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Based on first-principles calculations, the adsorption of NO and NO2 gas molecules on

the α-In2Se3 monolayer have been studied. The adsorption configuration, adsorption

energy, electronic structure and charge transfer properties are investigated. It is found

that the charge transfer processes of NO and NO2 adsorbed on the surface of α-In2Se3
monolayer exhibit electron donor and acceptor characteristics, respectively. After the

adsorption of the molecules, the α-In2Se3 monolayers have new states near the Fermi

level induced by NO and NO2, which can trigger some new effects on the conducting and

optical properties of the materials, with potential benefits to gas selectivity. The present

work provides new valuable results and theoretical foundation for potential applications

of the In2Se3-based gas sensor.
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INTRODUCTION

In recent years, Layered two-dimensional (2D) materials have received tremendous research
attention due to their unique physical and chemical properties (Miró et al., 2014; Bhimanapati
et al., 2015; Xie et al., 2018). Because of their ultrahigh flexibility, strength and thickness-dependent
electronic properties (Wang et al., 2012; Novoselov et al., 2016), the nanodevices based on 2D
materials and tuning the properties of their heterostructures via defects engineering (Cervenka
et al., 2009; Wang et al., 2011; Park et al., 2014; Sun et al., 2015) hold great promise for
potential applications in nanoscale electronics, optoelectronics and spintronics (Wang et al., 2008,
2016; Geim and Grigorieva, 2013; Lan, 2018). Additionally, the high surface/volume ratio, weak
electronic screening and ultrathin thickness of 2D materials induce that their structural stability
and electronic properties are very sensitive to environmental molecules, and the relevant effects
make them efficient for gas molecules sensing, catalysis, and energy storage technologies (Lightcap
and Kamat, 2013; Yang et al., 2016; Zhang et al., 2018). Graphene has exhibited good performance
in the field of gas sensor (Kemp et al., 2013). Previous reports have also shown that MoS2-
based nanosensors possess excellent sensing ability with high response value, and their molecule
adsorption properties can be modulated by applying light, strain, and external electric field (Late
et al., 2013; Ma et al., 2016). Recently, InSe monolayer has been found having tunable electronic
properties via the molecule adsorption and promising for gas sensing application (Ma et al., 2017).
All these studies clearly reveal that external factors can modulate the properties of 2D materials
effectively and extend their application fields.
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Indium selenide (In2Se3) is an interesting III-VI group
layered chalcogenide compound with multiple phases and
excellent properties (Shi et al., 2013), and have attracted
extensive research interest for the applications in phase change
memory (Yu et al., 2007), lithium batteries (Feng et al., 2016),
optoelectronic and photovoltaic devices (Zhai et al., 2010; Jacobs-
Gedrim et al., 2014). Among all the phases, 2D materials
based on α-In2Se3 exhibit obvious thickness-dependent shift
of band gap and promising prospects for tunable wavelength
photodetection (Quereda et al., 2016). It is also reported that
the strain sensor fabricated from 2D α-In2Se3 films possesses
good stability, excellent sensitivity, and high spatial resolution
in strain distribution, showing attractive properties for e-skin
applications in wearable electronics (Feng et al., 2016). However,
to best of our knowledge, the investigations on the adsorption
of small gas molecules on atomically thin 2D In2Se3 materials
and the related modification of their properties are still lacking
so far. It is well-known that NO2 and NO are common air
pollutants and harmful to human health. The detection and
control of them are very important for the environmental
protection. Hence, in this work, we have made first-principles
studies on the α-In2Se3 monolayers adsorbed by NO and NO2,
respectively. The adsorption configuration, structural stability,
electronic structure and charge transfer properties have been
investigated and discussed in detail.

COMPUTATIONAL METHODS

All calculations are carried out using the Vienna ab initio
simulation package (VASP)(Kresse and Furthmüller, 1996), with
the core electrons described by the projected augmented
wave (PAW) method. For the exchange-correlation term, the
generalized gradient approximation (GGA) with Perdew-Burke-
Ernzerhof (PBE) scheme is employed. The cutoff energy for
plane-wave basis is set as 450 eV. For simulating the adsorption
of the molecules, a 4× 4× 1 supercell of the α-In2Se3 monolayer
is built with one NO or NO2 molecule adsorbed on its surface,
and a vacuum space of more than 15 Å is set up to prevent the
interactions between the repeated monolayers. The Monkhorst-
Pack of 2 × 2 × 1 (4 × 4 × 2) k-point grid is adopted

FIGURE 1 | Top views of typical adsorbing sites on the Se atom planes of one side (A) and the other side (B) of the α-In2Se3 monolayer. The adsorbing sites are

denoted by red dotted circles.

for the Brillion zone sampling in geometry optimization (total
energy calculation). The convergence criterion of energy is taken
as 10−5 eV. Structure relaxation is performed until the force on
each atom is smaller than 0.02 eV/Å. To estimate the adsorption
stability of gas molecules on the surface of α-In2Se3 monolayer,
the adsorption energy (Ead) is calculated by the formula: Ead =

EM + EG – EM+G, where EM, EG, and EM+G denote the total
energy of the α-In2Se3 monolayer, the free gas molecule, and
the α-In2Se3 monolayer adsorbed by gas molecules, respectively.
According to this definition, a positive value of Ead represents the
adsorption is energetically favorable.

RESULTS AND DISCUSSION

Firstly, the geometry optimizations of free gas molecules were
performed. The obtained bond lengths of NO and NO2 are
1.17 and 1.21 Å, respectively, and the O-N-O bond angle of
NO2 is 133.39◦. The band gap of the clean α-In2Se3 monolayer
has been calculated to be 0.77 eV (see Figure 3A). All these
results are in line with the data of previous reports (Debbichi
et al., 2015; Ma et al., 2017). In order to find the most stable
adsorption configuration, four typical adsorbing sites on the
Se atom plane of one side have been considered including the
top of Se atom, the center of a Se-In bridge and two centers
of the hexagonal void (see Figure 1A). Because of the different
coordination structures of the Se atom plane on the other side,
four similar adsorbing sites were also investigated on the other
side (see Figure 1B).

For the adsorption of NO molecule, besides the eight
adsorbing sites mentioned above, we also considered two
different orientations of the molecule with the N-O bond
perpendicular or parallel to the surface of α-In2Se3 monolayer.
Therefore, 16 configurations have been examined. Figure 2A
presents the top and side views of the most stable configuration
obtained, where the O atom of NO molecule points away
from the α-In2Se3 surface and the N atom of NO molecule
points toward the surface with the smallest distance between
the adsorbed NO and the surface atom is 2.65 Å. The N-O
bond is a little shortened to 1.16 Å compared with that (1.17
Å) of free NO molecule. The adsorption energy was calculated
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FIGURE 2 | (A) Top and side views of the most stable configuration of the α-In2Se3 monolayer adsorbed by NO and (B) its charge density difference. (C) Top and

side views of the most stable configuration of the α-In2Se3 monolayer adsorbed by NO2 and (D) its charge density difference. The cyan and yellow isosurfaces

denote the electron depletion and accumulation, respectively. The isosurface value is set as 0.0001 e/bohr3.

to be 208 meV, which is comparable to those of NO adsorptions
on the monolayers of InSe, GaSe, and MoS2 (Yue et al., 2013;
Ma et al., 2017; Zhou et al., 2017). This low adsorption energy
indicates the NO adsorption capability of α-In2Se3 monolayer is
not very strong, which is applicable for the gas detection since the
adsorption-desorption of NO molecule on α-In2Se3 monolayer
can be easily achieved.

For further investigating the interactions and electron
transfers between the adsorbed NO molecule and the α-In2Se3
monolayer, the charge density difference (CDD) is calculated
from the formula: 1ρ = ρM+G − ρM − ρG, where ρM+G,

ρM and ρG represent the total charge densities of the α-In2Se3
monolayer adsorbed by gas molecules, the α-In2Se3 monolayer,
and the isolated gas molecule, respectively. The ρM and ρG are
obtained with each atom at the same position as the adsorption
configuration. In the NO2 adsorption case, the similar calculation
has also been performed. As shown in Figure 2B, it can be seen
that the adsorption make the redistribution of charges around
the NO molecule. In the space between the adsorbed NO and
the α-In2Se3 surface, the depletion of electrons is dominant.
Based on the Bader charge analysis, the charge transfer has
been quantitatively calculated. It is demonstrated that the NO
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FIGURE 3 | (A) The band structures of the clean α-In2Se3 monolayer and the most stable configurations of the α-In2Se3 monolayer adsorbed by NO and NO2. For

the two adsorption cases, the black and blue curves represent the spin up and spin down bands, respectively. (B) The local density of states (DOS) of the adsorbed

molecules and the Se atoms near them. The Fermi level is set as 0 eV.

molecule provides 0.054 e electrons to the α-In2Se3 surface and
acts as an electron donor. This behavior is different from the
situation of the NO adsorption on InSe monolayer, where the NO
molecule acts as an electron acceptor with the amount (0.018 e)
of transferred charges (Ma et al., 2017) smaller than that (0.054
e) between NO and α-In2Se3 monolayer. The band structure
of the most stable configuration is depicted in Figure 3A, it
is shown that after the NO adsorption the Fermi level (Ef) of
the system moves upwards to the bottom of the conduction
bands compared with that of the clean α-In2Se3 monolayer (see
Figure 3A), demonstrating an n-type conducting property of the
materials with NO adsorption, which is similar to the situation
of property modification in the NO-adsorbed MoS2 monolayer
(Shokri and Salami, 2016). This property changes can be useful
to the detection of NO molecule. In addition, some new states
are found to be located at the Ef. To better understand the
adsorption effect of NO molecule on the α-In2Se3 monolayer,

the local density of states (DOS) of the adsorbed NO and its
nearest Se atom are illustrated in Figure 3B. It is clearly shown
the new states at the Ef are from the adsorbed NO, and there
is little hybridization between the states of NO molecule and
the states of the surface Se atom near it, which is similar to the
NO adsorption behavior on InSe monolayer, further confirming
that the interaction between the adsorbed NO molecule and the
α-In2Se3 monolayer is not strong.

In the NO2 adsorption case, two orientations of NO2 molecule
have been considered. One is the two O atoms point toward
the α-In2Se3 surface, and the other is that they point away
from the α-In2Se3 surface. The obtained most stable adsorption
configuration is displayed in Figure 2C, in which the NO2 is
adsorbed on the Se atom plane of the other side different
from that of the NO adsorption case and the two O atoms of
NO2 molecule point toward the α-In2Se3 surface. The smallest
distance between the NO2 molecule and the α-In2Se3 surface is
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3.57 Å, and the N-O bond is a little elongated to 1.22 Å with
the O-N-O angle reduced to 131.89◦. The adsorption energy was
calculated to be 59 meV, suggesting the adsorption of NO2 on
α-In2Se3 monolayer is weak, which is comparable to that of the
NO2 adsorption on graphene (Leenaerts et al., 2008).

The CDD of the most stable configuration for NO2

adsorption is displayed in Figure 2D. It is shown that the
charge redistribution of NO2 molecule is apparent. The electrons
accumulate in the vicinity of the adsorbed NO2 with a little
electron depletion in its core region. The depletion of electrons
mainly occurs for the Se atoms around the NO2 molecule. From
the Bader analysis, it is indicated that the NO2 molecule is an
electron acceptor and obtains 0.081 e electrons from the α-In2Se3
monolayer, which is similar to the situation of NO2 adsorption
on InSe monolayer, and their amounts of transferred charges are
comparable (Ma et al., 2017). The band structure of the discussed
configuration is shown in Figure 3A. It can be seen that there
is a new impurity band lying just above the top of the valence
bands and the Ef, which can modify the optical and conducting
properties of the materials, benefiting the detection of NO2

molecule. As shown in Figure 3B, the local DOS distributions
demonstrate that the impurity states just above the Ef are from
the adsorbed NO2 molecule, and there are some overlaps of states
between the NO2 molecule and the Se atoms near it.

CONCLUSION

To explore the gas sensing applications of 2D materials based
on In2Se3, the effects of the adsorbed NO and NO2 molecules
on α-In2Se3 monolayer have been studied using first-principles
calculations. When the NO and NO2 are adsorbed on the
surface of the α-In2Se3 monolayer, the calculated adsorption

energies of positive value indicate their adsorption processes are
exothermic and energetically favorable. Their low adsorption
energies demonstrate the α-In2Se3 monolayer is applicable for
the gas molecules detection. In the most stable configurations,
the gas molecules are adsorbed on different Se atom planes
for NO and NO2, respectively, and the smallest distance (3.57
Å) between the adsorbed NO2 and the α-In2Se3 monolayer is
larger than that (2.65 Å) of NO adsorption case. NO provides
0.054 e electrons to the α-In2Se3 monolayer as the donor gas
molecule, while NO2 acts as the acceptor gas molecule and gains
0.081 e electrons from the α-In2Se3 monolayer. Both of the
adsorbed molecules induce new electronic states near the Fermi
level compared with the electronic structure of clean α-In2Se3
monolayer. These changes of electronic properties can modify
the conducting and optical properties of the materials and benefit
gas sensing. The theoretical findings of this work suggest the 2D
α-In2Se3 materials hold great promise for the application of gas
sensor.
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