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Aquaphotomics is a novel scientific discipline involving the study of water and aqueous
systems. Using light-water interaction, it aims to extract information about the structure
of water, composed of many different water molecular conformations using their
absorbance bands. In aquaphotomics analysis, specific water structures (presented
as water absorbance patterns) are related to their resulting functions in the aqueous
systems studied, thereby building an aquaphotome—a database of water absorbance
bands and patterns correlating specific water structures to their specific functions. Light-
water interaction spectroscopic methods produce complex multidimensional spectral
data, which require data processing and analysis to extract hidden information about
the structure of water presented by its absorbance bands. The process of extracting
information from water spectra in aquaphotomics requires a field–specific approach.
It starts with an appropriate experimental design and execution to ensure high-quality
spectral signals, followed by a multitude of spectral analysis, preprocessing and
chemometrics methods to remove unwanted influences and extract water absorbance
spectral pattern related to the perturbation of interest through the identification of
activated water absorbance bands found among the common, consistently repeating
and highly influential variables in all analytical models. The objective of this paper
is to introduce the field of aquaphotomics and describe aquaphotomics multivariate
analysis methodology developed during the last decade. Through a worked-out example
of analysis of potassium chloride solutions supported by similar approaches from
the existing aquaphotomics literature, the provided instruction should give enough
information about aquaphotomics analysis i.e. to design and perform the experiment and
data analysis as well as to represent water absorbance spectral pattern using various
forms of aquagrams—specifically designed aquaphotomics graphs. The explained
methodology is derived from analysis of near infrared spectral data of aqueous systems
and will offer a useful and new tool for extracting data from informationally rich water
spectra in any region. It is the hope of the authors that with this new tool at the disposal
of scientists and chemometricians, pharmaceutical and biomedical spectroscopy will
substantially progress beyond its state-of-the-art applications.
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INTRODUCTION TO AQUAPHOTOMICS

Aquaphotomics is a novel scientific discipline founded by
Professor Roumiana Tsenkova at Kobe University, Japan, in 2005
(Tsenkova, 2005, 2006a,b,c, 2009) with the objective of studying
and systematizing knowledge about water-light interaction,
which was found to be a huge source of information on the
subject of the structural and related functional properties of
aqueous systems. This is a complementary “omics” discipline
dealing with the large-scale, comprehensive study of water
as the “molecular and energy mirror” of the rest of the
aqueous system. While proteomics studies proteins, glycomics—
carbohydrates and lipidomics—lipids; aquaphotomics explores
the roles, relationships and functions of the water—an equally
important biomolecule and one of nature’s fundamental building
blocks.

The word “aquaphotomics” is derived from the words aqua—
water and photo-light since this new discipline studies water
by using its interaction with the light. Thus, aquaphotomics
is a science which uses water-light interaction to explore the
structure of water—as a system and matrix composed of many
different water molecular conformations, thereby resulting in
various functionalities (Tsenkova, 2009). The main objective of
establishing aquaphotomics as a novel scientific discipline was to
provide a common platform and strategy to lead to an improved
general understanding of the water functionality by utilizing
water-light interaction at every frequency of the electromagnetic
spectrum. The majority of aquaphotomics works so far have been
done by using near infrared (NIR) spectroscopy, especially in
the area of the 1st overtone of the OH stretching band (1,300–
1,600 nm) where many water absorbance bands are identified
and consistent with previously reported or calculated overtones
of water absorbance bands in the infrared region (Weber et al.,
2000, 2001; Smith et al., 2005; Tsenkova, 2009; Tsenkova et al.,
2015). What aquaphotomics research studies showed is that NIR
spectroscopy, and in general water-light interaction over the
entire electromagnetic spectrum, can significantly contribute to
the field of water science and better understanding of water
molecular systems (Tsenkova, 2009).

The NIR wavelength region from around 680 to 2,500 nm
is considered as an excellent tool for water observation that
provides an enormous amount of information about water
molecular structure (Büning-Pfaue, 2003; Tsenkova, 2009). The
NIR light allows a longer penetration length, as compared to
infrared, even up to 10mm in the short wavelength region
(750–1,100 nm) (Workman, 2000), making it a rapid and
non-destructive measurement technique particularly suitable
for studying intact biological systems. Numerous NIR spectra
can be obtained in various conditions and states of the
systems (under different perturbations)—all in real time. NIR
spectroscopy has a rich history of applications in pharmaceutical
and medical fields. Water, however, with its NIR characteristic
spectrum was often seen as a problematic component and
the common source of measurement error, because it could
alter sample spectra, hide weak absorbance bands and shift
other absorbance bands (Ciurczak and Igne, 2014). In fact,
water is cited as one of the main disadvantages of NIR

spectroscopy in pharmaceutical applications since it prevents a
direct quantification (Jamrógiewicz, 2012).

Traditionally, water bands in the NIR region around 1,440 nm
(the first overtone of OH stretch) and 1,940 nm (a combination of
OH bending and stretching) have been very useful in the studies
of the state of water in various samples (Ozaki, 2002). One of
the major and most common applications of NIR spectroscopy
was moisture determination (Osborne et al., 1993; Reeves, 1995).
NIR spectroscopy has been used to investigate water content,
hydrogen bonds and hydration state in a variety of fields such
as agriculture and food industry, medical and pharmaceutical
sciences, and polymer and textile industries (Ozaki, 2002).

Although some early works on water analysis reported the rich
informational potential of its NIR spectrum (Hirschfeld, 1985;
Iwamoto et al., 1987; Grant et al., 1989; Maeda et al., 1995),
it was only with the development of aquaphotomics that the
properties of water as a “collective matter and energy mirror”
were truly explored (Tsenkova, 2009). The so-called “water
mirror approach” of aquaphotomics utilizes the high sensitivity
of water’s hydrogen bonds, where all the components of the
aqueous system and surrounding energies influence the water
structure, i.e., the covalent bonds. Every aqueous system is a
dynamic arrangement of water molecular network hydrogen-
bonded to other constituents and influenced by perturbations.
Any perturbation of the aqueous system results in changes of
water molecular conformations, which in turn produce changes
in the corresponding NIR spectra at their respective water
absorbance bands. As a consequence of the strong potential of
water molecules for hydrogen bonding, water, a natural matrix
of any aqueous or biological system, changes its absorbance
pattern every time it adapts to a physical or chemical change
in the system itself or its environment (Tsenkova, 2008c). It
is this quality of water that indirectly permits measurements
of small quantities or structural changes of other molecules
present in the aqueous system. By tracking the changes of water
absorbance bands in the spectra of aqueous or biological systems,
the information is extracted about not only water structure but
also other components present in water or the state of the system
as a whole (Tsenkova, 2006c, 2007, 2008b, 2009).

Being rapid and non-destructive, NIR spectroscopy is a
powerful technique with an incredible range of applications,
whose horizons have been further expanded by aquaphotomics.
Since its establishment more than a decade ago, aquaphotomics
has grown into a vast and multidisciplinary scientific field,
encompassing many research areas (Table 1). Changes in the
absorption spectrum of water are used for quantification of
the solutes present in water, even when the solutes do not
absorb NIR light at all (Grant et al., 1989; Tsenkova, 2009;
Gowen et al., 2015). This so-called water-mirror approach
enables measurements of concentrations previously impossible
with NIR spectroscopy at ppm levels (Sakudo et al., 2006b;
Tsenkova, 2008b; Gowen et al., 2013; Bázár et al., 2014, 2015),
and even at ppb levels under certain experimental conditions
(Sakudo et al., 2005, 2006b; Tsenkova et al., 2007b; Tsenkova,
2008a,b). Furthermore, the aquaphotomics research of biological
systems introduced a concept of water spectral pattern as
a holistic biomarker (Tsenkova, 2006c, 2007), which relates
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certain structures of water with functionalities of the respective
biological systems, thus opening new directions toward non-
destructive quality monitoring applications and non-invasive
biodiagnosis.

The aquaphotomics research fields have two things in
common. First, water is the common matrix of all the systems
studied. Second, the approach to extract the information hidden
in complex and multidimensional spectra of such systems
requires a specific aquaphotomics methodology developed over
the years and based on rich experience in dealing with a
great variety of aqueous systems. The objective of this paper
is to provide guidance about how to perform aquaphotomics
analysis of NIR data. Using an example dataset of aqueous
salt solutions, each step of the analysis will be explained and
supplemented by similar examples from the existing literature
illustrating how specific steps in data analysis provide new
insights, improve spectral quality, or reveal new information.
The basic methodology explained in this work is applicable to
the analysis of NIR data of any aqueous system, with minor
aqueous system- and purpose-specific adjustments. A step-by-
step explanation of aquaphotomics analysis supplemented by
citations of similar works will provide a solid basic knowledge
about how to start and perform the analysis as well as where
to look for further information. It is the hope of the authors
that, with this new tool at the disposal of scientists and
chemometricians, pharmaceutical and biomedical spectroscopy
will utilize the richness of NIR water spectra to extend its
applications far beyond moisture determination, leading to a
substantial progress beyond the current state of the art.

GLOSSARY OF AQUAPHOTOMICS TERMS

This glossary is intended to define the terms and certain
abbreviations commonly used in the aquaphotomics literature,
which will appear throughout this paper. New terminology has
emerged over time and with the development of aquaphotomics
and the resulting need to better describe its subject of exploration
using newly discovered knowledge. The origin and definitions for
the terms are compiled from several sources, which are listed in
the respective columns of Table 2.

With the main terms explained, we can now formulate
the objective of aquaphotomics analysis i.e., the water mirror
approach to analyze aqueous systems as a whole, using their
multidimensional spectra and focusing on water absorbance
bands located at specific regions, allows observation and
absorbance measurements. When activated water absorbance
bands are found in response to some perturbation of interest,
then a water absorbance spectral pattern caused by the respective
perturbation is identified. By compiling water absorbance
patterns in an aquaphotome, aquaphotomics builds up a
comprehensive database of the states of the analyzed system
as a whole, in terms of identified water structures shaped by
various internal or external perturbations. In future applications,
aquaphotome database will provide a rapid identification of
causes for changes and influences on the system based on
the recognized water spectral patterns, which serve as holistic

markers of the state of the aqueous system or biomarkers in the
case of biological systems (Tsenkova, 2006c; Kovacs et al., 2016).

AQUAPHOTOMICS METHODS

Basic Workflow and General Guidance
The basic workflow of aquaphotomics analysis from the
experimental design to the final act of building an aquaphotome
is illustrated in Figure 1. Similar to every conventional NIR
spectroscopy work, everything starts with a proper experimental
design and instrumental setup.

Although NIR spectroscopy, in general, does not require
sample preparation, there are some specific aspects in
aquaphotomics experimental design requiring more attention.

First of all, it is an absolutemust to ensure that the instruments
have high-quality spectral signals. In general, not all spectrometer
systems are suited for aquaphotomics experiments. It is advisable
to check the instrument’s performance beforehand to ensure the
high quality of the spectra in the entire Vis-NIR region (400–
2,500 nm). All subsequent analysis will be highly influenced by
the quality of raw spectral data. It is therefore of the utmost
importance to evaluate raw spectra prior to any real experimental
work. The basic analytical procedures for detecting errors of NIR
data and evaluation of signal quality have been recently provided
in an extensive study performed by Bazar et al., which tested and
compared the performance of three spectrometer systems (Bazar
et al., 2016). This paper can be used as a general guidance on
how to test the quality and performance of NIR instrument before
venturing further.

Ensuring good spectral quality is particularly important since,
in addition to the already known complexity of NIR spectra
due to the overtone and combination modes resulting in broad
bands, the changes in the spectra of aqueous systems caused
by some perturbation of interest are small and subtle. The
useful information may end up being buried in noise if the
instrument does not provide a high signal-to-noise ratio. Another
prerequisite is the use of a high-resolution instrument. Water
absorbance bands in the NIR range are usually located very close
to each other, so high spectral resolution of 0.5 or 1 nmwill ensure
an optimal detection and separation of the bands in a subsequent
analysis.

An experiment should be carried out according to previously
defined protocols to ensure the same environmental conditions.
The purpose of carefully designed and established protocols is
to minimize the influence of unknown factors that may affect
sample spectra.

The specificity of experimental design may vary depending
on the type of aqueous system involved; however, the design
must ensure that each sample is presented with several replicates
(sample replicates) and each measurement is performed by
using several consecutive illuminations (consecutive replicates,
consecutive spectra). Collecting and averaging multiple scans
is part of the standard practice to remove noise—recoding
64 or more scans per one spectrum reduces the noise levels
significantly (Manley, 2014). Measuring liquid samples should
always start with pure water (18.2 M�·cm) and all subsequent
measurements should be done with a cuvette always placed in
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TABLE 1 | Fields of aquaphotomics applications.

Application References

Fundamental biochemical
studies of water solutions

Sugars (Bázár et al., 2015; Cui et al., 2017a), proteins (Tsenkova et al., 2004; Chatani et al., 2014), DNA (Goto et al., 2015), salts
(Gowen et al., 2013, 2015), alkali-metal halides (Kojić et al., 2014), acids (Omar et al., 2012), and metal ions (Sakudo et al., 2006b;
Tsenkova et al., 2007a; Putra et al., 2010)

Water quality Water filtration process (Cattaneo et al., 2011), detection and quantification of pesticides (Gowen et al., 2011), discrimination of
mineral waters (Munćan et al., 2014), detection of contaminants (Gowen et al., 2015), and holistic water monitoring (Kovacs et al.,
2016)

Food quality Various foodstuff (Gowen, 2012), cheese (Atanassova, 2015), honey (Bázár et al., 2016), mushrooms (Gowen et al., 2009a), bacteria
in food (Nakakimura et al., 2012), milk (Tsenkova, 1994; Tsenkova et al., 2001a,b), and food packaging influence (Cattaneo et al.,
2016; Barzaghi et al., 2017)

Materials and nanomaterials Soft contact lenses (Munćan et al., 2016b; Šakota Rosić et al., 2016) fullerene based nanomaterials (Matija et al., 2012, 2017), and
polystyrene particles (Tsenkova et al., 2007b)

Microbiology Bacteria (Nakakimura et al., 2012; Remagni et al., 2013; Slavchev et al., 2015, 2017),and HIV virus (Sakudo et al., 2005)

Plant biology Mosaic virus detection in soybeans (Jinendra et al., 2010), and abiotic and biotic stress (Jinendra, 2011)

Animal medicine Mastitis in cows (Tsenkova et al., 2001a,b,c, 2005; Tsenkova and Atanassova, 2002; Atanassova et al., 2009; Meilina et al., 2009),
udder health (Tsenkova, 1994), ovulation period in Bornean orangutan (Kinoshita et al., 2016), ovulation period in giant pandas
(Kinoshita et al., 2010, 2012), estrus detection in cows (Takemura et al., 2015), and tissue discrimination (Sakudo et al., 2006a)

Human medicine DNA mutations (Goto et al., 2015), HIV virus detection (Sakudo et al., 2005), tissue discrimination (Sakudo et al., 2006a), the state of
metals in tissues (Sakudo et al., 2007), prion protein disease (Tsenkova et al., 2004), skin cream effects (Matija et al., 2013) dialysis
efficacy monitoring (Munćan et al., 2016a), colorectal cancer diagnostics (Munćan et al., 2016a)

the same position (the same side). The same cuvette should be
used throughout the experiment. It should be first rinsed at least
in triplicate with sample before final filling. After that, it is placed
in the sample holder and allowed to equilibrate before scanning
in order to minimize inter-sample variation.

Reference measurement (blank air) should be done before
each sample measurement. The order of sample measurement
and sample replicates should be completely randomized; but
pure water should be always scanned after a previously defined
number of samples (e.g., every 5, 7, or 10 sample measurements).
There are two reasons formeasurements of pure water in between
samples. First, these spectra are used as an environmental
control, monitoring known and unknown influences on water
and could later be used to correct or remove unwanted
influences from sample spectra. Second, it builds a large library
of pure water spectra. There are many advantages of building
such a library—it contains the spectra of pure water under
various changing conditions over a longer period of time under
different temperatures, humidity conditions and various day-
to-day variations of the instrument and working environment.
Building such a database has been proved very useful for
correction in general NIR applications (Tillmann and Paul,
1998). In addition, a novel method for enhancement of spectral
signals has been recently developed, which also relies on building
a similar library (Kojić et al., 2017).

It is also advisable to monitor and log major external
influences such as laboratory temperature, atmospheric pressure
and humidity, as well as sample holder temperature or cuvette.
Measuring and logging external parameters can be very useful for
identification of major sources of spectral variation as well as for
exploration of the dynamics of different aqueous systems under
the same environmental perturbations.

As opposed to traditional NIR spectroscopy, which places
emphasis on the control of the environment during the

measurements, “perturbation” is often used in aquaphotomics
and is sometimes even a necessary component of experiments,
which helps in revealing hidden information. The analysis of
aqueous systems’ spectra under the influence of some chosen,
intentional, perturbation can be defined as an evaluation of
the system by applying changes to the selected parameters and
re-estimation of the results (Tsenkova, 2007). In practice, the
most frequently used perturbations to induce changes in the
respective systems are changes in temperature (Gowen et al.,
2013; Chatani et al., 2014; Putra et al., 2017; Wenz, 2018),
consecutive illuminations (Tsenkova, 2005; Chatani et al., 2014;
Wenz, 2018), and changes in dilution (Gowen et al., 2013; Wenz,
2018). Other types of perturbations can also be used to test
the robustness of the models developed. Besides temperature
perturbation, for example Putra et al. (2017) and Meilina et al.
(2011) introduced perturbations by differentmetal ions to test the
regression model developed for the measurement of cadmium
concentrations in aqueous solutions. The use of intentional,
artificially created perturbations provides a change in entropy
and leads to the revelation of hidden spectral information
(Tsenkova, 2006c). A recent work by Wentz on water in model
membranes employed four types of perturbation in the same
work in order to probe and thoroughly examine changes in
the water matrix [i.e., temperature, consecutive illuminations,
concentration (dilution)], and difference in molecular structure
of phospholipids (fourteen identical carbon acyl chains but
with polar heads differing in the presence of an hydroxyl
or a choline group) (Wenz, 2018). The most frequently
used intentional perturbations (consecutive illuminations or
increasing temperature) result in similar changes in water
matrix—an increase in the number of free water molecules,
which are then available for “scanning” of the rest of the
system; in other words—to interact with its components, which
results in changes in sample spectra and provision of additional
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TABLE 2 | Glossary of aquaphotomics terms.

Term Definition

Water Mirror Approach
(Tsenkova, 2008b, 2009)

Aquaphotomics spectral analysis is often called “water mirror approach” because of the indirect manner of acquiring information
about solute composition or surroundings of the aqueous system, namely by measuring the changes in absorbance at water
absorbance bands in the spectrum of the aqueous system (Tsenkova, 2009).

WAMACS - Water Matrix
Absorbance Coordinates
(Tsenkova, 2009)

The WAMACS are spectral ranges, where specific water absorbance bands related to specific water molecular conformations (water
species, water molecular structures) are found with the highest probability (Tsenkova, 2009). For the first overtone of water
(1300-1600nm), 12 WAMACs (labeled Ci, i=1, 12) have been experimentally discovered (each 6-20nm width) and they have been
confirmed by overtone calculations of already reported water bands in the infrared range (Tsenkova, 2009).

WABS – Water Absorbance
Bands (Tsenkova, 2009)

Studies in the infrared range have identified the absorbance bands of numerous water species (Buijs and Choppin, 1963; Fornés and
Chaussidon, 1978; Doster et al., 1986; Maeda et al., 1995; Sartor et al., 1995; Luck, 1998; Czarnik-Matusewicz et al., 1999; Heiman
and Licht, 1999; Murayama et al., 2000; Segtnan et al., 2001; Chandler, 2002; Cupane et al., 2002; Šašić et al., 2002; Robertson
et al., 2003). When their overtones are calculated, it is confirmed that together with already known bands, these bands occur within
the whole Vis-NIR range (Tsenkova, 2005). So far, the spectral database of water absorbance bands has more than 500 bands in the
area of the first, second and third overtones of water (Tsenkova, 2009; Tsenkova et al., 2015). The systematization of already
identified and discovery of new water absorbance bands related to specific water species structures is one of the ongoing
aquaphotomics endeavors.

Activated water bands When a certain perturbation of interest is shown to produce the changes at specific water absorbance bands, and when this is
determined consistently and repeatedly throughout the aquaphotomics analysis, these water absorbance bands are considered
“activated” by the respective perturbation.

WASP–Water Absorbance
Spectral Pattern (Tsenkova,
2009)

The combination of the activated water bands caused by a certain perturbation defines water absorbance spectral pattern, which
describes the condition of the whole aqueous system. WASP can contain huge amounts of chemical and physical information about
the respective aqueous system and can be thought of as a holistic marker because it captures the structure and dynamics of the
respective system as a whole. At the moment, even without the assignment and understanding of water absorbance bands, WASPs
can be used as holistic (bio) markers for system functionality.

Aquagrams (Tsenkova,
2010)

An aquagram is a novel graphical representation of data, invented to present in a succinct manner a water absorbance spectral
pattern – WASP (Tsenkova, 2010).

Aquaphotomes (Tsenkova,
2009)

An aquaphotome is the entire complement of water molecular structures produced by aqueous or biological systems in different
conditions. It can be defined as a comprehensive database of all water spectral patterns with the interpretation of their functionality
given a particular set of conditions of the respective system, (Tsenkova, 2009). Every aquaphotome is system-specific. Once a large
database of characteristic water bands has been acquired, they can be related to specific biological functions and subsequently used
for prediction, diagnosis, and understanding of biology, chemistry and physics of biological and aqueous systems (Tsenkova, 2009).

information. Regarding unintentional perturbations, it is always
advisable to investigate what perturbations (i.e., factors) have an
influence on the developed models. These perturbations may
include individual differences or the presence of disease in the
case of biological systems studied, or even sample thickness
(Tsenkova, 2004).

The first step of analysis begins with the inspection of raw
spectral data. Although NIR spectra of aqueous systems are
comprised of broad, overlapping spectral bands, visual spectral
inspection still remains a vital step before any further data
analysis. Visual inspection gives the first clues about the presence
of outliers, helps in deciding what preprocessing steps to proceed
with, gains a general insight into how samples are grouped and on
what spectral regions to focus the attention. All the subsequent
steps—data preprocessing, conventional spectral analysis and
chemometrics application, which will be described in more
detail later-serve to extract the information of interest. From
the aspect of conventional data analysis—with building, testing
and validation of a model—either qualitative or quantitative,
depending on the objective of the experiment, the work is
done when suitable prediction accuracy is achieved. However,
this is only half of the work done in an aquaphotomics
analysis. Each step of the analysis—raw data inspection,
preprocessing, conventional and chemometrics analysis (an array
of exploratory, classification and regression analysis)—provide

certain quantitative outputs like derivatives, subtracted spectra,
regression vectors or loading vectors, discriminating power and
others, which all unravel water absorbance bands most affected
by perturbation of interest (WABS, Figure 1).

The NIR spectra of aqueous systems are very complex, and
changes in their absorbance spectra caused by some perturbation
will usually be very subtle, but nonetheless persistent and
consistent. From all the WABs discovered during multiple steps
of aquaphotomics analysis, a noticeable pattern of repeating,
common absorbance bands will emerge to reveal perturbation-
induced water absorbance bands i.e., how and what water
molecular conformations are affected. When this absorbance
spectral pattern water absorbance pattern (WASP) is recognized,
it can be presented in a simple, yet concise and informative
manner by using aquagrams. This aspect of aquaphotomics
analysis adds one more dimension to the results obtained in
that it provides understanding of the water functionality in the
respective system. It allows linking discovered WASPs with the
conditions of the aqueous systems analyzed, revealing how and
why water changes the way it does under certain perturbation.
This is of special importance for living, biological systems. The
storing of WASPs into a large aquaphotome database allows
for a fast comparison and identification of the state of aqueous
or biological systems, thereby in essence providing biodiagnosis
based on the state of water.

Frontiers in Chemistry | www.frontiersin.org 5 August 2018 | Volume 6 | Article 363

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tsenkova et al. Aquaphotomics Methods

FIGURE 1 | An overview of the aquaphotomics basic methodology for design, performance and analysis of experimental data with the aim of extracting water
spectral pattern for the defined perturbation.

Aquaphotomics Analysis of Potassium
Chloride Solutions—A Worked-Out
Example
To better illustrate the working process of aquaphotomics
analysis, we will present an example of analysis performed on
the spectral dataset of aqueous solutions of potassium chloride
in the next sessions. The perturbation of the water matrix by salt
and measurement of salt concentration are already available in
aquaphotomics literature (Gowen et al., 2015) and even in very
early near infrared spectroscopy applications (Grant et al., 1989).
We have chosen this perturbation since it perfectly illustrates the
aquaphotomics water-molecular and energy mirror concept in
that the salts are practically transparent for NIR light. Therefore,
the results obtained thereby are based entirely on the changes
in the water molecular matrix. Experimental condition will be
described next.

Materials and Methods

Sample preparation
Potassium-chloride (KCl, M = 74.56 g.mol−1, purity ≥ 99.0%
w/w, Wako Pure Chemical Industries, Ltd. Kobe, Japan) was
used.

All samples were prepared by using deionized water from a
Milli-Q water purification system (Millipore, Molsheim, France).
A stock solution of 100mM was prepared at first. Working
solutions were made by serial dilution of the stock solution in
10-mM steps to produce the following KCl concentrations: 10,
20, 30, 40, 50, 60, 70, 80, and 90mM. All samples of the stock
and working solutions were freshly prepared in two independent
sample replicates (i.e. a total of 20 samples for the analysis).

NIR spectra collection
Transmittance spectra of KCl aqueous solutions were acquired
by using a FOSS-XDS spectrometer (FOSS NIRSystems, Inc.,
Hoganas, Sweden) equipped with a Rapid Liquid Analyzer
module consisting of a temperature-controlled cuvette holder.
The temperature of the sample holder was kept constant at

28◦C during all measurements. This temperature was chosen
to be close to the ambient temperature (ca. 28◦C), allowing
a fast and easy way of maintaining constant temperature
during measurements. Each sample was firstly incubated in
the sample holder for 90 s before scanning to get the required
temperature of 28◦C. Deionized water samples were measured
as an environmental control for every five sample measurements.
Spectral acquisition order was randomized with respect to salt
concentration. The 1-mmpath length quartz sample cell was used
as a container.

The spectra were acquired in the range of 400–2,500 nm, with
a resolution of 0.5 nm. Each saved spectrum was an average of
32 successive scans. This number of scans was chosen to shorten
the acquisition time. Three consecutive spectra were recorded
for each sample and for each measurement. The reference
spectrum was recorded before each measurement. The spectral
data were transformed to pseudo-absorbance units (logT−1,
where T = transmittance). One sample was represented by six
spectra in total, from two independent sample replicates and
three consecutive spectra. The total number of recorded spectra
was 75 (10 concentrations× 2 sample replicates× 3 consecutive
scans+ 15 control scans of deionized water).

The FOSS-XDS instrument was operated by using VISION 3.5
software (FOSS NIRSystems, Inc., Hoganas, Sweden).

Data analysis
For the purpose of this paper, the data analysis of KCl solutions
was performed by using only the wavelength range from 1,300 to
1,600 nm, which represents the absorption region of OH bonds
of water (1st overtone of OH).

Smoothed spectra were calculated by using a Savitzky-Golay
polynomial filter (2nd order polynomial fit and 21 points).
Difference spectra were calculated by subtraction the average
spectrum of deionized water from the average spectra of
potassium-chloride solutions for each concentration level.
The 2nd derivative spectra of potassium-chloride solutions
were calculated by using a Savitzky-Golay filter (2nd order
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polynomial fit and 21 points). Principal component analysis
(PCA) was used to describe multidimensional patterns in
the spectral data and to discover outliers. The relationship
between the actual and predicted concentrations of KCl
was examined by using Partial Least Squares Regression
(PLSR) based on leave-one (concentration)-out cross
validation, i.e., without six spectra of the two independent
sample replicates at a time during the iterative validation
process.

The regression was performed on the previously smoothed
(Savitzky-Golay filter, 2nd order polynomial filter, 21 points) and
multiplicative scatter corrected (MSC) spectra in the spectral
range of 1,300–1,600 nm. The precision and accuracy of the
developed PLSR model were evaluated by the coefficient of
determination (R2) and root mean square error (RMSE) of cross-
validation.

Raw spectra, difference spectra, loading vectors of PCA
analysis, and regression vector of PLSR analysis were examined
in order to find and assign characteristic water absorbance
bands showing considerable changes in response to changes
in KCl concentration. Thus, identified bands were used to
describe water spectral pattern of salt solutions. To visually
represent changes of water spectral pattern as a function of salt
concentration, different types of aquagrams were constructed,
namely classic aquagrams, aquagrams with confidence intervals
and temperature-based aquagrams. The instructions for all
necessary calculations and steps to produce these charts
are explained in a separate section (Water spectral pattern
represented by aquagrams).

All data analysis was performed by using R Project for
Statistical Computing (R Core Team, 2017) (RRID:SCR_001905)
and an “aquap2” package (Pollner and Kovacs, 2016).

Aquap2 Package

The “aquap2” package developed by Pollner and Kovacs
(2016) (free download and instructions available at www.
aquaphotomics.com) provides an easy-to-use data preparation
and analysis tools developed for extending the functionalities
of the R project software to the needs of aquaphotomics. It is
a non-commercial, free-to-use software, which can dramatically
speed up analysis time, especially in the case of large datasets.
It is very flexible and allows an automation of highly repetitive
tasks, while also providing special functionalities not available
in other commercially available chemometrics software, such as
frequently used graph—aquagrams.

Aquap2 package offers the following functionalities:

- Experimental design with randomization of samples, planned
number of replicates, consecutives, and environmental control
samples

- Data import from various file formats suited for a variety of
spectral acquisition softwares

- Fusion of spectral data with data from data loggers monitoring
the environment or sample holders

- Flexible data analysis customized for different grouping /
splitting / slicing of data with encapsulated, i.e., stable color-
coding of samples/groups

- Very flexible data visualization from raw spectra to
automatically detected and labeled peaks in various
multivariate models’ outputs

- A variety of data pre-treatments (e.g., smoothing, standard
normal variate transformation (SNV), multiplicative scatter
correction (MSC), extended multiplicative scatter correction
(EMSC), detrend transformation, derivatives (using different
methods), averaging, resampling, artificial noise loading

- Chemometrics methods: principal component analysis (PCA),
partial least squares regression (PLSR), soft independent
modeling of class analogies (SIMCA) and different versions of
aquagrams

- Different cross-validation and independent prediction options
to support model optimization

THE POWER OF RAW SPECTRA AND
CONVENTIONAL SPECTROSCOPIC
ANALYSIS

With so many chemometrics methods available, one often
neglects the possibility that something can be extracted from
the raw spectra, especially since changes in the water spectra in
the near infrared region are subtle and difficult to observe with
the naked eyes. However, the first, most natural step in all data
analysis is to inspect the raw data.

In the NIR region, the water spectrum consists of four main
maxima located approximately at 970, 1,190, 1,450, and 1,940 nm,
which are due to the second overtone of the OH stretching band
(3ν1,3), combination of the first overtone of the OH stretching
and OH bending band (2ν1,3 + ν2), the first overtone of the OH
stretching band (2ν1,3) and combination of the OH stretching
and OH bending band (2ν1,3+ ν2), respectively (Luck, 1974). All
these regions are informationally valuable. So far, more than 500
water absorbance bands have been identified under these broad
peaks (Tsenkova, 2009; Tsenkova et al., 2015). Depending on
the type of aqueous system, some regions can prove to be more
suitable for analysis and provide more information; hence it is
always advisable to closely examine each of these regions.

Let us now look at the raw, untreated spectra acquired for our
potassium chloride example dataset (Figure 2).

The raw spectra were plotted to visualize the spectral changes
introduced by adding different concentrations of salt to pure
water. Two large peaks (around 1,450 and 1,940 nm attributed to
the first overtone and combination region of OH stretching and
bending vibrations) dominate the spectra of potassium chloride
solutions. It is logical because salts do not exhibit the NIR spectra.
Very small, broad features can also be observed around 1,190 nm.
The region of the combination band shows significant noise due
to the high absorption of water, which far exceeds 3 absorbance
units and will be excluded from subsequent analysis. Further
analysis will be performed only in the region of the first overtone
of water, where for the most part, water absorbance bands can be
clearly resolved and for which good literature sources exist about
the specific assignments of water molecular conformations.

In this stage of data evaluation, two types of calculations
are usually performed: averaging and spectral subtraction. The
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FIGURE 2 | Raw absorbance (logT-1) spectra in the entire spectral range of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of
10–100mM.

averaging can be done across all spectral consecutives and sample
replicates. At this stage, the goal of averaging is to eliminate
the influence of variations, which are not of primary interest,
such as those attributable to different temperatures, humidity, or
consecutive illumination. The average spectra of different groups
of samples calculated this way will better reveal differences
among different sample groups. However, the averaged spectra
are influenced by outliers, so some measures of detecting and
eliminating them should be taken before this step.

The next step is a spectral subtraction, which produces
difference spectra. This is a very effective way for detection of
subtle differences between the two spectra (Ozaki et al., 2003).

There are many approaches to spectral subtraction, and the
simplest, classical approach is to subtract from the average
spectrum of all samples, the averaged spectrum of pure water
measured as a control during the experiment or of the solvent.
This is the most simple and efficient method of bringing
immediately a better visualization and observation of the water
bands hidden under broad overtone and combination peaks.

Another subtraction method, recently developed, proposes
a “closest spectrum” subtraction (Kojić et al., 2017). This
subtraction method involves creating all the possible pairs of
differences (solution—pure solvent) and finding the closest
spectral pair (minimal difference) based on the smallest area
under the curve of the difference spectrum. Thus, the found
spectrum, the “closest spectrum,” is then subtracted from
the remaining spectra. Pure solvent spectra can be acquired
during the experiment or found in a library of solvent spectra
which must be previously created by performing an acquisition
under various, mainly temperature, perturbations. This method
provides, on average, a 4-fold increase in precision as compared
to traditionally used average spectrum subtraction (Kojić et al.,
2017).

Another way of enhancing differences is to calculate the
difference spectrum along some perturbation of interest. This
type of subtraction can reveal water absorbance bands activated
by a particular perturbation. This simple approach, for example,

allowed an immediate identification of main differences in the
water structure between the groups of bacterial cultures S. auerus
and E. coli (Nakakimura et al., 2012). In addition, in the study
of the effect of soybean mosaic virus, the difference spectrum
between the average spectra of healthy and diseased plants
clearly revealed water absorbance bands due to virus-induced
changes (Jinendra et al., 2010). Another example can be found
in a study of the spectral behavior of mushrooms subjected to
physical perturbation by different levels of mechanical vibration
(Gowen et al., 2009b). The difference spectra obtained by
subtracting the averaged spectrum of undamaged mushrooms
from averaged spectra of damaged mushrooms subjected to
different perturbation levels revealed sharp features around
1,398 nm for the two highest level of perturbations, which
corresponds to absorption of free single water molecules trapped
by ions (Kojić et al., 2014) at the mushroom surface originated
from physically damaged cell walls.

Another highly efficient approach in revealing different
water dynamics in samples is a subtraction of the 1st
consecutive spectra from all other consecutive measurements.
This subtraction technique was first applied in a study of different
prion protein isoforms in water solutions (Tsenkova et al., 2004;
Tsenkova, 2005), when it was shown for the first time that
illumination changes the water system and each consecutive
spectrum of the sample is influenced by light absorption. The
effect of absorbed photons on water molecular systems increased
a number of free watermolecules available to interact with solutes
in the aqueous system, performing “scanning” of solutes and
the rest of the water molecular system resulting in changes of
the corresponding spectra. In this way, additional information
can be extracted, which is especially beneficial when the aqueous
systems analyzed are very similar. In the case of the prion protein
study, this approach revealed drastic differences in the free O-
H absorbance bands and superoxides for different prion protein
isoforms (Tsenkova et al., 2004; Tsenkova, 2005).

The spectra transformed as just described can also be further
analyzed by using other data-mining approaches.
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SPECTRAL
PREPROCESSING—IMPROVING AND
ENHANCING SPECTRAL INFORMATION

The fundamental problem, not only in aquaphotomics
analysis but also generally in all spectral analysis, is how to
extract the useful information hidden in the complex spectral
measurements. The objective of preprocessing is to enhance
the information of interest, and decrease or remove unwanted
influences on spectral signals.

The spectral preprocessing methods include mathematical
pretreatments, such as centering and normalization (mean-
centering, standard normal variate transformation (SNV)(Barnes
et al., 1993); noise-reduction methods, such as smoothing or
wavelet transform (Patil, 2015); baseline correction methods
which include de-trending (Barnes et al., 1989); multiplicative
scatter correction (MSC) (Dhanoa et al., 1994); extended
multiplicative scatter correction (EMSC) (Martens and Martens,
2001); and spectral derivatives which, in addition to baseline
correction, also resolve overlapping peaks.

Spectral patterns collected are usually affected by noise or
instrumental variations that may have a detrimental effect on
further analysis and conclusions that may be drawn (Gowen and
Amigo, 2012). The weakly absorbing bands in the NIR region
are far more affected as compared to the stronger ones. The
best approach in ensuring high-quality and noiseless spectra,
begins with the conditions of spectral collection which should
be carefully controlled. Usually, collecting and averagingmultiple
scans successfully reduce the noise. However, some level of
noise should be expected so that the common practice is to use
smoothing techniques (Manley, 2014).

The most common de-noising techniques used in
aquaphotomics methods are based on the Savitzky–Golay
approach (Savitzky and Golay, 1964), which fits the spectral
pattern to a polynomial function (second-order polynomial) in
a step-wise manner. Continuous wavelet transform (CWT) is
also one of the de-noising techniques, proved to be very efficient
for processing analytical signals (Shao et al., 2003), and is of
recently frequently used for enhancing spectral resolution and
background removal in aquaphotomics works (Shao et al., 2010;
Kang et al., 2011; Shan et al., 2015; Cui et al., 2016).

Mean centering of spectra is a pre-processing technique
mostly used with principal component analysis (Agelet and
Hurburgh Jr, 2010). It involves a subtraction of the average
spectrum from the entire dataset, which results in reduced
number of variables and complexity of subsequently built models
(Manley, 2014).

Apart from random noises, the spectra of aqueous systems
often exhibit baseline variations (in slope and offset) due to
the scattering originated from differences in sample surface
or particle size variations (Ozaki et al., 2003). Baseline offset
problems are commonly solved by the application of SNV or
MSC corrections methods. MSC is a better choice for correction
when variations in the spectral slope are also present as a result
of additive variation, which increases with wavelength due to
the scattering present in samples. The disadvantage of MSC
transformation is that it is sample-dependent; hence any change

in the sample set requires a recalculation of all MSC related
subsequent calculations (Dhanoa et al., 1994).

Detrending is also a possible choice for correction of baseline
shift and curvilinearity. This method consists of modeling the
baseline as a function of wavelength with a second-degree
polynomial and a subsequent subtraction of this function from
each spectrum individually.

With correction for baseline variations, one should be careful
as sometimes they can contain information of interest. For
example, in a study of prion protein isoforms, the benefit of
multiplicative scatter correction was 2-fold. First, it confirmed
the presence of scattering for one isoform of prion protein,
which helped better understanding of its interaction with water
by explaining that an increase in bulk water and changes in
protein structure are the cause of scattering. Second, when
correction for the scattering was applied, a subsequent analysis
revealed differences in different protein isoforms not related
to the scatter (Tsenkova et al., 2004). However, in a problem
of somatic cell count determination, removal of the baseline
variation by application of the second derivative transformation
led to a diminished accuracy of prediction of somatic cell count
in milk, leading to the conclusion that the baseline correction
removed significant information (Tsenkova et al., 2001a).

The use of derivation as a pre-processing technique for
NIR data is quite common. There are two ways of calculating
derivatives: the Norris–Williams derivation (Norris and
Williams, 1984) and Savitzky–Golay derivation (Savitzky and
Golay, 1964). Derivatives can solve two basic problems with
NIR spectra of aqueous systems: overlapping peaks and large
baseline variations. The effect of derivatives is most clearly seen
in the second derivative of a spectrum, which is able to separate
overlapping bands. The second effect of the second derivative
is removal of baseline shifts (Williams and Norris, 1987; Heise
and Winzen, 2002). Two side effects of the derivatives are the
loss of the original shape of a spectral curve, which may result
in a difficult data interpretation and a reduction in signal-to-
noise ratio. Choosing window size when performing derivatives
should also be done with caution in the case of spectra of aqueous
systems because this parameter influences a number of points
in the resulting spectral vector (Rinnan et al., 2009), which may
lead to a wavelength loss and a subsequent loss of information
about some water bands.

Iwamoto et al. (1987) showed that the derivative
transformation of spectra was a useful method of separating
multiple absorptions in broad spectral peaks of water and used it
successfully to better understand the state of water in foodstuffs.
In aquaphotomics applications, the second derivative is a very
popular and efficient approach for discovering activated water
absorbance bands that are not visible in the original spectrum
(see for example Jinendra et al., 2010; Jinendra, 2011; Kinoshita
et al., 2012; Bázár et al., 2016; Kovacs et al., 2016).

Let us now look at the examples of application of these
preprocessing steps on the spectra of potassium chloride
solutions. The smoothed spectra were calculated by using a
Savitzky-Golay filter (2nd order polynomial fit and 21 points)
and presented in Figure 3. Only the area of the first overtone
1,300–1,600 nm is plotted to provide a better visualization of
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how smooth the spectra should look. Next, a subtraction of the
average spectrum of Milli-Q water from all the averaged spectra
of potassium-chloride solutions was done and is presented in
Figure 4.

The subtracted spectra reveled the existence of at least
two major peaks under the broad overtone spectral curve of
potassium-chloride solutions around 1,412 and 1,500 nm. It is
also possible to observe a slight peak shift at 1,412 nm with
increasing salt concentration.

The 2nd derivative spectra of potassium-chloride solutions
were calculated by using a Savitzky-Golay filter (2nd order
polynomial and 21 points) and presented in Figure 5. The
second derivative spectra also indicate an existence of the band
at 1,412 nm and we can also see the second band located at
1,462 nm.

With these simple preprocessing steps, we have so far
identified at least two water absorbance bands activated by salt
perturbation.

CHEMOMETRICS- THE IMPORTANCE OF
CONSISTENCY

Similar to the classical spectroscopy, the use of chemometrics
methods is a crucial part of the aquaphotomics data analysis
as well. It includes many well-known exploratory, classification
and regression methods depending on the objective of the
experiment.

Principal components analysis (PCA) (Cowe and McNicol,
1985) is one of the most useful and probably mostly commonly
used exploratory technique in spectroscopy during the early
stages of data analysis. Its objective is to determine a possible
relationship between samples, i.e., to provide the first clues
about major directions and sources of variation in the dataset. It
compresses data by constructing new variables and the results are
presented in scores and loadings plots. The scores plots visualize
the spectra in the form of scores in the transformed space
of newly constructed variables—principal components, while
the corresponding loadings plots denote the contributions of
original variables—wavelengths. The novelty of PCA application
in aquaphotomics analysis is that a particular attention is given
to the analysis of all loading vectors as they can reveal activated
water absorbance bands.

PCA in the case of our salt dataset was used to describe
multidimensional patterns in the spectral data and discover
outliers. PCA data presented in the scores (Figures 6, 7) and
loadings plots (Figure 8) reveal major sources of variation in
the data. The first two principal components describe more than
99.9% of variation in the dataset. The first principal component,
whose loading shows two dominant features (a peak positive
peak at 1,415 nm and a negative peak at 1,498 nm), is related
to changes in water matrix caused by consecutive illumination.
This effect is similar to that of temperature (Segtnan et al., 2001)
in that free or weakly hydrogen bonded species absorbing at
1,415 nm increase at the expense of strongly hydrogen bonded
water molecules absorbing at 1498 nm. The second principal
component, which explains 11.403% of variation, shows the

influence of concentration. It can be seen from the PC1-PC2
scores plot that while the scores move toward the negative part of
the PC2 with increasing concentration, the pure water scores are
entirely located in the positive part of this PC. The loading vector
of PC2 presented in Figure 8 reveals major water absorbance
bands affected by the presence of salt in water i.e., 1,402, 1,444,
and 1,530 nm. Regarding loading vectors, it is very important to
look at all PC loadings since changes in water are very subtle
and might be also described by a higher number of PC loading
vectors.

The next steps of the analysis depend on the objective of
the experiment. They can involve classification methods to
group samples together according to their spectra, or regression
methods to link sample spectra to some quantifiable properties
(Roggo et al., 2007).The application of these methods in
aquaphotomics analysis does not differ much as compared to the
classical NIR applications. However, the unique characteristics
for the aquaphotomics approach are as follows.

First, the initial step of the aquaphotomics approach involves
qualitative analysis. This step may include the application of
PCA or some unsupervised classification analysis, performed
with the objective of data exploration and better understanding of
spectral variability. This step may even include some preliminary
regression analysis, which can show very poor prediction results
and non-linearity existence. However, it can provide information
about the existence of natural clusters of samples indicating
the need for separate modeling for different groups of samples
thus discovered. For example, the most accurate prediction of
milk components such as protein, lactose and fat in cow milk
was achieved when the models were separately built by using
milk spectra from healthy and mastitis animals (Tsenkova et al.,
2001a,c). A subtraction of the averaged spectra of these two
groups will give us the first information about the “important”
WAMACS to be used in further analysis. The presence of mastitis
disease (bacterial infection) significantly alters the structure of
water in milk and milk composition, causing non-linearity in the
regression models if the spectra of healthy and mastitis animals
are used together. In this case, separately built regression models
form a part of the aquaphotome database, where a different
regression model is applicable depending on the physiological
status of the animal. In this respect, aquaphotomics does not aim
nor considers it possible to build global models. This is especially
true in the analysis of biological systems that are far too complex
to be described with only one model.

Second, themost important feature of aquaphotomics analysis
is the special attention paid to original and transformed spectral
vectors as well as model outputs. This reveals the contribution
of original variables—wavelengths, to model development and
tracks consistently repeating variables. The identified variables
with high contribution, which constantly repeat through all
the steps of aquaphotomics analysis, are the most informative
ones. For aquaphotomics, these variables are the places in
the spectra, where various water molecular conformations
absorb. Their identification is crucial for better understanding
of the aqueous system and response of its water matrix
to the perturbation. In other words, the variables, which
consistently appear in all aquaphotomics analysis (i.e., in
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FIGURE 3 | Smoothed (calculated with a Savitzky-Golay filter using 21 points) absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone)
of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM.

FIGURE 4 | Smoothed (calculated with a Savitzky-Golay filter using 21 points) average difference absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone) of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM. Average spectrum of
Milli-Q water was subtracted from the spectra of potassium-chloride solutions.

subtracted spectra or transformed spectra, spectral derivatives,
model outputs in the form of PCA loadings, PLSR regression
vectors, SIMCA discriminating powers etc.), are the locations
of water absorbance bands, where spectral variations under
controlled and uncontrolled perturbations could be observed.
If they persistently and consistently appear through all of the
analysis, we can consider these water absorbance bands as
activated.

Let us now look at the PLSR application on our salt
dataset. The regression was performed on previously smoothed
(Savitzky-Golay filter, 2nd order polynomial, 21 points) and
MSC transformed spectra in the spectral range of 1,300–
1,600 nm to build a model for prediction of potassium-chloride
concentration. The results of PLSR analysis are presented in
Figures 9, 10, showing a close correlation and a relatively

low error of cross-validation using five latent variables (r2 =

0.9989, RMSECV = 1.147mM, Figure 9). The main absorbance
bands showing a significant weight in the PLS regression vector
(Figure 10) match very well with those found in the previously
applied methods, and all belong to the ranges of WAMACS
found in the first overtone of water (Tsenkova, 2009). The
favorable prediction results are not surprising since it is well
established that salts influence the spectrum of water and these
changes can be used for prediction of salt concentration (Grant
et al., 1989; Gowen et al., 2015). Because salts do not absorb
the NIR light, these results and the previously mentioned
studies demonstrate the feasibility of aquaphotomics water-
mirror approach. In other words, the absorbance bands of water
can be used to obtain indirectly the information about changes in
solute concentrations.
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FIGURE 5 | 2nd derivative (calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) average absorbance (logT-1) spectra in the spectral range
of 1,300–1,600 nm (OH first overtone) of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM.

FIGURE 6 | PCA analysis of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM derived from the smoothed
(calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) and MSC transformed absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone)—Scores plots for the first two principal components.
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FIGURE 7 | PCA analysis of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM derived from the smoothed
(calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) and MSC transformed absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone)—Scores plots for the first six principal components.

It is worth mentioning that the analysis may include several
more chemometrics methods that can also contribute to the
identification of water absorbance bands activated by the
perturbation of interest.

Employing discriminant analysis such as Partial Least Squares
Discriminant Analysis (PLS-DA) (Martens and Martens, 2001)
for discriminating between solvent and solutions can help in
gaining more insight about how the solutes affect the water
matrix of the solvent. For example, this method was employed to
discriminate between solvent and pesticide–containing solutions
(Gowen et al., 2011). Examination of the regression vectors
of PLS discriminant analysis provides an additional help in
revealing water absorbance bands activated by the presence of
solutes.

Similarly, Soft Modeling of Class Analogies (SIMCA) (Wold
and Sjöström, 1977) can be employed for the same purpose.
The discriminating power of SIMCA analysis, in that case,
reveals water absorbance bands with the highest discriminating
power which distinguishes between pure solvent and solutions.
One such example can be found in an aquaphotomics study
concerned with measurements of different saccharides at
millimolar concentrations (Bázár et al., 2015). Sometimes, both
discrimination methods (SIMCA and PLS-DA) are employed for
the same purpose of discriminating the solvent from the solutions
and the discovery of additional information about activated
water absorbance bands by solutes. In a study concerned
with the detection of UVC damaged DNA, both PLS-DA and
SIMCA were applied to distinguish between non-irradiated and
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FIGURE 8 | PCA analysis of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM derived from the smoothed
(calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) and MSC transformed absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone)—Loadings plot.

FIGURE 9 | PLSR analysis of Milli-Q water and aqueous solutions of
potassium-chloride in the concentration range of 10–100mM derived from the
smoothed (calculated with a Savitzky-Golay filter using 2nd order polynomial
and 21 points) and MSC transformed absorbance (logT-1) spectra in the
spectral range of 1,300–1,600 nm (OH first overtone) built for the prediction of
potassium-chloride concentration: Y fit of training and one-sample-out
cross-validation.

UVC-irradiated DNA solutions (Goto et al., 2015). Applying two
chemometrics methods for the examination of one aspect of
the experimental study demonstrates the stability of the applied
methodology, namely, consistency in results.

Both the SIMCA and PLS-DA methods are naturally used
in most cases when the objective of the study is discrimination

between different samples. For classification and discrimination
purposes in aquaphotomics, the most commonly used methods
are SIMCA and PLS-DA. The SIMCA method was employed,
e.g., for discrimination between healthy andmosaic virus infected
soybean plants (Jinendra et al., 2010), for discrimination between
healthy and mastitic animals based on the spectra of urine, blood
and milk of dairy cows (Tsenkova, 2004), for discrimination
between different brands of commercially available mineral
waters (Munćan et al., 2014), for discrimination of different
bacteria strains (Remagni et al., 2013; Slavchev et al., 2015, 2017)
and others. The PLS-based discriminant analysis was applied
for discrimination between irradiated and non-irradiated DNA
solutions (Goto et al., 2015), discrimination between solvents
and pesticides containing solutions (Gowen et al., 2011), and
discrimination between worn and new soft contact lenses based
on conventional hydrogels (Šakota Rosić et al., 2016).

Quantitative aquaphotomics analysis usually includes partial
least squares regression (PLSR) (Martens and Martens, 2001)
or principal component regression (PCR) (Næs et al., 2002).
The principal uniqueness of the aquaphotomics approach in
the application of these two methods is the utilization of water
absorbance bands for indirect quantification of analytes in water,
which change the water matrix. The feasibility of this approach
was demonstrated in a study whose objective was quantification
of different types of salt in water solutions (NaCl, KCl, MgCl2,
and AlCl3), where the overall detection limit of 1,000 ppm was
reported (Gowen et al., 2015). The experiment was reproduced in
three independent laboratories by using 3 different spectrometer
systems and in different ambient conditions. The reported
detection limit of 1,000 ppm indicates that under specified
conditions, the aquaphotomics approach substantially improved
the detection limit for NIRS (around 5 times) (Pasquini, 2018).

Using an aquaphotomics approach, PLSR gave excellent
results for quantification of various analytes in water solutions
such as sugars [glucose, fructose, sucrose and lactose and their
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FIGURE 10 | PLSR analysis of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM derived from the smoothed
(calculated with a Savitzky-Golay filter using 2nd order polynomial and 21 points) and MSC transformed absorbance (logT-1) spectra in the spectral range of
1,300–1,600 nm (OH first overtone) built for the prediction of potassium-chloride concentration: Regression vector.

mixtures (total sugar and each sugar concentrations)] (Bázár
et al., 2015), insulin protein (Chatani et al., 2014), DNA,
isolated cyclobutane pyrimidine dimers, and UVC-irradiation
dose (Goto et al., 2015). The same approach also provided a
favorable accuracy of measurements in more complex biological
samples, such as human serum albumin (HSA) and γ-globulin
in phosphate buffer solutions (Murayama et al., 1998), urinary
estrone-3-glucuronide (E1G) concentrations in urine of giant
pandas (Kinoshita et al., 2010, 2012), HIV virus in human plasma
(Sakudo et al., 2005), somatic cell counts in cow milk samples
(Tsenkova et al., 2001a; Tsenkova, 2004), as well as fat, lactose,
protein and urea nitrogen content of milk (Tsenkova, 2004).

Very recently, a critical review on NIRS and its modern
perspectives expressed concerns regarding the capability of
aquaphotomics for measurement of analytes in very low
concentrations, given the fact that the concentrations of
5,000 ppm (mg L−1) or 0.5% (w/v) are roughly regarded
as a common limit of quantification for NIRS (Pasquini,
2018). Capability comparison of the traditional NIRS and
aquaphotomics approach is based on an incorrectly assumed
equivalence. While the established limit of detection for the
traditional approach is based on the utilization of absorbance
bands of analytes in the NIR region, the aquaphotomics approach
utilizes water absorbance bands. In this sense, the quantification
of analytes is based on entirely different principles, and as such,
logically offers different limits of detection. Different approaches
and their accuracy of detection were well demonstrated in studies
on the measurement of concentrations of polystyrene particles
in water (Tsenkova et al., 2007b). When the first overtone of
water (i.e., aquaphotomics approach) was used to develop a
model for low concentrations of polystyrene particles in aqueous
suspensions (1 – 0.0001%), the measurements achieved a high
accuracy even in the case of very low concentrations. However,
when the traditional approach was applied and measurements
were based on the polystyrene band near 1,680 nm (C-H
stretching from aromatic C-H (2ν) (Workman, 2016)—i.e.,

decreasing particle concentration led to a substantial decrease in
accuracy of prediction.

Aquaphotomics can work with very water-rich systems. The
intensity of water bands in the NIR spectra of such systems is
much stronger than that of any constituent (Tsenkova, 2004),
especially if they are in very low concentrations. The possibility
of detecting and measuring such low concentrations arises from
the fact that every molecule of analyte is hydrated with an
abundance of water molecules, which adapt to its structure
and assume various conformations that can be observed based
on their respective absorbance bands in the NIR region. Since
many water molecules are involved with hydration of just one
molecule of analyte, the water acts as a sort of amplifier, and
instead of measuring analytes directly, the information on their
concentration is obtained indirectly by measuring changes in
always abundant solvent molecules.

NIR spectroscopy as a non-destructive tool offers the
advantage of in vivo spectral monitoring of living objects.
Aquaphotomics combined with time-resolved NIR spectroscopy
allows a better understanding of biological functions and
underlying water dynamics.

One of the excellent methods for exploring water dynamics
is generalized two-dimensional (2D) correlation spectroscopy
(Noda et al., 1995; Liu et al., 1996). In 2D correlation
spectroscopy, an external perturbation is applied to a system
during spectral measurements, which enables exploration of
spectral signals as a function of time or perturbation level (where
perturbation can be a number of consecutives, temperature,
concentration etc.). This method has significant advantages over
one-dimensional spectra. Spreading the spectral region over
another dimension allows a deconvolution of overlapped bands
and monitoring a specific order of spectral intensity changes.
Moreover, 2D correlation spectroscopy offers the possibility
of investigating various intra- and inter-molecular interactions
through selective correlation of peaks. This technique, in addition
to PCA, considerably contributed to the understanding of the

Frontiers in Chemistry | www.frontiersin.org 15 August 2018 | Volume 6 | Article 363

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tsenkova et al. Aquaphotomics Methods

structure of liquid water (Segtnan et al., 2001). Furthermore, it
was applied for extraction of useful information fromNIR spectra
of protein aqueous solutions during heat-induced denaturation
of ovalbumin (Wang et al., 1998) and acid-induced denaturation
of human serum albumin (Murayama et al., 2000). The method
can be applied even in the case of complex biological fluids
such as milk (Czarnik-Matusewicz et al., 1999; Tsenkova, 2004)
or complex biological samples such as fruits (Giangiacomo
et al., 2009). 2D correlation analysis was also employed for the
investigation of wafer etchant solutions composed of several
inorganic acids (HCl, H2SO4, H3PO4, and HNO3) (Chang et al.,
2018). This study, using a typical water-mirror approach, applied
2D correlation analysis to examine NIR water bands perturbed
by four acids and determined their dissimilar characteristics.
The results showed that components with higher acidity in
single-component samples perturbed water hydrogen bond
network more significantly, and in turn allowed more accurate
concentration measurements. Heterospectral correlation (Noda
and Ozaki, 2004) i.e., investigation of correlation between water
absorbance bands in different regions of the electromagnetic
spectrum (IR and NIR) or by different techniques (NIR
and Raman spectroscopy) can significantly contribute to
the development of aquaphotomics through discovery and
identification of new water absorbance bands. However, it should
be pointed out that there is one inherent weakness of the method,
i.e., high level of sensitivity to noise.

Other approaches for examination of water dynamics are also
often in use. For example, plotting SIMCA interclass distance as
a function of time revealed time-dependent spectral dynamics
of virus infection in soybean plants (Jinendra et al., 2010). The
SIMCA interclass distance between the groups of infected and
non-infected plants showed small values of around 1.2 (2 weeks
after inoculation), then gradually decreased to the lowest value
of 0.8 (3 weeks after inoculation). After this critical point, the
value of interclass distance increased steadily. Thus, revealed
water dynamics mirrored the dynamics of viral infection where,
due to the defense reaction from the plants, the disease impact
was initially suppressed exactly 3 weeks after inoculation. The
same approach was utilized in a study of the ovulation period
in giant pandas (Kinoshita et al., 2010). Interclass distances were
calculated between spectra of urine collected each day in the time
series and urine spectra collected at the first day of investigation
when the female animals had been in an estrous state. This
analysis showed that the SIMCA distance between these two
groups increased simultaneously with an increase in E1G
concentration, a major estrogen metabolite excreted in the urine
during estrus. Another study was concerned with investigation
of protein fibrillation and employed spectral monitoring of water
structural changes in real time during fibrillation of insulin
(Chatani et al., 2014). This study monitored the process of
fibrillation of insulin indirectly by monitoring water molecular
structure dynamics in the region of the first overtone (1,300–
1,600 nm), while the verification of formation of fibrils was
performed by two methods i.e., FTIR spectroscopy and Atomic
Force Microscopy. The PCA analysis of NIR spectra of protein
solutions found that for the first two PCs, score changes can be
mainly attributed to a change in light scattering; however, the

scores of PC3, when expressed as a function of time (in minutes),
showed a time course of changes in water structure coinciding
well with the proposed nucleation, elongation and equilibrium
phase of protein fibrillation (Chatani et al., 2014). It is worth
mentioning that other ways of exploring water dynamics are
possible. For example, expressing SIMCA interclass distance as
a function of consecutive illumination or temperature can reveal
different responses to perturbation in different samples, which
otherwise, without perturbation, may be difficult to discriminate
due to a high similarity. Also, expressing SIMCA interclass
distance between solvent and solutions of varying concentrations,
as a function of concentration, may reveal concentration ranges
in which solutes have structure-breaking and structure-making
effect, thus indicating the need for building separate regression
models for different ranges of concentrations.

Recently, several novel chemometrics methods were
introduced to aquaphotomics studies. Multivariate curve
resolution-alternating least squares (MCR-ALS) was applied to
characterize the effects of temperature and salt perturbations
on the NIR spectra of water in order to gain more insight into
hydrogen bonding (Gowen et al., 2013). This advanced data
analysis technique applies a factor model approach with the
objective of recovering pure concentration and spectral profiles
of the components in complexmixture systems without any prior
knowledge of these features (Czarnecki et al., 2015). To perform
MCR, however, one has to estimate firstly a number of significant
components, usually based on PCA analysis, In contrast to
PCA, MCR can provide results that have actual physical and
chemical meaning (Czarnecki et al., 2015). The “components” in
terms of water structures could be interpreted as the changing
forms of water when perturbations were applied. Three distinct
components were found with varying temperature dependence
in the range 30-45◦C in the region of first overtone of water,
while different salts and salt concentration levels affected the
water hydrogen bonded network in different ways according to
its acidity (Gowen et al., 2013). By resolving different systems
into idealized pure components, MCR-ALS allowed better
examination of water molecular matrix and resulted in the
conclusion that the water structure can be reasonably interpreted
as a multi-state system.

Evolving factor analysis (EFA) was applied for exploration of
hydration and secondary structures of bovine serum albumin
in aqueous solutions (Yuan et al., 2003). Application of this
method allowed an extraction of spectral information, which
indicated significant changes of bovine serum albumin in
secondary structure. The application of independent component
analysis (ICA)was reported in spectroscopic analysis of hydrogen
bonding in water-acetone mixtures for resolving the spectra
to independent components and obtaining their concentration
profiles (Monakhova et al., 2014). A Gaussian fitting method
was applied to study glucose-induced variation of water under
temperature perturbation (Cui et al., 2016). This method, applied
on aNIR difference absorbance spectra (in region 700–1,100 nm),
helped identify and quantify 16 inorganic salts in water in the
concentration range from 30 to 500mM (Steen et al., 2015).

A series of articles were also published on employing
and developing various chemometrics methods specifically for
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FIGURE 11 | Aquagrams without confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the “classic” mode.

FIGURE 12 | Aquagrams with 95% confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the “classic” mode.
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temperature-perturbed samples (Peinado et al., 2006; Shao
et al., 2010, 2018; Kang et al., 2011; Shan et al., 2015; Cui
et al., 2017b). Instead of trying to eliminate the influence of
temperature, a Parallel Factor (PARAFAC) model was used
to extract and separate relevant sources of both physical and
chemical information (Peinado et al., 2006). PARAFAC analysis
was also used to rationalize concentration-dependent peak
shifts and quantification of different water species in acetone
(Andrews et al., 2014), and also for a quantitative analysis of the
NIR spectra of temperature-perturbed mixtures, water-ethanol-
propanol and water-ethanol-glycerin (Peinado et al., 2006).
Multilevel simultaneous component analysis (MSCA) has been
applied to the investigation of a relationship between temperature
and NIR spectra of different samples in different concentrations:
water-ethanol-isopropanol, (Shan et al., 2015) and water-glucose
(Cui et al., 2017a) under temperature-perturbation. This method
was proposed specifically for analyzing multivariate data at
different levels (Timmerman, 2006). The method offers a
unique way to study the composition of solvent, temperature
effect and quantitative analysis (Shan et al., 2015). Cui et al.
tested three high-order chemometric algorithms: multiway
principal component analysis (MPCA) (Wold et al., 1987),
parallel factor analysis (PARAFAC) (Bro, 1997) and alternating
trilinear decomposition (ATLD) (Wu et al., 1998) in the
analysis of temperature-dependent NIR spectra of binary and

ternary water-alcohol mixtures (Cui et al., 2017b). All three
algorithms proved to be very powerful tools for capturing
temperature– and concentration–induced spectral variations,
from which a structural variation could be observed and a
quantitative determination performed. Another work of Shao
et al. proposes mutual factor analysis (MFA) for quantification
based on temperature-dependent NIR spectra (Shao et al.,
2018). In this work, multi-component mixtures were analyzed
for quantification of components and better understanding
of molecular interactions in solutions. From the spectra of
water–glucose mixtures, both spectral variations induced by
temperature and concentration were obtained while serum
samples were used for method validation (Shao et al., 2018).

The ultimate choice of chemometrics method to be applied
in aquaphotomics analysis depends on the type of the aqueous
system explored, spectral dataset and the research objective.
Obviously, there are many chemometric methods available. The
important aspect of every aquaphotomics analysis is emphasis
on consistency so that each preprocessing method, conventional
spectroscopic method or chemometrics method applied to
extract the information from water spectra can contribute
to the development of an emerging aquaphotome. Each step
of aquaphotomics data analysis is important, because it can
contribute to better understanding of the complexity of aqueous
systems, irrespective of chemometrics method applied.

FIGURE 13 | Aquagrams without confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the “temperature-based” mode.
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With reference to our example of potassium chloride
solutions, after examining the raw spectra, difference spectra,
second derivative spectra, loadings of PCA analysis and
regression vector of PLSR analysis, we have identified the
main water absorbance bands activated by the perturbation of
potassium chloride in the concentrations up to 100mM. The last
step of analysis for our worked-out example is to represent water
absorbance spectral patterns using aquagrams.

WATER SPECTRAL PATTERN
REPRESENTED BY AQUAGRAMS

Classic Aquagrams
In data analysis, many situations arise where data visualization
is helpful, even essential, for better understanding. In
aquaphotomics, the need arose for a clear and comprehensive
graphical representation of the water spectral patterns as well
as for their easy comparison. That is why the aquagrams were
introduced (Tsenkova, 2010).

When activated water absorbance bands are found based on
the previously described steps, the last step is to apply MSC
or SNV transformation of the raw spectra, and extract the
absorbance at selected activated water bands. Thus, the calculated
absorbance is normalized and averaged for different samples
or sample groups, and the values are displayed on radial axes

defined by the activated water absorbance bands in a radar
chart.

The normalized absorbance is calculated as follows:

A,
λ =

Aλ − µλ

σλ

(1)

Where A,
λ - is a normalized absorbance displayed on the

aquagram, Aλ- absorbance after multiplicative scatter correction
(MSC) or standard normal variate transformation (SNV), µλ

– mean of all spectra for the examined group of samples after
transformation, σλ – standard deviation of all spectra for the
examined group of samples after transformation, λ – selected
wavelengths chosen for display from activated water absorbance
bands.

An exact number of axes as well as water absorbance bands
will be chosen for display, depending on a specific system
and perturbation; however, the axes always display various
conformations of water molecules, making aquagrams very
convenient tools for a quick insight into the water structure
of the system. For the first overtone of water, the axes of
the aquagram are usually based on previously discovered 12
WAMACs. The aquagrams are visually very convenient to
allow a fast and comprehensive comparison of different systems
or conditions of the same system by comparison of their
WASPs.

FIGURE 14 | Aquagrams with 95% confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the “temperature-based” mode.

Frontiers in Chemistry | www.frontiersin.org 19 August 2018 | Volume 6 | Article 363

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tsenkova et al. Aquaphotomics Methods

As it can be seen from Equation (1), the classic aquagram
is a relative construction, depending on the samples included
in calculation. Also, it is a matter of choice whether the
display of absorbance calculated based on the above equation
is done by using a circular chart (radar chart) or a linear one.
The package aquap2 offers both options (Pollner and Kovacs,
2016).

The more advanced version of a classic aquagram is an
aquagram with confidence intervals (Pollner and Kovacs, 2016).
This aquagram adds one more function, the possibility to
observe whether the differences among WASPs presented in the
aquagrams are statistically significant. This type of aquagram,
in addition to averaged WASPs for selected groups of samples,
displays its confidence intervals with 95% upper and lower
limits, as calculated by using the Bootstrap method for data
validation and uncertainty estimation (Davison and Hinkley,
1997; Pollner and Kovacs, 2016). With this novel function, the
aquagrams with confidence intervals are not only convenient for
visualization, but also especially suitable for classification and
discrimination.

For our example dataset of potassium chloride solutions,
after selecting wavelengths from the WAMACS regions in the
1st overtone of water based on the previous steps of the
analysis, the classic aquagrams without and with confidence

intervals, calculated by using aquap2 package, are presented in
Figures 11, 12.

In both types of aquagrams, it is easy to observe a large
difference between the spectral patterns of water (red line) and
salt solutions. Increasing the concentration of salt in water
leads to increased absorbance in the region between 1,342 and
1,374 nm which corresponds to C1, C2, and C3 WAMACS,
i.e., absorbance of the free OH stretch (OH-(H2O)n, n =

1. . . 4) (Xantheas, 1995; Robertson et al., 2003). An increase
in the absorbance with increasing salt concentration can also
be seen in the region stretching from 1,440 to 1,452 nm, i.e.,
C7-C8 WAMACS that are known as bands of water hydration
(Gowen et al., 2009a) and water dimers (S1) (Segtnan et al.,
2001; Cattaneo et al., 2009) and symmetric and asymmetric
stretching of the first overtone of water (Siesler et al., 2008;
Cattaneo et al., 2009; Gowen et al., 2009a). However, in the
range between 1,476 and 1,512 nm, i.e., C10-C12, samples with
higher salt concentration show lower absorbance values and
this region is usually connected to strongly hydrogen bonded
water (Segtnan et al., 2001; Tsenkova, 2009). The spectral
pattern of salt solutions represented in the aquagrams shows
that for the range of concentrations of salt under study,
increasing salt concentration has a structure-breaking effect on
water.

FIGURE 15 | Aquagrams with 95% confidence intervals of Milli-Q water and aqueous solutions of potassium-chloride in the concentration range of 10–100mM
calculated on the MSC transformed absorbance (logT-1) spectra in the spectral range of 1,300–1,600 nm (OH first overtone) using the linearized version of the
“temperature-based” mode with average values.
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Temperature-Based Aquagrams
In the previous section, we briefly mentioned that classic
aquagrams are relative constructs, meaning that the WASPs
displayed depend on the samples included in calculation.
This is disadvantageous if the WASPs of samples or groups
of samples ought to be compared over time or in different
experiments. The development of a new temperature-
based aquagram (Pollner and Kovacs, 2016) overcomes this
difficulty by transformation of how spectral changes are
expressed.

For the calculation of temperature-based aquagrams, it is
necessary to first acquire a spectral library consisting of spectra
of pure water (Milli-Q) at different temperatures covering
a wider range of temperatures than the one expected to
be used during the experiment. This created library, or so-
called reference dataset, provides the basis for temperature
aquagram calculation. The spectra from this dataset are to be
compared with the spectra acquired during the experiment—
experimental dataset, giving the ground to express the effect
of certain perturbation on spectral pattern of experimental
samples in terms of the effect of temperature on pure
water spectra. In this way, the effect of any perturbation on
samples can be expressed in the “temperature equivalent units,”
in other words, changes in pure water spectra caused by
temperature.

The calculation of a temperature-based aquagram is based
on a comparison of areas covered by 12 WAMACS (Ci, i =
1, 12) coordinates in the region of the 1st overtone of water.
The average spectra across all sample replicates and consecutive
scans are calculated for the reference and experimental datasets.
The area under the curve (AUC) for every single average
spectrum for both reference and experimental datasets, at the
wavelength range of each WAMACS (Ci) is calculated by
taking into account the baseline estimated by linear fitting
on the two edges of the first overtone region (i.e. through
1,300 and 1,600 nm points). The ratio of AUCs for every
single water matrix coordinate and AUC for the first overtone
region (i.e., 1,300–1,600 nm) are calculated for each averaged
spectrum of both datasets in order to provide normalized values
for comparison of reference and experimental datasets and to
eliminate possible differences due to the scattering or path
length differences. Using local polynomial regression for the
reference dataset, a continuous array of values for the relative
area of each Ci is calculated for a continuous temperature
range chosen to include a specific temperature. In this way,
a temperature calibration equation is obtained establishing a
relationship between temperature and each Ci area, including the
temperature at which the experiment was performed. When it is
known how each Ci area for the pure water dataset is changed
as a function of temperature, it is possible to pair these changes
to spectral changes in the experimental dataset, i.e., to perform
linking (mapping) and express the changes in Ci areas of the
experimental datasets in the unit of temperature (degree Celsius)
equivalent.

With this type of aquagram, it is also possible to include
confidence interval limits. In that case, it is also necessary to
perform transformation of upper and lower 95% confidence

limits in the same manner just described above for the average
spectra from the experimental dataset.

The whole calculation procedure for temperature-based
aquagrams is implemented in the aquap2 package of R
programing language (Pollner and Kovacs, 2016; R Core Team,
2017). An obvious disadvantage of temperature-based aquagrams
is that they are based on previously discoveredWAMACS regions
in the first overtone of water (Tsenkova, 2010), meaning that
at the moment this type of aquagram cannot be used for other
windows of the electromagnetic spectrum where water absorbs.

The temperature based aquagrams without and with
confidence intervals for our dataset of aqueous solutions of
potassium-chloride spectra are presented in Figures 13, 14,
respectively. The linearized version of the temperature-based
aquagram for Figure 14 is plotted in Figure 15, where the
additional table shows average values at all WAMACs.

Further understanding can be obtained from the temperature-
based aquagram. The addition of, for instance, 90mM
potassium-chloride to Milli-Q water results in structural
changes equivalent to temperature changes of about 0.54,
0.48, 0.3, 0.02, 0.1, 0.58, 1.53, 1.14, 0.19, −0.08, −0.26 and
−0.49◦C at C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, and
C12 coordinates, respectively. Furthermore, the differences are
statistically significant for calculated confidence intervals, e.g.,
the above listed differences between pure Milli-Q and 90mM
aqueous solution of potassium-chloride was significant (p <

0.05) at the coordinates C1, C2, C3, C6, C7, C8, C11, and C12.

CONCLUDING REMARKS

In this paper, the fundamentals of the aquaphotomics approach
to data analysis have been presented and discussed. A variety
of applications illustrate the potential of aquaphotomics as a
powerful new spectroscopic tool to study various aspects of
aqueous and biological systems, which are of interest in the
pharmaceutical and biomedical fields. The process of analysis
illustrated by the application of aquaphotomics analysis on
aqueous salt solutions was intended as guidance for certain
steps of the analysis with the simplest experimental system,
which anyone can easily reproduce. Together with the examples
from sources of literature referenced throughout the text, this
paper should provide the basis for independent experimental
work in this field. The existing aquaphotomics literature shows
the results which are probably only the tip of the iceberg
of possible applications. With the explained methodology of
aquaphotomics analysis presented herein, we hope that scientists
and chemometricians will implement it in their fields and come
up with new ideas of applications as well as new and more
sophisticated mathematical tools to contribute to this growing
field.
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