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One-dimensional (1D) porous NixSy nanostructures have been successfully fabricated

by two-step method consisting of solvothermal and subsequent annealing process.

The suitable heat treatment temperature and reaction time play crucial roles in the

final structure, morphology, as well as performance. The uniform and perfect porous

NixSy nanostructures obtained at 310◦C exhibit outstanding microwave absorption

performances. A minimum reflection loss of −35.6 dB is achieved at 8.5 GHz, and the

effective absorption bandwidth almost covers 14.5 GHz with the absorber thickness

range of 2.0–5.0mm. It can be supposed that this porous structure with rough surface

which is favor for increasing the microwave multiple reflection and scattering, contributes

a high-performance electromagnetic absorption.

Keywords: porous, nickel sulfide, one-dimensional, dielectric loss, microwave absorption

INTRODUCTION

Microwave absorber with strong capacity in absorption, low proportion in filler loading, thin
thickness in coating, and wide bandwidth in absorption frequency, has aroused burgeoning
research interest because of their great potential applications both in military and civil fields,
including stealth technology, information security, electromagnetic interference shielding, and
healthcare (Zhu et al., 2010; Zhao H. et al., 2014). As is well known that many factors such as
morphology, geometry and structure, have vital impacts on determining the microwave absorption
(MA) properties (He et al., 2013). Conventional microwave absorbers with different morphologies
that have been divided into three classes are as follows: (1) one-dimensional nanostructures such
as ZnO nanowires (Wang et al., 2014), Bi3S2 nanorods (Luo et al., 2014); (2) two-dimensional
materials such as MoS2 nanosheets (Ning et al., 2015), α-Fe2O3 flakes (Lv et al., 2015a); and (3)
three-dimensional network structures, including Co20Ni80 hierarchical nanospheres (Liu et al.,
2015), Ni chains nets (Liu et al., 2016), Fe3O4@carbon ordered arrays (Yuan et al., 2015) and so
on. However, the aforementioned materials usually possess high density, thus leading to severe
limitations to their practical applications in some specialized fields. In this regard, materials with
characteristics of low density and special void spaces, such as yolk–shell structural microspheres
(Liu et al., 2013; Yu et al., 2014; Qiang et al., 2016), foam composites (Zhang Y. et al., 2015; Zhao
H. B. et al., 2016), as well as porous nanostructures (Yan et al., 2009; Zhou et al., 2010; Zhu et al.,
2011), are highly beneficial to obtaining superior microwave absorption performance.
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Considerable attention has been concentrated on the porous
structure of MAmaterials owing to its fascinating characteristics.
For example, Liu et al. fabricated porous carbon/Co composites,
and the results suggested that the composites with large dielectric
loss could achieve a minimum RL of −40 dB at 4.2 GHz with a
coating thickness of 5mm (Liu et al., 2008). Lv et al. synthesized
Co/CoO porous 3-D flower nanostructure through annealing
process at 400◦C and found that the minimal reflection loss was
up to −50 dB when the coating thickness was 3.5mm (Lv et al.,
2015b). Similarly, Wang et al. reported the formation of porous
flower-like NiO decorated graphene, and the composites with a
filler loading of 25 wt% exhibited highly MA performance (−59.6
dB) because of their special porous structures and numerous void
spaces (Wang et al., 2017). Benefiting from the porous structure,
the above-mentioned materials show superior electromagnetic
wave absorption performance, which reveals that these porous
materials are effective as MA materials.

Metal sulfides, as semiconductor materials, have been proven
to have promising potential as an ideal microwave absorber
on account of their typical dielectric loss mechanism (Zhang
X. J. et al., 2017). Recent studies have suggested that metal
sulfides including MoS2 (Wang et al., 2015), CoS2 (Zhang
C. et al., 2017), CdS (Zhang et al., 2014), and CuS (He
et al., 2014), as well as various phase of nickel sulfides (Zhou
et al., 2010) can effectively absorb electromagnetic waves and
attenuate them in the form of thermal energy. However, the
microwave-absorbing properties of NixSy with special porous
structure have not been reported previously. Based on the above
study, we demonstrated the successful design and fabrication
of porous one-dimensional NixSy nanomaterial through a facile
solvothermal route together with annealing process. The MA
properties of resultant composites were investigated in detail for
the first time. As expected, the synthesized NixSy nanostructure
exhibited excellent microwave absorption property confirming
that this material can be used as high-performance microwave
absorber.

MATERIALS AND METHODS

Preparation of Porous NixSy
Nickel nitrate hexahydrate (Ni(NO3)2·6H2O), elemental sulfur,
ethylene glycol (EG), and ethylenediamine (EN) were purchased
from Nanjing Chemical Reagent Co. All of the chemical
reagents were analytical-grade purity and used without further
purification.

Typically, nickel sulfide was synthesized by the reaction
of Ni(NO3)2·6H2O, EN and sulfur powder in EG. At first,
Ni(NO3)2·6H2O (0.3489 g) was added to EG (135mL) under
strong magnetic stirring to form a light green homogeneous
solution. Then the sulfur powder (0.0288 g) was dissolved in
EN (15mL) through ultrasonic treatment. Mix the two solutions
together and put it into oil bath, maintained at 120◦C for 6 h.
After being cooled to room temperature, the resulting solid
precursors were centrifuged, washed with alcohol to remove
possible remnant, and finally dried in air at 60◦C for 24 h. The
dried precursors were treated at 310◦C for 2 h with a heating rate
of 2◦C/min under N2 atmosphere to get the final NixSy products.

Preparation of Nickel Sulfide/PVDF
Nanocomposites
The polyvinylidene fluoride (PVDF) was first dispersed in N-
N dimethylformamide (20mL) under magnetic stirring for 1 h.
Then, the desired amount of nickel sulfide was added into the
suspension. After ultrasonication for another 1 h, themixture was
poured onto a glass plate and dried at 80◦C for 24 h. The samples
for testing were also compacted into a cylindrical compact (Φout

= 7.00mm and Φ in = 3.04mm) by hot pressing at 210◦C
under 5 MPa (pressed for 15min, followed by cooling to room
temperature under the same pressure).

Instrumental Analyses
The X-ray diffraction (XRD) pattern of the nickel sulfide product
was carried out on a Rigaku, Dmax2200 diffractometer equipped
with a CuKa radiation source (λ= 1.5416 Å) in the range of 2θ=
10–80◦. For the phase analysis. Further microstructural analyses
were performed by using a FEI Quanta 250 field emission
gun environmental scanning electron microscope (JSM-6700F
microscope) at 15 kV. In brief, SEM samples were prepared by
diluting the final products with alcohol by ultrasonic treatment
and dropping it on the silicon slice. The relative permittivity
(ε′, ε′′) and permeability (µ′, µ′′) values were measured using
two-port vector network analyzer (Agilent E5071C) over the
frequency of 2–18 GHz at room temperature, coupled with a
coaxial wire setup. Finally, the reflection loss (RL, dB) value
which presents the ratio of the total reflected microwave power
against the incident microwave power can be calculated by using
the following formulas (Abbas et al., 2006; Xu et al., 2018).
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where Zin is the normalized input characteristic impedance, f is
the frequency of microwave, d is the thickness of the absorber. A
lower RL value stands for a better MA performance.

RESULTS AND DISSCUSSION

An illustration of the synthesis of theNixSy is shown in Figure S1.
We first prepared the precursors of NixSy nanorods by a simple
solvothermal method in a controlled way as described later.
Then the collected dried precursors were transferred into a tube
furnace and annealed at 310◦C for 2 h under an N2 atmosphere,
which eventually led to the generation of the porous NixSy. It is
well recognized that reaction parameters such as temperature,
pressure, reaction time, type of solvent, and concentration
of reagents, have a huge effect on the morphology of the
products. In the present reaction system, Ethylene glycol and
Ethylenediamine were applied as solvents for the precursors
synthesis of NixSy, and the temperature as well as reaction time
was tightly regulated so that the precursors at a well-defined state
were obtained.

Figure 1 shows the representative SEM images of the
precursors prepared at different temperature of 80, 100, 120, 140,
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FIGURE 1 | SEM images of precursor of NixSy samples under different reaction temperatures: (a) 80, (b) 100, (c) 120, (d) 140, (e) 160, and (f) 180◦C. (scale bar =
1µm).

160, and 180◦C, respectively. When the reaction is performed
under the lower temperature (80 and 100◦C), although one-
dimensional structures of products can be formed, their
thicknesses and lengths are varying greatly. On the contrary,
when the temperature reaches 180◦C, the 1D nanostructures
are nonuniform, and a certain number of spherical impurities
emerge. By comparing the morphology of the products under
different temperature conditions, the best reaction temperature
is determined. The products are well-defined nanorods with
diameters of about 50 nm and lengths of several micrometers at
the suitable reaction temperature of 120◦C (Figure 1c). On the
other hand, the stages of the growth process are monitored at
120◦C by varying the reaction time from 2 to 10 h (Figure S2).
It is interesting to find that reaction time does not change
the overall morphology of the precursors. However, the yield of
the products is very low within a short period of 2 h, indicating
the slow reaction rate in such reaction system. Further increasing

the reaction time produce more products, while the diameter and
structure of the nanorods remain stable.

To obtain porous 1D nanostructures, the precursors were
annealed at different temperatures ranging from 280 to 330◦C
under the flowing nitrogen gas, and the final products are
exhibited in Figure 2. It can be seen that the surfaces are
actually becoming porous with annealing temperature, and the
as-obtained NixSy retain the rods morphology with appropriate
porosity when prepared at 310◦C. Further increasing the
annealing temperature will led to 1D structural instability
and collapse. The energy-dispersive X-ray spectroscopy (EDS)
indicates that the obtained product is composed of Ni, S, C,
N, and O elements, also demonstrating a very homogeneous
elemental distribution (Figure 3). It is worth mentioning that
the C, N, and O element signals originate from the incomplete
decomposition of organic compositions of precursors during
heat treatment. Meanwhile, the XRD results suggest that the
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FIGURE 2 | SEM images of NixSy samples under different annealing temperatures: (a) 280, (b) 300, (c) 310, and (d) 330◦C. (scale bar =1µm).

FIGURE 3 | FESEM image of the NixSy nanorods and corresponding elemental mapping images of Ni, S, C, N, and O.

as-synthesized products are poorly crystallized, containing NiS2
phase and Ni7S6 phase (Figure S3).

Figures 4A,B show the frequency dependence of the real
part (ε′) and imaginary part (ε′′) of the complex permittivity
for NixSy/PVDF composites with 10, 20, 30, and 40 wt% filler

loadings in the frequency range of 2–18 GHz. Generally, the
ε′ is known to stand the storage capability of electromagnetic
energy, and ε′′ associated with various of polarization present the
energy dissipation (Zhang X. et al., 2015; Zhao B. et al., 2016).
As can be seen in Figure 4, with the increase of NixSy, the ε′
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and ε′′ values show a similar tendency. For nanohybrids with low
concentration of filler (10 and 20 wt%), the values of ε′ and ε′′

are approximately equal to some certain constant in the whole
frequency range (ε′ = 4, ε′′ = 0.5, and ε′ = 6, ε′′ = 1). With the

NixSy proportion increasing from 20 to 30 wt%, the ε′ increases
from 6 to 13 and the ε′′ changes from 1 to 4.5 at 2 GHz. However,
when the proportion of fillers is increased to 40 wt%, both the
ε′ and ε′′ dramatically decrease, which is possibly due to the

FIGURE 4 | Frequency dependence of (A) real part and (B) imaginary part of permittivity, (C) dielectric loss tangent, and (D) reflection loss under a 3mm thickness for

NixSy composites with different filler loadings.

FIGURE 5 | Possible mechanisms of microwave absorption for porous NixSy/PVDF composites.
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fact that the higher concentration of NixSy in this nanohybrid
may result in severe agglomeration. Similar phenomena could
be observed in dielectric loss tangent (tan δe = ε′′/ε′) which is
universally applied to evaluate the dielectric loss capacity of the
microwave absorber (Yang et al., 2017), shown in Figure 4C. It
can be seen that the dielectric loss tangent increases with the
NixSy proportion first, getting a maximum value of 0.35 with 30
wt% NixSy, and then decreases to a value of 0.1.

On the basis of the above analysis, it can be deduced that
the nanohybrids with 30 wt% NixSy possess the best microwave
absorption properties which is highly consistent with the test
results, shown in Figure 4D. The minimum RL reaches −34
dB at 7.5 GHz with a thickness of 3mm, indicating that
99.9% of incident electromagnetic wave is attenuated. Since

NixSy is a typical semiconductive material, various polarization,
and related relaxation resulting in a strong dielectric loss are
the dominant mechanism for microwave attenuation (Zhao
et al., 2015). The dielectric loss of NixSy mainly originate
from the defect dipole polarization, the interfacial polarization,
and the electronic relaxation loss. First, the defect dipoles are
generated by the charge unbalance around the sulfur vacancies
in the NixSy lattice, while the interfacial polarizations come
from the existence of plentiful interfaces between porous fillers
and polymer matrix. Moreover, the porous structures of fillers
with rough surfaces further induce the multiple reflection
and scattering, resulting in more longer propagation path
and greater energy loss (Figure 5). Second, the carbonation
of precursors benefits electrical conduction, while the internal

FIGURE 6 | Three-dimensional presentations of the reflection loss for the NixSy composites with different filler loadings: (A) 10, (B) 20, (C) 30, and (D) 40 wt%. (E) RL

curves for 30 wt% NixSy composites with different thickness.
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doping with nitrogen favors electron transport thus further
improving electrical conduction. Furthermore, the calcination
also induces a structural disorder and defects into NixSy that
frequently lead to an enhanced electrical activity. This calcination
process results in significant electronic relaxation polarization,
which would enhance the dielectric loss obviously.

Figures 6A–D shows three-dimensional presentations of
calculated reflection loss for the NixSy/PVDF with different filler
loadings. Clearly, the composite with 30 wt% NixSy has the best
performance, and the RL values under different thickness are
shown in Figure 6E. The minimal reflection loss of −35.6 dB
is obtained at 8.5 GHz with a coating thickness of 2.7mm and
the effective bandwidth is about 3 GHz. Furthermore, the RLs
exceeding −10 dB in the frequency range of 3.68–18 GHz are
obtained for a variation in absorber thicknesses of 2.0–5.0mm,
demonstrating that this kind of materials has great potential for
use as a microwave absorber. Meanwhile, there is an interesting
phenomenon that with the increasing thickness of absorber the
RL peaks shift to the lower-region frequency. This phenomenon
is consistent with a so-called quarter-wavelength (λ/4) matching
model (Deng and Han, 2007; Wang et al., 2011, 2013) which
plays another significant role in electromagnetic attenuation. The
model can be expressed as tm = nλ/4 = nc/4fm

√
|µr| |εr|(n =

1, 3, 5), where |µr| and |εr| are the moduli of µr and εr ,
respectively. Besides, when the thickness of absorber satisfies
above equation, the curves corresponding to wavelengths of λ/4
(crescent shape) can be observed (seen in Figure 6C).

CONCLUSIONS

In summary, we have successfully demonstrated an approach for
the large-scale production of 1D porous NixSy nanostructures
via solvothermal synthesis together with an annealing process.

Through controlling the reaction temperature and time, products
with uniform morphology are obtained. The results reveal
that the interesting porous structure of NixSy might benefit
the access of incident microwave and offer more active sites
for multiple reflections and scattering, and thereby improve
microwave absorbing performance. The minimum RL of −35.6
dB is achieved with a thickness of 2.7mm at −35.6 dB GHz. The
absorption bandwidth with RLs below −10 dB is up to 14.5 GHz
when considering thicknesses of 2.0–5.0mm. Combining the
synergistic effect with intrinsic chemical properties and special
structures, the NixSy nanorods are promising for utilization
as MA materials in various fields, such as aeroplanes and
spacecraft.
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