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Ionic liquids (ILs) are considered in the majority of cases green solvents, due to

their virtually null vapor pressure and to the easiness in recycling them. In particular,

imidazolium ILs are widely used in many fields of Chemistry, as solvents or precursors

of N-heterocyclic carbenes (NHCs). The latter are easily obtained by deprotonation of

the C2-H, usually using strong bases or cathodic reduction. Nevertheless, it is known

that weaker bases (e.g., triethylamine) are able to promote C2-H/D exchange. From

this perspective, the possibility of deprotonating C2-H group of an imidazolium cation

by means of a basic counter-ion was seriously considered and led to the synthesis of

imidazolium ILs spontaneously containing NHCs. The most famous of this class of ILs

are N,N’-disubstituted imidazolium acetates. Due to the particular reactivity of this kind

of ILs, they were appointed as “organocatalytic ionic liquids” or “proto-carbenes.” Many

papers report the use of these imidazolium acetates in organocatalytic reactions (i. e.,

catalyzed by NHC) or in stoichiometric NHC reactions (e.g., with elemental sulfur to yield

the corresponding imidazole-2-thiones). Nevertheless, the actual presence of NHC in

N,N’-disubstituted imidazolium acetate is still controversial. Moreover, theoretical studies

seem to rule out the presence of NHC in such a polar environment as an IL. Aim of

this Mini Review is to give the reader an up-to-date overview on the actual or potential

presence of NHC in such an “organocatalytic ionic liquid,” both from the experimental

and theoretical point of view, without the intent to be exhaustive on N,N’-disubstituted

imidazolium acetate applications.

Keywords: N-heterocyclic carbene, imidazolium acetate, NHC, basic anion, ionic liquids, C2-H deprotonation,

organocatalytic ionic liquid

INTRODUCTION

Ionic liquids (ILs), salts constituted of a large organic cation and an organic or inorganic anion
not coordinated (usually liquid below 100◦C), are gaining more and more popularity in many
fields of Chemistry (Handy, 2011; Vekariya, 2017; Watanabe et al., 2017). Due to their physico-
chemical properties their use is advantageous in view of a “greener” way of thinking Chemistry
(Mohammad and Inammudin, 2012; Feroci et al., 2013a) although there are not sufficient studies on
their possible toxicity (Ostadjoo et al., 2018). In particular, their high solvation ability, their virtually
null vapor pressure, the relative easiness in removing them from the reaction mixture and recycle
them spurred chemists to revisit established chemical procedures using them both as solvents and
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as reagents (Qureshi et al., 2014; Hajipour and Rafiee, 2015).
Imidazolium ionic liquids are a class of ILs very often
used in organic chemistry, as solvents and as precursors
of N-heterocyclic carbenes (NHC), very efficient ligands and
organocatalysts (Enders et al., 2007; Biju, 2019). In fact, the
deprotonation of the C2-H in between the two imidazolium
nitrogen atoms leads to the formation of a singlet carbene, which
can act as a base and/or nucleophile. This deprotonation is
usually carried out using strong bases (Sowmiah et al., 2009;
Chiarotto et al., 2014) or by cathodic reduction (Gorodetsky et al.,
2004; Feroci et al., 2016a), but it is known from decades (Olofson
et al., 1964) that C2-H/D exchange can be induced by weaker
bases, like Et3N. This led to the awareness of the possibility to
incorporate a weak base into the imidazolium salt structure, i.e.,
as counter-ion, in order to have in the same reagent the acid
(imidazolium cation, precursor of carbene) and the base (acetate
ion). Imidazolium acetates are currently used in many fields of
organic chemistry, but the actual presence of NHC into such
ionic liquids is still debated: is an imidazolium acetate a mixture
of IL and NHC, or the basicity of the anion (with respect to
the acidity of the imidazolium cation) is not strong enough for
this deprotonation in such a polar environment as the ionic
liquid? This question has been faced from both theoretical and
experimental point of view.

THEORETICAL STUDIES

1-Ethyl-3-methylimidazolium acetate (EMIm-OAc) and 1-butyl-
3-methylimidazolium acetate (BMIm-OAc) are among the most
studied ILs potentially containing NHC, both theoretically and
experimentally. The main question about the possibility of
endogenous NHC in this kind of ILs arises from the very different
pKa of the N,N’-dialkylimidazolium cation and of acetic acid
(about 22 and 12.3 in DMSO, respectively), which seems to rule
out the possibility of a deprotonation of the imidazolium cation
by acetate ion (although the pKas in ILs are not known), leading
to the formation of the corresponding NHC and acetic acid. To
gain insights into the possibility of this proton transfer, Nyulászi
and coworkers as early as 2010 studied computationally the
system EMIm-OAc (at the B3LYP/6-31+G∗ level), starting from
the premise that the imidazolium cation is a good hydrogen-bond
donor, while acetate anion is a hydrogen-bond acceptor and thus
this ion pair could be represented as hydrogen bonded in the gas
phase (Hollóczki et al., 2010). The authors found that the relative
energy of the two hydrogen bonded structures (RMIm-OAc and
NHC-AcOH, Scheme 1, equation 1) are almost identical and the
barrier for their isomerization is low (3.6 kcal mol−1), rendering
possible the existence of both isomers in the gas phase.

Qian et al. carried out quantum mechanical calculations to
determine the reasons for the higher ability of imidazolium
acetates over imidazolium chlorides in dissolving cellulose (Du
and Qian, 2011). In this case also the effect of the solvent
was evaluated. The authors calculated the free energy for the
deprotonation reaction in the gas phase (−74.2 kcal mol−1),
while in the MMIm-OAc ionic liquid the same calculation gave
a value of +25.4 kcal mol−1, suggesting that the deprotonation

process is favorable in the gas phase, but unfavorable in IL (in
fact, the reactant are charged while the products are neutral and
a polar solvent stabilizes more charged species). Furthermore,
ab initio calculations allowed the authors to suggest a reaction
mechanism in which the NHC-AcOH hydrogen bonded complex
dissociates into NHC and AcOH (Scheme 1, equation 2),
rendering NHC free to react with cellulose.

Later, Hollóczki and Kirchner (Thomas et al., 2014) reconsider
the system EMIm-OAc taking into account the NHC solvation in
such an ionic liquid. Starting from previous experimental data,
the authors investigated the possible hydrogen bond between
NHC and the EMIm+ cation (Scheme 1, equation 3) and its
stabilizing effect. Unexpectedly, the authors found that such an
interaction was not present in the studied system, as the C2-
H site of the imidazolium cation was involved exclusively in
an interaction with the acetate ion. This lack of stabilization is
partially balanced out by a hydrogen bond between the carbene
center and the alkyl substituent of the cation. The authors
conclude that in a system like EMIm-OAc a latent carbene
content can be observed, but due to the absence of a stabilizing
effect by hydrogen bond between NHC and EMIm+ cation, the
proton transfer between C2-H and AcO− could be suppressed.

More recently (Gehrke and Hollóczki, 2017) Hollóczki and
Gehrke questioned the actual presence of a NHC in an IL
in which a weak base is present (starting from the high
difference in pKa), suggesting instead a concerted mechanism
for the imidazolium cation deprotonation and reaction with the
substrate to yield the organocatalysed reaction products.

EXPERIMENTAL STUDIES

Due to the experimental evidence that imidazolium acetate ionic
liquids act as organocatalysts in organocatalytic reactions (e.g.,
the benzoin condensation), many attempts were made in order
to prove the presence of NHC in such an ionic liquid. In
fact, the presence of NHC and acetic acid in the gas phase
(due to the evaporation under vacuum of EMIm-OAc) was
proved by photoelectron spectroscopy and mass spectroscopy
(Hollóczki et al., 2010), but in the liquid phase only an indirect
evidence of NHC presence was obtained, as benzoin was isolated
by reaction of EMIm-OAc and benzaldehyde (Kelemen et al.,
2011). This result spurred the authors to refer to EMIm-
OAc as an “organocatalytic ionic liquid.” Almost at the same
time, Rogers and coworkers (Rodríguez et al., 2011) confirmed
the possibility to obtain NHC derived products (imidazole-2-
thiones) by reaction of EMIm-OAc with elemental chalcogens,
and suggesting for such an ionic liquid the name “proto-carbene.”
Moreover, the same authors studied the effect of the addition
of a proton donor (acetic acid, water) on this reaction and
proposed a mechanism for the stabilization in IL of the neutral
products derived from the deprotonation of EMIm+ cation
by acetate anion. Such a mechanism (Scheme 1, equation 4)
describes the formation of a hydrogen bonded dimer between
acetic acid and acetate ion. On the other side, Welton and
coworkers (Clough et al., 2013) carried out a study on the thermal
degradation of EMIm-OAc with the identification of the neutral
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SCHEME 1 | Possible structures and equilibrium reactions present in imidazolium acetate ionic liquids.

products obtained at high temperature (by thermogravimetric
analysis coupled with mass spectrometry) and found that the
main products derived from dealkylation reactions, while NHC
formation was occurring to a small extent.

Kar and Sander (2015) demonstrated the reversibility of the
imidazolium deprotonation reaction by acetate anion (Scheme 1,
equation 1), carrying out experiments at very low temperature
(9 K), on gas and condensed phases, monitoring the system by
IR spectroscopy. They found that for EMIm-OAc both ionic
liquid and neutral species (NHC and AcOH) coexist at very
low temperatures and if the vapor phase is condensed at 9 K,
only NHC and acetic acid are present (and no ionic species).

Moreover, if the temperature is increased to room temperature,
a proton transfer is active, leading again to the ionic liquid
EMIm-OAc.

The demonstration of the potential presence of NHC in
imidazolium acetates was obtained by many groups, carrying
out successfully catalyzed or stoichiometric reactions (Lambert
et al., 2016; Baumruck et al., 2017; Binks et al., 2018; Pandolfi
et al., 2018), but in no case any attempt to evidence the actual
presence of NHC was done. This last topic was faced in a few
papers. Inesi and coworkers (Chiarotto et al., 2015, 2017) studied
this question by cyclic voltammetry, starting from the fact that
NHC is an electroactive species and it can be oxidized at the
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anode at a potential around+0.5V (vs. Ag), in pure imidazolium
acetate ionic liquid. This investigation was carried out registering
the cyclic voltammetries of pure IL at different temperatures
and comparing the electrochemical behavior of BMIm-OAc with
that of an imidazolium ionic liquid containing a less basic
anion, BMIm-Cl. The authors found that at a temperature
higher of 100◦C the cyclic voltammetry of BMIm-OAc showed
the presence of the corresponding carbene, while starting from
the corresponding chloride ionic liquid, the oxidation peak of
NHC was not present in 25–150◦C interval of temperatures.
The authors thus infer that the acetate anion is a base strong
enough to deprotonate C2-H of the BMIm+ cation and that
this deprotonation reaction at temperatures higher than 100◦C
leads to the formation of a detectable amount of NHC. Suzer
and coworkers (Gokturk et al., 2017) recently confirmed by XPS
analysis the attribution of the anodic peak around +0.5V to
the oxidation of NHC, electrogenerated by cathodic reduction.
In fact, imidazolium NHCs can also be generated by cathodic
cleavage of the C2-H bond to yield NHC andmolecular hydrogen
(Gorodetsky et al., 2004; Feroci et al., 2016b,c).

Welton and coworkers (Daud et al., 2017) consider that all
the observations reported in the literature about the presence
of NHC in imidazolium acetate ionic liquids do not confirm
the actual presence of carbenes in ILs, but just indicate their
accessibility and that in order to have NHC derived products it
is necessary the presence of a “NHC trap,” i.e., a reagent or the
electrode. Moreover, they believe that a concerted mechanism
to NHC derived products can always be claimed in alternative
to a multistep one (with the formation of NHC as a distinct
molecule). In order to gain evidences on the actual or potential
presence of NHC in EMIm-OAc, a kinetic study was carried
out on a possible deuterium isotope effect in the formation of
the adduct between NHC and an aromatic aldehyde (Breslow
intermediate) starting from EMIm-OAc with a C2-D or C2-H
group. The absence of a deuterium isotope effect allowed the
authors to exclude a concerted mechanism and to confirm the
actual presence of NHC in EMIm-OAc.

Apart from acetates (and other imidazolium organic
carboxylates), other imidazolium ionic liquids containing basic
anions are reported to be useful reagents for NHC derived
reactions. Among them hydrogen carbonate and hydroxide
are particularly important. As regards 1,3-dialkylimidazolium
hydrogen carbonates, it is reported that these ionic liquids
are in equilibrium with the corresponding NHC-CO2 adducts
(vide infra), demonstrating the possibility to afford NHCs (see
for example: Fèvre et al., 2012; Zhao et al., 2017) by releasing
of carbon dioxide due to high temperature effect or, at room
temperature, using a solvent favoring the carbene generation (as
THF or toluene).

As for 1,3-dialkylimidazolium hydroxides, it is a different
story. In fact, although hydroxide anion is a noteworthy basic
species (or precisely for this reason), imidazolium hydroxides
are very rarely used as organocatalysts or reagents (see for
example: Rajesh et al., 2012), due to their instability. In fact, the
reaction between 1,3-dialkylimidazolium cation and hydroxide
anion leads mainly to ring opening products (Yuen et al., 2013;
Long and Pivovar, 2014), rendering in most of cases unuseful

this class of imidazolium ionic liquids (although the ring opening
seems to be directly related to NHC formation, Hollóczki et al.,
2011).

The literature survey on imidazolium ionic liquids containing
basic anions other than acetate is not intended to be complete.

THE PRESENCE OF CO2

Besides the various applications in organic chemistry,
electrochemistry or material chemistry, ionic liquids gained
popularity in the field of carbon dioxide capture and storage
(CCS, e.g., in CO2 absorption from industrial waste gases), as
carbon dioxide catch and release reagents (de Robillard et al.,
2013; Feroci et al., 2013b). Physisorption is the mechanism for
such a CO2 capture in ILs, but chemisorption was invoked for
some functionalized ILs. In particular, the solubility of carbon
dioxide in imidazolium acetate ionic liquids is remarkable and
this very high solubility was charged to chemisorption. In order
to fully understand the nature of such an interaction (with
acetate anion, imidazolium cation or NHC), many theoretical
and experimental studies have been carried out and such
papers shed light on the presence of endogenous NHC in
imidazolium acetate ILs. Rogers and coworkers (Gurau et al.,
2011) reported the single-crystal X-ray structures of EMIm-OAc
and EMIm-OAc-CO2 mixture and found that no NHC was
present when studying pure IL (as expected for the solid phase).
On the contrary, after CO2 bubbling the corresponding NHC-
CO2 adduct was present, along with the AcO−/AcOH dimer
(Scheme 2, equation 1), demonstrating the formation of NHC
and suggesting a two-step mechanism (formation of NHC and
then reaction with CO2 to give the adduct).

Besnard and coworkers (Besnard et al., 2012; Cabaço et al.,
2012) carried out theoretical (DFT) and experimental (Raman,
NMR) studies to understand the high CO2 solubility in BMIm-
OAc and suggested a two-step mechanism dominated by an
irreversible chemical reaction leading to the formation of the
NHC-CO2 adduct (Scheme 2, equation 2). In the suggested
mechanism a first reaction leads to the formation of a transient
NHC, stabilized by the interaction with carbon dioxide; although
the NHC formation is not favored in the liquid phase, it is
triggered by the interaction with CO2. The transient intermediate
then isomerizes to NHC-CO2 adduct. Moreover, the acetic acid
molecule produced in this reaction interacts with the acetate
anion to give a hydrogen bonded dimer.

Kirchner and Hollóczki (Hollóczki et al., 2013a,b) studied
the EMIm-OAc-CO2 system by AIMD simulations and static
quantum chemical calculations and found that in the liquid
phase the NHC formation is facilitated by the physically absorbed
carbon dioxide, leading to the chemically absorbed CO2 (NHC-
CO2 adduct). Moreover, the authors underline the fact that the
occurrence of NHC induced reactions in EMIm-OAc does not
prove that NHC is present in this IL, but only that it is accessible.

DFT and ONIOM calculations on imidazolium acetate-CO2

system, both in the gas phase and in the liquid phase, considering
the one-step and the two step mechanisms (Scheme 2, equations
1 and 2) allowed Damodaran and coworkers (Mao et al., 2016) to
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SCHEME 2 | Possible reactions in imidazolium acetate IL-CO2 mixtures.

propose a new two-step reaction mechanism: at first the addition
reaction between the imidazolium cation (at C2) and carbon
dioxide, then the deprotonation of the C2-H of the adduct to yield
NHC-CO2. The authors emphasize the important role played by
IL in the stabilization of the products.

In a recent paper, (Yan et al., 2017) reporting ab initio results
on EMIm-OAc, the effect of solvation is underlined also by Kim
and coworkers. The authors exclude the presence of NHC in such
an ionic liquid and suggest that acetate anion can deprotonate

the imidazolium cation only in a non-polar or extremely weakly
polar environment (solvent). Moreover they suggest that the
reaction of EMIm-OAc with carbon dioxide to yield NHC-CO2

adduct is a concerted process (Scheme 2, equation 3), in which
the intermediate has a sp3 C2 which subsequently evolves toward
the NHC-CO2 adduct.

These NHC-CO2 adducts are also useful NHC masked
organocatalysts for the carboxylation of organic compounds (see
as examples: Tommasi and Sorrentino, 2006; Desens andWerner,
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2016; Stewart et al., 2016) and NHC-transfer agent in the
synthesis of NHC-metal complexes (see as examples: Voutchkova
et al., 2007; Voutchkova and Crabtree, 2010; Li et al., 2011).

CONCLUSIONS

The overview of the last decade literature on the possible presence
of NHC in imidazolium acetate ionic liquids evidences that the
question of the actual or potential presence of NHC in such
ionic liquids is still debated. On one side, theoretical calculations
seem to exclude the possibility of NHC presence in imidazolium
acetate, due to the highly polar environment which should
strongly unfavor the proton transfer from imidazolium C2-H to
acetate anion, and thus transform charged species into neutral
molecules. On the other side, experimental studies demonstrate
the possibility of using imidazolium acetates as a reservoir of
NHC, giving rise to the formation of products in which it is
necessary the formation of catalytic or stoichiometric amounts
of carbene. It is still possible that the deprotonation equilibrium
at room temperature lies far toward the charged species and
the presence of a “carbene-trap” (always present in NHC-
induced organic reactions) or an irreversible subsequent reaction
is necessary in order to move such an equilibrium toward the
formation of NHC and acetic acid. Moreover, it is possible that
in some cases the reactions between NHC and its trap and NHC
formation are concerted (as theorized for the reaction between

NHC and CO2), while in others they are a two-step process
(as demonstrated in the Breslow intermediate formation). The
present literature data exclude the possibility to isolate or even
evidence the presence of NHC in imidazolium acetates (either for
its presence as a strongly hydrogen bonded adduct, or for its very
low concentration), but it is not to be excluded that in the future
it would be possible to isolate from these systems stable NHCs
(like Arduengo’s ones).

Anyway, it is undeniable that imidazolium acetate ILs are
“organocatalytic ionic liquids” or “proto-carbenes” and that their
reactivity is so peculiar that their use is highly suggested in many
fields of Chemistry.
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