was
shown to suffer from such issues as photocorrosion, a short
excited state lifetime, poor colloidal stability in acidic solutions,
or a limited ability to convey the photoinduced charges to active
catalytic sites.

Photocorrosion of the semiconductor material due to the
accumulation of photoinduced holes represents one of the
most significant issues impeding photocatalytic applications of
colloidal nanocrystals. Since chalcogenides are readily oxidized
(Kamat et al., 2014), nanocrystal catalysts comprising CdS, CdSe,
CZTS, or PbS semiconductors eventually undergo some degree of
the chemical degradation, particularly when positive charges are
not regenerated quickly. Even if the timely regeneration of holes
is achieved via sacrificial agents, the photooxidizing energy could
still be transferred to surface ligands triggering their desorption
and the subsequent nanoparticle aggregation (Acharya et al.,
2011; Hines and Kamat, 2014). For instance, commonly used
mercaptopropionic (MPA) or mercaptoundecanoic (MUA) acids
ligands are readily oxidized by scavenged holes resulting in the
formation of disulfides. Consequently, these thiolates need to be
continuously replaced in order to sustain the reduction half-cycle
rate. One effective strategy is to use an abundant concentration
of the scavenger moiety in solution (e.g., ascorbic acid) (Han
et al., 2012) that quickly relieves the nanocrystal-ligand system
of a positive charge.

Semiconductor photocorrosion could also be the result of
defective surfaces that tend to localize positive charges at
potential energy minima (Utterback et al., 2016). It was shown
that holes diffuse through such defects by hopping, thus creating
hot spots for chalcogenide oxidation and other side reactions.
The localization of holes inside the nanocrystal sensitizer was
also shown to reduce the ensuing catalytic activity due to a low
sacrificial regeneration rate (Utterback et al., 2016). For instance,
such a confinement of holes may be responsible for a relatively
low photocatalytic activity of CuInS2 NCs where these charges
become trapped on Cu+ ions within the lattice structure (Leach
and Macdonald, 2016; Fuhr et al., 2017).

In addition to photocorrosion, the performance of
nanocrystal-based photocatalytic systems could, in some
cases, be limited by short lifetimes of singlet excitons. Indeed,
homogenous systems utilizing organometallic dyes benefit

from an effective way of storing the photon energy through a
rapid intersystem crossing into a triplet state (McCusker and
Castellano, 2016; Twilton et al., 2017), which lifetime can extend
into hundreds of microseconds [e.g., the triplet state of Ir(ppy)3]
(Hofbeck and Yersin, 2010). The radiative lifetimes of singlet
excitons in cadmium chalcogenide nanocrystals, on the other
hand, are in the 10–100 ns range, which requires the dissociation
of excitons on a faster time scale. In practice, the temporal
window for a photoinduced charge transfer to a catalyst is even
shorter due to competing pathways of non-radiative exciton
dissociation at trap states, caused by the increased density of
dangling bonds in aqueous environments.

The task of increasing excited state lifetimes of colloidal
nanocrystals could be accomplished both by extending radiative
lifetimes and reducing the density of charge-localizing trap states.
In regard to the former condition, some groups have employed
a heterojunction of the two semiconductor materials exhibiting
a type II band edge alignment at the interface, which increases
the spatial separation of photoinduced charges (Amirav and
Alivisatos, 2010). The benefits of this strategy were demonstrated
through the observation of a nearly 100% quantum yield (QY)
for MV2+ photo reduction in Pt-tipped CdSe/CdS nanorods
(Zhu et al., 2012) vs. a 60% QY observed for in Pt-tipped
CdS structures (Bao et al., 2008). In addition to CdSe/CdS
semiconductor combination, type II heterojunctions utilizing
ZnSe/CdS (O’Connor et al., 2012) and Cu1.94S–Znx/Cd1−xS
(Chen et al., 2016) semiconductors have also been shown to
enhance excited state lifetimes beyond those of single-phase
nanocrystals. One potential issue with employing such type II
interfaces in photocatalytic applications concerns the fact that
one of the separated charges resides in the enclosed domain,
which is shielded from the external environment by the other
material (e.g., a core/shell or dot-in-a-rod geometry) (Perera
et al., 2012). As a result, the confined carrier cannot be efficiently
regenerated. In order to expose both semiconductor domains
of a type II heterostructure to a redox environment, chemical
etching could be employed. It was shown that etching of spatially-
asymmetric CdSe/CdS nanorods results in the formation dimer-
like structures where both donor and acceptor components are
in direct contact with the external environment, resulting in the
increased catalytic activity (Khon et al., 2013).

One emerging strategy for enhancing radiative lifetimes of
excitons in nanocrystal-based photocatalytic systems relies on
doping of semiconductors with transition metal ions. Lattice
incorporated Mn2+ or Cu+ can serve as hole trap sites
promoting exciton localization in the bulk of the nanocrystal.
In colloidal solutions, this strategy can allow extending excited
state lifetimes into a microsecond range for Ag+- and Cu+-
doped CdSe NCs (Kholmicheva et al., 2017; Nelson et al.,
2017), or even a millisecond range for Mn2+-doped ZnSe/ZnS
core/shell (Pu et al., 2016) and CdS QDs (Knowles et al.,
2015). The photocatalytic applications of doped semiconductor
nanocrystals, however, have not yet been explored. A potentially
adverse aspect of this architecture concerns the slow regeneration
of photoinduced holes localized at dopant sites. Another
possible strategy for increasing the nanocrystal excited state
lifetime is based on reducing the density of surface traps.
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The two approaches that were shown successful in this
regard have employed either exciton-delocalizing ligands or a
defect-passivating semiconductor shell (Grenland et al., 2017).
The former strategy was recently demonstrated through the
employment of hole-accepting ligand molecules that were
covalently linked to nanocrystals via a thiolate binding group
(Ding et al., 2015; Olshansky et al., 2015). By using ferrocene
ligands with different alkyl chain lengths it was possible to find
an optimal driving force for hole removal. As a result, existing
surface traps could be mitigated without compromising the
ability to extract photoinduced charges. Similarly, surface defects
can be neutralized through the use of exciton delocalizing PZT
ligands that were shown to scavenge holes on a picosecond to
nanosecond time scale in CdS and CdSe NCs (Wu et al., 2015;
Lian et al., 2016).

An important prerequisite of any photocatalytic system is
the ability to accumulate photoinduced charges at an active
site. This is particularly relevant in the case of multi-electron
reactions where charges need to be collected onto a single
catalytic domain. In regard to semiconductor sensitizers, this
aspect was experimentally confirmed through the observation of
a diminishing hydrogen production efficiency in Pt-decorated
CdSe@CdS rods with the increasing number of appended Pt
catalysts (Nakibli et al., 2015). In particular, nanorods tipped with
a single Pt domain showed ∼1.6 times the efficiency for the H2

production as compared to nanorods containing two Pt domains.
This result was attributed to the competition of the twometal tips
for photoinduced electrons absorbed by a shared semiconductor
domain. The importance of funneling the absorbed energy to a
catalytic site was also illustrated by an earlier study (Amirav and
Alivisatos, 2010) showing an increased H2 production rate by
Pt-tipped CdS nanorods with an increasing CdS length.

The above mentioned benefits and drawbacks of nanocrystal-
based photocatalytic systems, identified and investigated by the
community over the course of many years, allow formulating
design principles for the future development in this field. The
key challenges to be addressed include the suppression of
photocorrosion by photoinduced holes, the reduction of the
trap states’ effect, maintaining a suitable pH balance to prevent
aggregation in acidic buffers, and funneling the excitation
energy to an active reaction site (Aldana et al., 2005). Below
we would like to discuss the design of the two emerging
nanocrystal photocatalytic platforms that show strong potential
for overcoming the aforementioned challenges. The first is
based on a recently demonstrated ability of semiconductor
nanocrystals to harvest triplet excitons through the Dexter energy
transfer to coordination compounds exhibiting long-lived excited
states. The second approach utilizes closed-coupled nanocrystal
assemblies to funnel the absorbed energy to a catalytic site. Below
we described the two paradigms in more detail.

The demonstrated ability of semiconductor nanocrystals
to harvest triplet excitons (Mongin et al., 2016) offers new
opportunities in light sensitization of photoinduced redox
reactions (Figure 2a). By engaging in the Dexter energy transfer
with molecular photoredox catalysts, such as [Ru(bpy)3]

2+

or Ir(ppy)3 coordination compounds (Arias-Rotondo and
McCusker, 2016), nanocrystal energy could be transformed into

FIGURE 2 | (a) Triplet sensitization of 1-pyrenecarboxylic acid (PCA) molecular

acceptor by CdSe NCs via photoinduced triplet–triplet energy transfer (TTET).

Close to 90% of photons absorbed by the semiconductor QD could be stored

in form of long-lived triplet states of 3PCA*. The associated exciton energy

loss resulting from TTET is less than 20%, which compares favorably with a

>50% energy loss accompanying 1PCA→ 3PCA intersystem crossing.

Adapted with permission from Garakyaraghi and Castellano (2018). Copyright

2016 American Chemical Society. (b) A proposed scheme for funneling the

photoinduced energy in assemblies of semiconductor nanocrystals via the

diffusion toward the low-energy gap reaction center. This strategy benefits

multi-electron catalytic processes by increasing the probability of multiple

charges to be collected on the same catalytic site.

a long lived state with minimal energy losses. While such
energy transfer has been demonstrated for simple molecules,
such as ruberene (Wu et al., 2016) or 9-anthracenecarboxylic
acid (ACA) (Mongin et al., 2016), sensitizations of triplet excited
states of photoredox coordination compounds is imminent.
Of a particular interest are metal polypyridyl complexes,
which exhibit excellent oxidizing and reducing properties. For
instance photoexcited [Ru(bpy)3]

3+ can oxidize water into O2

and protons via a metal oxide catalyst (Hara et al., 2000),
while, [Ru(bpy)3]

2+∗ triplet states can be utilized for reducing
methylviologen (via ligands), a recyclable carrier of electrons.

Employing semiconductor nanocrystals as triplet sensitizers
of photoredox coordination compounds would allow avoiding
many aforementioned issues of nanocrystal photocatalytic
materials related to photocorrosion, hole regeneration, and
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short singlet lifetime. On the other hand, coupling nanocrystal
sensitizers to organometallic catalysts will extend the usable
portion of the solar spectrum into the visible range. This is
because the excitation of a triplet state undergoes via a photon
absorption into a singlet metal-ligand charge transfer state
(1MLCT) followed by a rapid intersystem crossing to a 3MLCT
state, which is commonly accompanied by an ∼1 eV energy loss
(due to large splitting of singlet and triplet states). Since such
singlet-triplet splitting in semiconductor nanocrystals is usually
much smaller (within thermal kT ∼ 30 meV), the associated
energy loss will be reduced. Furthermore, a molar absorptivity
of CdSe at 400–450 nm is 20 times greater (Yu et al., 2003) than
that of the 1MLCT transition in [Ru(bpy)3]

2+ (∼13,000 M−1

cm−1in acetonitrile). Considering that the efficiency of triplet
exciton transfer from CdSe to organic acceptors, such as ACA
is over 90% (Mongin et al., 2016), there is an expected benefit
in employing semiconductor nanocrystals for sensitizing redox
reactions.

Like any excitonic system, an assembly of semiconductor
nanocrystals can be designed to transfer the photoinduced energy
from the excitation site toward the potential energy minima
through the process of exciton diffusion. Such funneling of the
photoinduced energy is often utilized by biological systems as
a mechanism to drive multiple carriers to the reaction center
where multielectron catalytic reactions can subsequently take
place. For instance during the oxygenic photosynthesis in plants,
light is absorbed by hundreds of pigments (e.g., chlorophylls)
that transfer the photoinduced energy to a small number of
special pigments (P680), which are capable of charge separation
(Blankenship, 2013). P680 will then share a photoinduced
hole with a water-oxidizing complex (WOC) (Najafpour et al.,
2017). After four oxidizing equivalents have been stored at
the WOC site, it obtains four electrons from water molecules
causing H2O splitting. We expect that nanocrystal assemblies
could be employed in a similar manner in order to drive
multielectron catalytic processes, such as water oxidation or
hydrogen production. For instance, the diffusion of excitons in
a nanocrystal solid to a nanoparticle with the smallest band gap
(Kholmicheva et al., 2015) (an equivalent of the P680 pigment
in PSII) can be used to collect multiple excitons in the same
spot. The accepting dot could be appended with a catalyst
that would assist the charge separation to store photoinduced

charges. The presence of an electron- (or hole-) accepting

catalysis would also allow avoiding the multiexciton populations
on a single nanocrystal, which are subject to a rapid decay
through Auger recombination. Such nanocrystal assembly could
be incorporated into a photoelectrochemical cell (see Figure 1d)
or even harnessed within an “artificial leaf” platform (Liu et al.,
2016). The key advantage of this architecture lies in the sequential
collection of multiple charges within the same catalytic complex
(Figure 2b). Zero-dimensional nanocrystals in these assemblies
could be substituted with either one- or two-dimensional
nanostructures in order to increase the energy transfer efficiency
and reduce Auger recombination rates. Notably, without such
an energy “antenna,” nanocrystal-based water splitting systems
would exhibit very low efficiencies (Kalisman et al., 2015) even
when designed with a robust corrosion suppression mechanism.

In summary, the prospect of employing semiconductor
nanocrystals in photocatalysis offers a number of unique
benefits related to a spatially-extended charge separation and
visible-range light absorption, which have been confirmed
through a compelling performance in reduction half-reactions.
In order for such systems to become practical, however,
additional challenges need to be resolved. These pertain to
the semiconductor photocorrosion, short excited state lifetimes,
and poor control over energy transfer to catalytic sites. To
resolve these issues, several emerging strategies have been
proposed and discussed. Among potential solutions, harnessing
nanocrystals as triplet sensitizers of photoredox coordination
compounds is expected to enhance the absorption characteristics
of the latter while decreasing the damage of the semiconductor.
Assemblies of inorganic colloids can also be used for funneling
the photoinduced energy to reactive sites in a manner analogs to
the action of chlorophylls in PSII. This geometry could inspire
a cascade like design of photosynthetic assemblies for water
oxidation.
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