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Raman spectroscopy has been widely used for quantitative analysis in biomedical

and pharmaceutical applications. However, the signal-to-noise ratio (SNR) of Raman

spectra is always poor due to weak Raman scattering. The noise in Raman spectral

dataset will limit the accuracy of quantitative analysis. Because of high correlations in

the spectral signatures, Raman spectra have the low-rank property, which can be used

as a constraint to improve Raman spectral SNR. In this paper, a simple and feasible

Raman spectroscopic analysis method by Low-Rank Estimation (LRE) is proposed. The

Frank-Wolfe (FW) algorithm is applied in the LRE method to seek the optimal solution.

The proposed method is used for the quantitative analysis of pharmaceutical mixtures.

The accuracy and robustness of Partial Least Squares (PLS) and Support Vector Machine

(SVM) chemometric models can be improved by the LRE method.

Keywords: Raman spectroscopy, quantitative analysis, pharmaceuticals, low-rank estimation, chemometric

model

INTRUDUCTION

Raman spectroscopy is one of the vibrational spectroscopic techniques that has been commonly
applied in quantitative analysis (Strachan et al., 2004; Numata and Tanaka, 2011; Ai et al., 2018).
Being non-invasive andmarker-free, it has been proved to be an effective tool in the field of physics,
chemistry, and biology (Graf et al., 2007; Neugebauer et al., 2010; Ryu et al., 2012; Tan et al., 2017).
Coupled with chemometrics methods, it has the advantages of high sensitivity and resolution in
biomedical and pharmaceutical quantitative analysis.

The quantitative analysis based on Raman spectra at low signal-to-noise ratio (SNR) levels is
still problematic (Li, 2008; Chen et al., 2014). Generally, a Raman spectrum can be divided into two
parts: the signal containing desired information and the noise containing unwanted information.
Basically, the latter may include photon-shot noise, sample-generated noise, instrument-generated
noise, computationally generated noise, and externally generated noise (Pelletier, 2003). Due to
the inherently weak property of Raman scattering, the noise will lead to a deterioration in SNR
of Raman spectra, affecting the accuracy of quantitative analysis. For instance, data of online
monitoring in limited integration time always tend to be inaccurate (Han et al., 2017; Virtanen
et al., 2017).

Some approaches of preprocessing Raman spectra tominimize this problem have been proposed
(Clupek et al., 2007; Ma et al., 2017), such as first and second derivatives (Johansson et al., 2010),
polynomials fitting (Vickers et al., 2001), Fourier transform (Pelletier, 2003), and wavelet transform
(Chen et al., 2011; Li et al., 2013). Among these approaches, wavelet transform can extract peak
information and remove background noise, which has been the most widely used preprocessing
method (Du et al., 2006). However, the processing of Raman spectra can be further optimized to
improve the accuracy of pharmaceutical quantitative analysis.
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In this paper, we introduce a simple and feasible Raman
spectroscopic analysis method based on Low-Rank Estimation
(LRE). Our experiments are implemented based on the Partial
Least Squares (PLS) and Support Vector Machine (SVM)
chemometric models. The aim of this experimental design is
to enhance the quality of pharmaceutical quantitative analysis
by significantly improving the accuracy and robustness of the
chemometric models used.

MATERIALS AND METHODS

Pharmaceutical substances (norfloxacin, penicillin potassium,
and sulfamerazine) were purchased from Dalian Meilun
Biotechnology Co., Ltd (China) and used without further
purification. These substances were well blended in different
proportions, pulverized, and compressed into three-component
tablets. Other physical properties of these tablets (such as density,
height, and diameter) were kept completely consistent. Mixed
solutions were also prepared with methanol and ethanol in 100
different proportions. Raman spectral data were recorded by
using a Renishaw inVia Raman spectrometer (Gloucestershire,
U.K.). This system consisted of a 785-nm diode laser (∼40 mW)
and a 1,200 l/mm grating. In this work, the integration times of
Raman spectra were 0.1–0.5 s.

PLS and SVM regression methods were used to model and
predict pharmaceutical concentration of the samples based on
their Raman spectra. Eighty-five samples were selected as the
training set and the remaining 15 samples as the testing set, based
on Kennard-Stone (KS) algorithm. The parameters of PLS and
SVM models were tuned based on grid search algorithm. The
optimal parameters were obtained by k-folder cross-validation.

The accuracy and robustness of above-mentioned
chemometric models were further improved by conventional
Wavelet Transform (WT) method and Low-Rank Estimation
(LRE) method, respectively. In the WT method, the signals
were split into different frequency components to remove
simultaneously low-frequency background and high-frequency
noise components. The Symlet wavelet filter (sym11, scale = 7)
was optimally selected to provide the sharpest peaks associated
with the analytes of interest. The LRE method was originally
developed by our group in three-dimension to speed up Raman
spectral imaging (Li et al., 2018). In this study, we used the
LRE method in two-dimension to process the observed Raman
spectral data matrix. In this method, the alternating least squares
(ALS) algorithm is used to estimate the largest singular value of
the matrix (Kroonenberg and Leeuw, 1980; Halko et al., 2011).
The matrix estimation has two sets of parameters. Each set is
estimated in turn by solving a least-squares problem and holding
the other set fixed. After both sets have been estimated once, the
procedure is repeated until convergence.

The Frank-Wolfe (FW) algorithm is applied in the LRE
method to seek the optimal solution. Recently, the FW algorithm
has been popularly used in machine learning due to its
characteristics of simple implementation and modest memory
requirement (Jaggi, 2013; Guo et al., 2017). The steps of the LRE
method are detailed in Table 1.

TABLE 1 | The detail steps of the LRE method.

Algorithm: The algorithm for the LRE method

Input: the raw Raman spectral data matrix A;

the maximum number of iteration N, ranging from 5 to 20;

the low-rank constraint factor m, ranging from 0.01 to 0.001;

1: Initialize X0 = 0. X0 is an initial solution of the algorithm.

2: for i = 0,1,…,N do, ai represents the i-th iteration of any variable a.

3: Compute the search direction s, si+1
= ALS(A− X i )

4: Compute the step length r, ri+1
= argminr∈[0,1](A− (X i + r(si+1

− X i )))

5: X i+1
= (1− ri+1)X i + ri+1si+1

6: stopping criterion: ALS(X i+1 )
si+1 > m

7: end for

8: The last iteration of X is the final solution of the LRE method.

Output X

Through being processed by the LRE method, the low-rank
training and testing sets can be obtained from the raw training
and testing data matrices, respectively. In general, an abundant
data matrix can enhance the effect of the LRE method. When
a number of testing spectral data is small, the training spectral
data can be added to the raw testing data matrix as a supplement.
The added spectral data are only used to strengthen the impact of
the LREmethod. The conventional regressionmodels are applied
to the low-rank training and testing sets to perform quantitative
Raman analysis.

RESULTS AND DISCUSSION

Noise-free Raman spectral dataset is a low-rank matrix. In
Figure 1, the red line shows the ranks of Raman spectral data
matrix in an integration time of 1 s, suggesting that the Raman
spectra have low-rank property when the noise is low. The low-
rank property comes from high correlations among spectral
signatures. Each spectral signature can be represented by a linear
combination of a small number of pure spectral endmembers,
which is known as linear spectral mixing model (Iordache et al.,
2011; Golbabaee and Vandergheynst, 2012). The blue and green
plots show singular values of the matrix in a shorter integration
time, which implies that the ranks of Raman spectra increase
with decreasing integration time owing to a greater proportion
of the noise. The low-rank property can be used as a constraint to
improve the accuracy of pharmaceutical quantitative analysis (Yi
et al., 2017).

Raw Raman spectra recorded for three pure pharmaceutical
substances are shown in Figure 2A. Thirty Raman spectra
obtained from three-component tablets with different
proportions are shown in Figure 2B. It is clear that each
pharmaceutical component has its own special characteristic
peaks. However, their respective Raman bands are overlapped.
Particularly, Raman signals of lower-concentration component
are almost swamped and covered by those of higher-
concentration one, which represents a common problem in
practice for biomedical and pharmaceutical quantitative analysis.
For clarity, the Raman spectra in Figure 2B were collected
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FIGURE 1 | The ranks of the Raman spectra in different integration time.

FIGURE 2 | Raman spectra of (A) pure pharmaceuticals substances: (a) penicillin potassium, (b) norfloxacin, and (c) sulfamerazine, (B) their three component tablets

containing different proportions in the integration time of 5s.

in an integration time of 5 s, which have a high SNR. In our
experiments, the integration times of Raman spectra are in the
range of 0.1–0.5 s, which is over 10 times shorter than that shown
in Figure 2. Under this condition, the spectral signals are weaker
and have poor SNR.

The comparisons of predicted and actual values for
norfloxacin are illustrated in Figure 3, which indicates the
advantage of the LRE method for pharmaceutical quantitative
analysis. The coefficient of determination (R2) and root mean

square error (RMSE) of the chemometric models used for
quantitative analysis of three pharmaceutical components
are listed in Table 2. The unsatisfactory results of the raw
spectral data show that the pre-treatment of Raman spectra
is necessary. In this study, the LRE method and conventional
wavelet transform (WT) method are applied to improve the
accuracy of quantitative analysis. As shown in Figure 3, both the
conventional WT and LRE methods can improve the predicted
results. However, it is clear that the LRE method has a better
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FIGURE 3 | Actual vs. predicted values of norfloxacin based on the PLS (A) and SVM (B) model, where the black solid line are diagonals. Raw Raman spectra are

collected in an integration time of 0.2 s.

TABLE 2 | R2 and RMSE values of the chemometric models for three pharmaceutical components.

Norfloxacin Penicillin potassium Sulfamerazine

Model Methods R2 RMSE R2 RMSE R2 RMSE

PLS Raw 0.7504 0.0780 0.8692 0.1218 0.7323 0.0608

WT 0.8598 0.0642 0.9548 0.0974 0.8862 0.0376

LRE 0.9553 0.0259 0.9848 0.0522 0.9609 0.0225

SVM Raw 0.8297 0.1097 0.8460 0.1264 0.8135 0.0679

WT 0.8808 0.0841 0.9125 0.0821 0.8907 0.0444

LRE 0.9558 0.0468 0.9749 0.0755 0.9701 0.0397

TABLE 3 | R2 and RMSE values of the chemometric models for norfloxacin in

different integration times.

0.1 s 0.2 s 0.5 s

Model Methods R2 RMSE R2 RMSE R2 RMSE

Raw 0.7286 0.0939 0.7606 0.0733 0.8731 0.0476

PLS WT 0.8503 0.0630 0.8747 0.0627 0.9610 0.0446

LRE 0.9496 0.0296 0.9626 0.0236 0.9784 0.0229

Raw 0.7803 0.0959 0.8116 0.0894 0.9136 0.0781

SVM WT 0.8673 0.0976 0.8987 0.0789 0.9251 0.0668

LRE 0.9588 0.0449 0.9665 0.0229 0.9764 0.0210

performance than the conventional WT method in enhancing
the prediction accuracy for pharmaceutical quantitative
analysis.

As shown in Table 2, the raw Raman spectra are all collected
in an integration time of 0.2 s. The LRE method is significantly
better than the conventional WT method in terms of R2 and
RMSE for all components. Quantitation limit (QL) for each
pharmaceutical substance is calculated. By definition in ICH
guideline (ICH Harmonised Tripartite Guideline, 2005), QL is
the lowest concentration of an analyte that can be quantitatively
determined with suitable precision and accuracy. It is most

TABLE 4 | R2 and RMSE values of the chemometric models for methanol in

different integration times.

0.1 s 0.2 s 0.5 s

Model Methods R2 RMSE R2 RMSE R2 RMSE

Raw 0.7078 1.9980 0.8086 1.4655 0.8458 1.3075

PLS WT 0.8311 0.6551 0.8776 0.5750 0.9178 0.4553

LRE 0.9017 0.5794 0.9301 0.4692 0.9401 0.4117

Raw 0.7158 0.8631 0.8382 0.7669 0.8813 0.6148

SVM WT 0.8361 0.7030 0.8701 0.6204 0.9428 0.4506

LRE 0.9277 0.6417 0.9628 0.5112 0.9768 0.3964

often determined as 10 times the standard deviation of the
noise from the blank. The LRE method can be used reliably
with more than a 15-fold improvement of the practicalQL.
Through being processed by the LRE method, QL values for
norfloxacin, penicillin potassium, and sulfamerazine are 0.17,
0.13, and 0.19%, respectively. These results reveal that the
LRE method can simultaneously improve the performance
of quantitative analysis for pharmaceutical multi-component
mixtures.

Table 3 lists R2 and RMSE values of the chemometric
models used for quantitative analysis of norfloxacin in different
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integration times. The integration times of rawRaman spectra are
0.1, 0.2, and 0.5 s. Raman spectrum’s SNR is always proportional
to integration time. For evaluating spectral quality, the SNR
is defined as the ratio of the peak value of the signal to
the root mean square of the noise. For integration times of
0.1, 0.2, and 0.5 s, the average SNR of Raman spectra are
2.47, 3.66, and 6.21, respectively. R2 and RMSE values of the
chemometric models for methanol in different integration times
are listed Table 4. The average SNR of the Raman spectra in the
integration times of 0.1, 0.2, and 0.5 s are 2.13, 3.34, and 5.89,
respectively.

As shown in Tables 3, 4, the accuracy of the quantitative
analysis raises with increasing SNR. According to R2 and RMSE
values, it can be proved that the LRE method has a better
performance than the conventional WT method. The degree
of improvement is higher for low-SNR Raman spectra, which
indicates that the LRE method has good noise immunity.

In summary, all predicted results of the Raman spectra
preprocessed by the LRE method are in good agreement
with corresponding actual values. This method can be applied
to improve the accuracy of quantitative analysis based on
both PLS and SVM models. It is unrelated to the selection
of chemometric models. The LRE method is not restricted
by the state of a sample, meaning that it is applicable to
both solid and liquid samples. Therefore, it can be regarded
as an efficient tool with satisfactory prediction accuracy for
pharmaceutical quantitative analysis, especially in the case of
low-SNR spectra.

CONCLUSION

The LRE method has been successfully applied in Raman
spectroscopy for pharmaceutical quantitative analysis. It is a
simply and feasibly method that can improve the accuracy and
robustness of PLS and SVM chemometric models. Our data show
that the LRE method has advantages in improving R2 and RMSE
for quantitative analysis of pharmaceutical multi-component
mixtures, especially in the case of low-SNR spectra. The LRE
method will promote the development of Raman spectroscopy
in biomedical and pharmaceutical quantitative analysis.

AUTHOR CONTRIBUTIONS

XM participated in the lab work, supervising lab work,
interpretation of data, drafting the manuscript, performing the
statistical analysis. XS participated in the lab work, interpretation
of data, drafting the manuscript, performing the statistical
analysis. HW design of the work, interpretation of data. YW
supervised the research, performing the statistical analysis. DC
supervised the research, final approval of the version to be
published. QL participated in the lab work, supervising lab work,
final approval of the version to be published.

FUNDING

National Key Research and Development Program of China
(2017YFC0803603).

REFERENCES

Ai, Y. J., Liang, P., Wu, Y. X., Dong, Q. M., Li, J. B., Bai, Y., et al. (2018).

Rapid qualitative and quantitative determination of food colorants by both

Raman spectra and Surface-enhanced Raman Scattering (SERS). Food Chem.

241, 427–433. doi: 10.1016/j.foodchem.2017.09.019

Chen, D., Chen, Z., and Grant, E. (2011). Adaptive wavelet transform suppresses

background and noise for quantitative analysis by Raman spectrometry. Anal.

Bioanal. Chem. 400, 625–634. doi: 10.1007/s00216-011-4761-5

Chen, S., Lin, X., Yuen, C., Padmanabhan, S., Beuerman, R. W., and Liu, Q.

(2014). Recovery of Raman spectra with low signal-to-noise ratio usingWiener

estimation. Opt. Express 22, 12102–12114. doi: 10.1364/OE.22.012102

Clupek, M., Matejka, P., and Volka, K. (2007). Noise reduction in Raman spectra:

finite impulse response filtrationversusSavitzky-Golay smoothing. J. Raman

Spectrosc. 38, 1174–1179. doi: 10.1002/jrs.1747

Du, P., Kibbe, W. A., and Lin, S. M. (2006). Improved peak detection

in mass spectrum by incorporating continuous wavelet transform-based

pattern matching. Bioinformatics 22, 2059–2065. doi: 10.1093/bioinformatics/

btl355

Golbabaee, M., and Vandergheynst, P. (2012). “Hyperspectral image compressed

sensing via low-rank and joint-sparse matrix recovery,” in 2012 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP)

(Kyoto), 2741–2744. doi: 10.1109/ICASSP.2012.6288484

Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., et al. (2007).

Spatially resolved Raman spectroscopy of single- and few-layer graphene.Nano

Lett. 7, 238–242. doi: 10.1021/nl061702a

Guo, X., Yao, Q., and Kwok, J. T. (2017). “Efficient sparse low-rank tensor

completion using the Frank-Wolfe algorithm,” in The AAAI Conference on

Artificial Intelligence (San Francisco, CA).

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). Finding structure

with randomness: probabilistic algorithms for constructing approximate

matrix decompositions. SIAM Review 53, 217–288. doi: 10.1137/0907

71806

Han, X., Huang, Z.-X., Chen, X.-D., Li, Q.-F., Xu, K.-X., and Chen, D. (2017). On-

line multi-component analysis of gases for mud logging industry using data

driven Raman spectroscopy. Fuel 207, 146–153. doi: 10.1016/j.fuel.2017.06.045

ICHHarmonised Tripartite Guideline (2005). “Validation of analytical procedures:

Text andmethodology Q2(R1), ” in International Conference on Harmonisation

of Technical Requirements for Registration of Pharmaceuticals for Human Use

(Yokohama).

Iordache, M.-D., Bioucas-Dias, J. M., and Plaza, A. (2011). Sparse unmixing

of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49, 2014–2039.

doi: 10.1109/TGRS.2010.2098413

Jaggi, M. (2013). “Revisiting Frank-Wolfe: Projection-free sparse convex

optimization,” in ICML 2013 - Proceedings of the International Conference on

Machine Learning, Vol. 28. (Atlanta, GA), 427–435.

Johansson, J., Claybourn, M., and Folestad, S. (2010). Raman Spectroscopy: A

Strategic Tool in the Process Analytical Technology Toolbox. Berlin; Heidelberg:

Springer, 241–262.

Kroonenberg, P. M., and Leeuw, J. D. (1980). Principal component analysis

of three-mode data by means of alternating least squares algorithms.

Psychometrika 45, 69–97. doi: 10.1007/BF02293599

Li, G. (2008). “Noise removal of Raman spectra using interval thresholding

method,” in 2008 Second International Symposium on Intelligent Information

Technology Application (Shanghai), 535–539. doi: 10.1109/iita.2008.573

Li, Q., Ma, X., Wang, H., Wang, Y., Zheng, X., and Chen, D. (2018). Speeding up

Raman spectral imaging by the three-dimensional low rank estimationmethod.

Opt. Express 26, 525–530. doi: 10.1364/OE.26.000525

Li, S., Nyagilo, J. O., Dave, D. P., and Gao, J. X. (2013). Continuous

wavelet transform based partial least squares regression for quantitative

analysis of Raman spectrum. IEEE Trans. Nanobiosci. 12, 214–221.

doi: 10.1109/TNB.2013.2278288

Frontiers in Chemistry | www.frontiersin.org 5 September 2018 | Volume 6 | Article 400

https://doi.org/10.1016/j.foodchem.2017.09.019
https://doi.org/10.1007/s00216-011-4761-5
https://doi.org/10.1364/OE.22.012102
https://doi.org/10.1002/jrs.1747
https://doi.org/10.1093/bioinformatics/btl355
https://doi.org/10.1109/ICASSP.2012.6288484
https://doi.org/10.1021/nl061702a
https://doi.org/10.1137/090771806
https://doi.org/10.1016/j.fuel.2017.06.045
https://doi.org/10.1109/TGRS.2010.2098413
https://doi.org/10.1007/BF02293599
https://doi.org/10.1109/iita.2008.573
https://doi.org/10.1364/OE.26.000525
https://doi.org/10.1109/TNB.2013.2278288
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ma et al. Raman Spectroscopy for Quantitative Analysis

Ma, X., Wang, H., Wang, Y., Chen, D., Chen, W., and Li, Q. (2017). Improving the

resolution and the throughput of spectrometers by a digital projection slit.Opt.

Express 25, 23045–23050. doi: 10.1364/OE.25.023045

Neugebauer, U., Clement, J. H., Bocklitz, T., Krafft, C., and Popp, J.

(2010). Identification and differentiation of single cells from peripheral

blood by Raman spectroscopic imaging. J. Biophotonics 3, 579–587.

doi: 10.1002/jbio.201000020

Numata, Y., and Tanaka, H. (2011). Quantitative analysis of quercetin using Raman

spectroscopy. Food Chem. 126, 751–755. doi: 10.1016/j.foodchem.2010.11.059

Pelletier, M. (2003). Quantitative analysis using Raman spectrometry. Appl.

Spectrosc. 57, 20A–42A. doi: 10.1366/000370203321165133

Ryu, S.-K., Zhao, Q., Hecker, M., Son, H.-Y., Byun, K.-Y., Im, J., et al. (2012).

Micro-Raman spectroscopy and analysis of near-surface stresses in silicon

around through-silicon vias for three-dimensional interconnects. J. Appl. Phys.

111, 063513. doi: 10.1063/1.3696980

Strachan, C. J., Pratiwi, D., Gordon, K. C., and Rades, T. (2004). Quantitative

analysis of polymorphic mixtures of carbamazepine by Raman spectroscopy

and principal components analysis. J. Raman Spectrosc. 35, 347–352.

doi: 10.1002/jrs.1140

Tan, Z., Lou, T. T., Huang, Z. X., Zong, J., Xu, K. X., Li, Q. F., et al. (2017). Single-

drop raman imaging exposes the trace contaminants in milk. J. Agric. Food

Chem. 65, 6274–6281. doi: 10.1021/acs.jafc.7b01814

Vickers, T. J., Wambles, R. E., and Mann, C. K. (2001). Curve fitting and

linearity: data processing in Raman spectroscopy. Appl. Spectrosc. 55, 389–393.

doi: 10.1366/0003702011952127

Virtanen, T., Reinikainen, S.-P., Kögler, M., Mänttäri, M., Viitala, T., and

Kallioinen, M. (2017). Real-time fouling monitoring with Raman spectroscopy.

J. Memb. Sci. 525, 312–319. doi: 10.1016/j.memsci.2016.12.005

Yi, C., Lv, Y., Xiao, H., and Tu, S. (2017). Laser induced breakdown

spectroscopy for quantitative analysis based on low-rank matrix

approximations. J. Anal. At. Spectrom. 32, 2164–2172. doi: 10.1039/c7ja

00178a

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Ma, Sun, Wang, Wang, Chen and Li. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Chemistry | www.frontiersin.org 6 September 2018 | Volume 6 | Article 400

https://doi.org/10.1364/OE.25.023045
https://doi.org/10.1002/jbio.201000020
https://doi.org/10.1016/j.foodchem.2010.11.059
https://doi.org/10.1366/000370203321165133
https://doi.org/10.1063/1.3696980
https://doi.org/10.1002/jrs.1140
https://doi.org/10.1021/acs.jafc.7b01814
https://doi.org/10.1366/0003702011952127
https://doi.org/10.1016/j.memsci.2016.12.005
https://doi.org/10.1039/c7ja00178a
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Raman Spectroscopy for Pharmaceutical Quantitative Analysis by Low-Rank Estimation
	Intruduction
	Materials and Methods
	Results and Discussion
	Conclusion
	Author Contributions
	Funding
	References


