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Editorial on the Research Topic

Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical

Systems – Recent Developments and Advanced Applications

With the advent of microprocessor technology in the late 1960s (Moore, 1965; Whitworth, 1979;
Brinkman et al., 1997) the foundation to a novel interdisciplinary field of research known today as
scientific computing was laid. Located at an intersection between mathematics and computational
sciences on the one hand and scientific disciplines such as physics and chemistry on the other,
computational methods assumed a dominant role in modern science and engineering, enabling
investigations of a broad variety of phenomena in effectively every sub-discipline of these vast fields
of research.

One of the main challenges for the successful application of computational models to study
chemical systems rests with the accurate description of the interaction between atoms and
molecules, the two main approaches being quantum mechanics (QM) (Parr and Yang, 1994; Szabo
and Ostlund, 1996; Helgaker et al., 2000; Koch and Holthausen, 2002; Cook, 2005; Sholl and
Steckel, 2009) and molecular mechanics (MM) (Leach, 2001; Jensen, 2006; Ramachandran et al.,
2008) methods. The latter employs empirical (i.e., parametrised), classical representations of the
interactions, based on comparably simple potential formulations such as harmonic springs to
describe bonds and valence angles as well as Coulomb and Lennard-Jones interactions to account
for charge-charge and non-bonded contributions, respectively. These approaches, often referred
to as molecular force fields (FFs) provide a versatile and efficient description of chemical systems,
provided that the large number of involved parameters are perfectly adjusted and balanced among
each other. Typical applications for FF-based studies are located in the realm of biomolecular
simulations such as proteins and nucleic acids. Nevertheless, some systems relevant for material
sciences can be treated equally well with these approaches and particularly polymer chemistry
studies (comprised of the same elements with similar functional groups as found for instance in
peptides and proteins) often include FF-based methods.
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MMmodels have also been extended to include more complex
phenomena such as polarization (Yu and van Gunsteren,
2005; Baker, 2015; Lemkul et al., 2016) and many-body
contributions (Stone, 1995), extending their applicability to areas
in which simplistic force field approaches are unreliable, such as
studies of solid-state interfaces and semi-conducting systems as
well as metals and alloys. However, a key shortcoming inherent
to the majority of FF approaches is the inability to describe the
formation and cleavage of covalent chemical bonds. While so-
called reactive force fields (van Duin et al., 2001; Mahadevan and
Garofalini, 2007; Hartke and Grimme, 2010; Liang et al., 2013)
have been developed to make such processes accessible in the
regime of molecular mechanics, a quantum description of the
system is often the natural choice.

QM-based descriptions of chemical systems (Parr and Yang,
1994; Szabo and Ostlund, 1996; Helgaker et al., 2000; Koch
and Holthausen, 2002; Cook, 2005; Sholl and Steckel, 2009)
partition the atoms into the nuclei and the surrounding
electrons, inherently taking all shifts in the electron density
resulting from polarization, many-body contributions and even
charge-transfer into account. Although a key challenge of QM
methods is the accurate description of the correlated motion
of electrons (Raghavachari and Anderson, 2010; Popelier, 2011;
McDonagh et al., 2017), the hierarchy of quantum chemical
approaches established over the last decades (Szabo and Ostlund,
1996; Helgaker et al., 2000; Cook, 2005) provides a versatile
framework for the study of challenging chemical phenomena.
Since no empirical parameters are required in a QM-based
description, quantum chemical methods are not restricted to
a particular class of molecules and, thus, generally applicable
to achieve first principle descriptions of chemical systems.
Unfortunately, these benefits come with a cost, which in this case
is a substantially increased computational effort over MM-based
approaches and thereby, dramatically limiting their treatable
system size.

In order to combine the advantages of MM and QMmethods,
hybrid QM/MM approaches (Gao, 1993; Bakowies and Thiel,
1996; Lin and Truhlar, 2007; Senn and Thiel, 2007, 2009; Metz
et al., 2014; Pezeshki and Lin, 2015; Zheng and Waller, 2016)
have been devised: In this framework the most relevant part
of the chemical system is treated on the basis of a suitable
quantum chemical method, while classical MM potentials are
considered sufficiently accurate to model the remaining part
of the system. This innovative idea was pioneered by Martin
Karplus, Michael Levitt and Arieh Warshel (Warshel and Levitt,
1976; Field et al., 1990; Lyne et al., 1990; Aaqvist and Warshel,
1993; Warshel, 2002) in the 1970s, who were awarded the Nobel
prize in chemistry for the development of multiscale models for
complex chemical systems in 2013. Today, four decades after
these influential developments, QM/MM methods are regarded
as one of the most influential approaches for the description
of challenging chemical phenomena. Initially conceived in the
framework of biomolecular simulations (Friesner and Guallar,
2005; Hu and Yang, 2009; van der Kamp and Mulholland,
2013; de Visser et al., 2014; Cui, 2016; Lu et al., 2016;
Quesne et al., 2016), the range of QM/MM methods has been
substantially extended to include other areas accessing inter alia

solid-state chemistry and material science (Gonis and Garland,
1977; Krüger and Rösch, 1994; Stefanovich and Truong, 1996;
Jacob et al., 2001; Herschend et al., 2004; Keal et al., 2011;
Bjornsson and Bühl, 2012; Golze et al., 2013, 2015; Hofer
and Tirler, 2015) and solution chemistry (Staib and Borgis,
1995; Tuñón et al., 1995, 1996; Gao, 1996; Hofer et al., 2010,
2011, 2012; Weiss and Hofer, 2012; Hofer, 2014) as well.
These QM/MM studies have given insight into how Nature
works, and, for instance, explain regio- and stereochemical
selectivities during substrate activation (Faponle et al., 2016,
2017; Timmins et al., 2017). Furthermore, using computational
modeling, predictions can be made to engineer proteins and
enzyme and in a recent example the computationally proposed
change led to a full enantioselectivity reversal (Pratter et al.,
2013a,b).

Despite their success and widespread recognition, the
development of advanced QM/MM methodologies is still an
active field of research, aiming to push the accuracy and
applicability of this versatile approach even further. This article
collection aims to present an overview of present research
activities focused on the development and application of modern
QM/MM formulations, demonstrating the versatile capabilities
of this celebrated methodology.

A total of 12 exciting contributions by 48 authors from 12
different countries in four continents have been included in this
article collection that contains ten original research contributions
and two review articles.

Scherlis and his team compiled a review article that covers
recent applications of their graphical-processor accelerated LIO
code for density functional theory calculations (Marcolongo
et al.). The presented examples include the decomposition of
nitroxyl in aqueous solution, a comparison of the reactivity
of thiols against peroxides in aqueous solution and the
active site of a peroxiredoxin enzyme. The latter studies
are linked to molecular spectroscopy such as the vibrational
spectrum of aqueous peroxynitrite anion and LiAlH4 and AlH−

4 .
Furthermore, using their novel code they predict the UV/Vis
spectra of (HO)NS2 and the so-called NO/H2S “cross-talk”
system.

The second review article by Marazzi et al. presents
a comprehensive overview of recent research activities in
studying electronic spectroscopy via QM/MM approaches. A
broad variety of examples in the fields of linear absorption,
non-linear optical properties and circular dichroism applied
to organic molecules, proteins and nucleic acid systems is
presented.

Prejanò et al. compared the application of a QM cluster
model to the decarboxylation of 5-carboxyvanillate by LigWwith
results obtained from a more elaborate QM/MM setup. Their
study indicates that the reaction is mainly influenced by the
constituents of the active side and the cluster model already
delivers a reliable description for the presented system.

The article of Esccorcia and Stein explored the influence
of a conserved arginine residue of the E. coli Hyd-1 [NiFe]-
Hydrogenase on the H2 oxidation reaction via DFT-based
QM/MM calculations. This study highlights the key influence
of this Arg-residue in promoting both the access of molecular
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hydrogen to the catalytically active Ni-atom as well as the
associated proton transfer to nearby terminal cysteine residues.

Xu et al. present a novel force balanced simulation approach,
separating a protein system into hydrogen-bonded fragments
that are computed quantum-mechanically, while the AMOEBA
force field is employed to describe long-range non-bonded
interactions. To conserve the total energy of the system, a
force balancing of the hydrogen link-atoms is carried out. The
applicability of this approach is demonstrated for linear ACE-
(ALA)9-NME as well as the 56 residue GB3 peptides.

The contribution of Sahoo and Nair presents a combination
of polarizable Drude oscillators with the well-established Car-
Parrinello Molecular Dynamics framework via an extended
Lagrangian QM/p-MM method. The approach is demonstrated
for a H2O(QM)+4H2O(p-MM) test system and applied to study
an O-vacancy in α-cristobalite, the hydrogenation of ethene via
Y-Zeolite-supported Rh-Clustes and the H+-exchange between
methane and a H-ZSM-5 zeolite.

The difference between additive and subtractive QM/MM
protocols has been highlighted in the contribution by Cao and
Ryde, focusing inter alia on the different correction schemes to
account for errors introduced by the application of link–atoms.
Three different systems of increasing complexity have been
studied, namely an isolated ethanol molecule, sulfite oxidase and
the conversion of oxophlorin to verdohaem by haem oxygenase.

Berraud-Pache et al. studied the keto-enol tautomerisation
reaction of oxyluciferin representing the emissive species in
the bioluminescent system of fireflies. By combing classical
molecular dynamics studies of the active species in a polarisable
continuum and explicit QM/MM calculations, the keto-OxyLH−

species was identified as themost likely candidate to act as emitter
in bioluminescence.

He and colleagues applied an automated fragmentation
QM/MM protocol to study 1H chemical shifts of the apo- and
holo-neocarzinostatin-chromophore binding complex (Jin et al.).
The calculated NMR data obtained by the fragmented QM/MM
approach proved to be in good agreement with results of large-
scale calculations as well as experimental data.

The research team of Lin studied themigration of Cl− through
the transmembrane domain of a prototypical E. coli chloride-
channel (Wang et al.), thereby including the entire pore section

into the quantum–mechanically treated zone. The obtained
results demonstrate that the influence of electron delocalization,
inherently taken into account at the QM level of theory, appear
to be more critical than previously considered.

Timmins and De Visser investigated the impact of different
mutations in prolyl-4-hydroxylase via a combined QM/MM and
MD study. Based on the results of this extensive study two
mutants with the potential of displaying notably changes in the
regio- and stereoselectivity could be identified.

Hitzenberger et al. provided a contribution combining
docking and pharmacophore modeling with QM-based
molecular dynamics simulations to investigate the binding of
the only known inhibitor robotnikinin to the Zn-site of the
extracellular signaling protein Sonic Hedgehog. Comparison to a
purely classical molecular dynamics highlights the substantially
improved description of the binding observed in the QM/MM
MD simulation.

In the contribution of Frau and Glossman-Mitnik the
influence of different range-separated hybrid DFTmethods in the
prediction of chemical reactivity descriptors was evaluated.

Finally, Li and coworkers investigated the interaction
mechanism between cyclopeptide DC3 and an androgen receptor
via free energy calculations and extensive molecular dynamics
simulations Zhang et al..

Clearly, the scope of topics covered by the contributions in
this article collection demonstrates the widespread capabilities of
the QM/MM technique as a general and versatile approach to
address a broad spectrum of research questions. Moreover, the
research field is as active as ever and moving into many different
research directions. In conjunction with the formulation of
advanced theoretical approaches, efficient simulation programs
and the development of improved computational infrastructure,
QM/MMmethods proved to be an indispensable tool in modern
chemical research, providing a highly successful alternative route
for the study of complex chemical phenomena, which can be
expected to play an evenmore dominant role in the coming years.
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