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Oxidizing aldehydes to generate carboxylic acids is a crucial reaction in nature and

in chemical industry. The aldehyde oxidation, an easily achieved process in liver cells,

is inert toward autoxidation in industrial production and difficultly achieved under

enzymatic condition (in water, at pH 7, at room temperature). Herein, we prepared

a supramolecular catalyst which are nanospheres assembled in aqueous media by

chromium centered Anderson polyoxometalates Na3[CrMo6O18(OH)3] (namely, CrMo6)

and cationic pillar[5]arenes (namely, P5A) with 10 positive charges which can be used

as the phase transfer catalysts (PTCs). This supramolecular catalyst was exploited on

aldehydes oxidation under enzymatic condition with relatively good conversion. Through

DLS monitoring, the diameters of nanospheres were variable while changing the charge

ratios of the ionic complexes (P5A-CrMo6), and it is probably because of the closer

charge ratios causing the more compact assemblies. Also, the nano-morphologies

were monitored by TEM and SEM, and the nanostructures were characterized by zeta

potential, the X-ray energy-dispersive spectroscopy (EDS), elemental analysis.

Keywords: pillar[5]arenes, chromium centered Anderson polyoxometalates, nanospheres, supramolecular

catalyst, aldehyde oxidation

INTRODUCTION

Rational design of functional nanobuilding blocks with well-defined nanostructure and specific
functionality is very important. Polyoxometalates (POMs) are well-defined early transition metal-
oxygen anionic clusters with various chemical composition and nanosized architecture (Müller
and Pope, 1991; Dolbecq et al., 2010; Miras et al., 2012). The potential applications range from
catalysis (Mizuno et al., 2005), electronics (Kawasaki et al., 2011), magnetism (Poblet et al.,
2003), and photochemistry(Li et al., 2011), to medicines(Rhule et al., 1998). POMs possesses the
assembly ingredients for forming different kinds of nanostructures (Li et al., 2017). Spontaneous
self-assembly of weak electrolyte type POMs into vesicle-like supramolecular structures has been
confirmed by Liu et al. (Liu, 2002; Liu et al., 2003; Liu and Liu, 2005a,b). The assistance from
grafting groups or counterions has been demonstrated to be more effective in constructing POM
self-assemblies (Zhang et al., 2008; Landsmann et al., 2010; Yin et al., 2013; Zhu et al., 2013).
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Compared with the covalent modification of POM with grafting
groups, utilization of electrostatic interactions between anionic
POMs and cationic amphiphiles may be more versatile for the
hierarchical self-assembly of POM clusters (Ishiba et al., 2017; Li
et al., 2017; Cheng et al., 2018).

Pillararenes, as a new generation of macrocyclic host, with
hydroquinone as units linked at para position, have attracted
much attention since its first report by Ogoshi (Ogoshi et al.,
2008). Compared with the other macrocycles such as crown
ethers, cyclodextrin, calixarene, and cucurbituril, pillararenes
possess a columnar shape with a p-electron rich cavity, having
unique characteristics, such as easy and facile synthesis, various
modification sites, pillar architectures, making them favorable
building blocks in developing self-assembly for constructing
vesicles, molecular machines, artificial transmembrane channels
and so on (Xue et al., 2012; Tan and Yang, 2015; Ogoshi et al.,
2016).

Oxidizing aldehydes to produce carboxylic acids is a crucial
reaction in nature and in chemical industry (Latchman, 1995;
Crabb et al., 2004). In living cells, oxidizing aldehydes into acids
is conducted at body temperature using oxygen as oxidizing
agent and dehydrogenase as the catalyst in neutral aqueous
solution (Crabb et al., 2004). There are relatively few examples
of models performing under enzymatic condition (in water, at
pH 7, at room temperature) (Marinescu and Bols, 2006; Raynal
et al., 2014). Generally, despite being prone to autoxidation,
most kinds of aldehydes are relatively stable (Liu and Li,
2016; Zhang et al., 2017). The majority of these oxidation
reactions in modern industry require stoichiometric amounts of
hazardous oxidants such as KMnO4 (Kleiderer, 1930; Ruhoff,
1936), CrO3 (Sandborn, 1929), KHSO5 (Mo, 2006), KIO4 (Travis
et al., 2003), etc., and often take place in organic solvents.
Since Li et al. sequentially reported first homogeneous silver-
and copper- catalysis of aerobic aldehyde oxidation in water
(Liu et al., 2015; Liu and Li, 2016), Wei et al. reported a
single-sided triol-functionalized iron centered Anderson POM
catalysis (Yu et al., 2017). POMs combine high reactivity
and stability in oxidation catalysis (Lechner et al., 2016).
Phase transfer catalysts (PTCs) provide easy, inexpensive and
versatile solutions for organic reactions (Maruoka and Ooi, 2003;
Hashimoto and Maruoka, 2008). It accelerates the reaction rate
by improving the solubility of the reactants isolated in different
liquid phases. Herein, we used cationic pillar[5]arenes (namely,
P5A) as PTCs and exploited the P5A-CrMo6 supramolecular
complex (Figure 1) assembled by the chromium centered
polyoxometalates Na3[CrMo6(OH)3] (namely, CrMo6) and P5A
under aqueous conditions. When applied to catalyze aldehydes
into carboxylic acids, this supramolecular catalysis (Leeuwen,
2008) offered better catalytic effect than CrMo6 or P5A alone with
air as the oxidant in water under enzymatic conditions as a result
of synergy effect that combined advantage of CrMo6 and P5A.

EXPERIMENTAL SECTION

Materials and Methods
Boron trifluoride diethyl etherate, and 1,4-Dibromo butane were
purchased from Aladdin. All the other chemicals were purchased

from Sinopharm Chemical Reagent Co., Ltd. All the reagents
were used without further purification.

Na3[Cr(OH)6Mo6O18] were prepared according to previously
reported procedures (Wu et al., 2011). Na2MoO4 (12 g, 57.5
mmol) was dissolved in water (10mL). Keeping 80 ◦C,
concentrated nitric acid (4.5mL) was added to the solution. Then
stop the heating equipment, and Cr(NO3)3 (3.2 g) was slowly
added to the solution. When a large amount of red precipitates
appeared in the solution, the reaction was stopped. After cooled
down to room temperature, the solution was filtered, and 8.9 g of
the red solid was collected as the product. Yield: 84% based on
Mo.

The cationic water-soluble pillar[5]arene (P5A) were prepared
according to previously reported procedures (Ma et al., 2011;
Yao et al., 2012, 2014) (Supplementary Figure 1). 1H-NMR (400
MHz, D2O) δ (ppm) (Supplementary Figure 2): 6.73 (s, 10H),
3.80 (s, 30H), 3.10 (s, 20H), 2.91 (s, 90H), 1.59 (s, 40H). 13C-
NMR (400 MHz, D2O) δ (ppm) (Supplementary Figure 3):
166.98, 150.21, 129.32, 66.13, 57.91, 52.91, 25.84, 19.54. HRESI-
MS (Supplementary Figure 4): m/z calcd for [M−2Br]2+

1196.36002; [M– 3Br]3+ 770.60389; [M−4Br]4+ 557.72439;
[M−5Br]5+ 430.39624; [M−6Br]6+ 345.17750; [M−7Br]7+

284.59296, [M−8Br]8+ 239.06875; [M−9Br]9+ 203.59118.
The preparation of the nanospheres were by mixing different

charge ratios of cationic P5A and anionic CrMo6 in water
solution, with the concentration of P5A and CrMo6 kept constant
at 0.05 mg/mL.

NMR: 1H-NMR and 13C-NMR were performed on JNM-
ECA400 equipment. TEM: TEM images were obtained on
a JEMO 2010 Electron microscopy with an operational
acceleration voltage of 120 kV. The samples were prepared by
fishing the carbon coated copper grid into the aqueous solution
and then dried in air at 25◦C for 30min. HPLC: HPLC was
performed on a Waters 2695 with a UV detector and refractive
index detector. The gradient elution was performed with 8mM
(NH4)2HPO4 at a rate of 0.7 mL/min. Fifty microliter of prepared
sample or standard solution was injected. HRESI-MS: HRESI-
MS was performed on a on a Flash EA 1112 full-automatic mass
spectrometer, and the experiment was carried out in the positive-
ion mode using CHCl3 as the solvent. SEM: SEM was performed
on Hitachi SU-8010 Electron microscopy with an operational
acceleration voltage of 200 V−50 KV. The preparation of samples
was by dropping about 20 µL of the solution on a cleaved silicon
surface. The gold spraying time is 30 seconds. FT-IR: IR was
carried out on a Perkin Elmer Spectrum. The solid samples were
prepared by vacuum drying at 50◦C.

Catalytic Experiments
General Procedure for the Oxidation of Aldehydes
Prepare 1.0mM P5A, 1.0mM CrMo6 aqueous solution,
respectively. Pipette 43 µL P5A (1.0mM), 144 µL CrMo6
(1.0mM), and 4770 µL water into a PE tube. After ultrasonic
bath for 1min, the nanosphere (P5A-CrMo6) solids were
collected though high speed centrifugation (14,000 rpm, 25◦C,
5min), washed with pure water, and purified by centrifugation.
Then the collected colloids were dried at 50◦C under vacuum
to obtain the products. Dry weight: 0.2mg. Yield: 81.1% based
on P5A and CrMo6. The catalytic system contains P5A-CrMo6
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FIGURE 1 | Schematic representation of the two chemical structures and their self-assemblies.

(0.2mg, 0.002 mmol, 0.2mol %), benzaldehyde (101 µL, 1
mmol), air (using air pump to control the flow velocity), H2O
(5mL). The mixture was stirred at 30◦C, and the reaction
progress was monitored by HPLC. After 12 h, 3 × 5mL ethyl
ether was added by extracting three times to give the organic
phase, and the solid catalyst was isolated by filtration. Then the
organic phase was diluted 100 times by acetonitrile. The diluted
samples were loaded into sample vials and detected by HPLC,
using acetonitrile and water as mobile phase, non-polar C18 as
separation column, UV and refractive index detector as detector.

RESULTS AND DISCUSSION

The supramolecular amphiphiles (SA) (Wang et al., 2010; Han
et al., 2011; Zhang and Wang, 2011) was prepared by mixing
different charge ratios of cationic P5A and anionic CrMo6 in
water solution, with the concentration of P5A and CrMo6 kept
constant at 0.05mg.mL−1. After the samples were mixed, the
assembling process took place rapidly. Dynamic light scattering
(DLS) was used tomonitor size evolution of these assemblies with
different charge ratios. We define the compositional formation of
the charge ratio (r) between P5A and CrMo6, r = (3 P5A10+):
(10 CrMo3−6 ). The DLS count rates, shown in Figure 2A, were
very low until r reached 0.4. When 0.4 ≤ r ≤ 1.0, the DLS
count rates were more than 100 kcps. But when 1.0 < r, the DLS
count rates were also low (even less than 10 kcps), indicating
no detectable assemblies in the solution. When r < 0.4, the
charge ratio of P5A and CrMo6 is greatly unmatched, and the
size of assembles is big and thermodynamically unstable. A small
amount of precipitates was found at the bottom of the bottle in
a very short time. That is why the DLS count rate is low when
r < 0.4. As the charge ratios of P5A and CrMo6 became closer,
the hydrodynamic radii (Rh) of assemblies in aqueous solution
become smaller, because of themore compact assembly due to the
closer charge ratios. Average size of the nanospheres was obtained
by dynamic light scattering, shown in Figure 2B. For charge

ratios at 4:10, 6:10, 8:10, 10:10, the hydrodynamic radius is 567,
295, 130, and 75 nm, respectively. Combined with relative TEM
images, shown in Supplementary Figure 5, the closer charge
ratios caused the more compact assembles. However, for r >

1.0, these solutions were clear during the 17 days of testing
time, and almost no regular aggregates can be observed for TEM
testing, which indicated that there were no convinced assembles.
It is convinced that the size of these aggregates are molar ratios
dependently.

In this investigation, the system of r = 10:10 was chose
as the research object, named P5A-CrMo6, which has the
highest DLS count rate and thermodynamically stable Rh at
∼75 nm, shown in Figure 2B. The hydrodynamics radius of
the aggregates in the aqueous solution slowly increased over
time, shown in Figure 3A. During the first 17 days, there is still
no precipitate in the solution, which confirms the stability of
the aggregates. The hydrodynamic radii of nanospheres grows
with time. The average hydrodynamic radii became bigger
from 75 nm on first day to 87 nm on the 17th day, as shown in
Figure 3A. This is because more and more compounds (POM
or P5A) aggregated on the outer surface of the nanospheres,
as time goes by. And the nanospheres diameters of the 1st
day, the 8th day, the 17th day were also counted from TEM
images (Figures 3C,D and Supplementary Figures 6A,C,E).
By analyzing the size-dispersion histogram of nanospheres
(Supplementary Figures 6B,D,F), the average diameters are 99,
111, and 150 nm, respectively. Compared with the DLS data,
all the statistical sizes of the nanospheres in TEM images are a
litter smaller which is directly caused by the removing hydration
layer of nanospheres under drying (Supplementary Figure 7).
Furthermore, X-ray energy-dispersive spectroscopy (EDS)
coupled with HRTEM shows that both molybdenum, chromium,
bromine, nitrogen, and oxygen elements exist throughout
the assemblies, shown in Supplementary Figure 8. The
molybdenum and chromium elements are attributed to CrMo6,
and the bromine and nitrogen elements are attributed to P5A.
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FIGURE 2 | (A) DLS total scattered intensity I of the P5A-CrMo6 complex at different charge ratios. From left to right, the charge rate of P5A:CrMo6 is 1:10, 2:10,

4:10, 6:10, 8:10, 10:10, 10:8, 10:6, 10:4, 10:2, 10:1. The concentration of (P5A-CrMo6) was controlled at 0.05 mg/mL. (B) The size distribution at different charge

ratios obtained by a CONTIN analysis with normalized counts by DLS.

FIGURE 3 | (A) Change of hydrodynamic radii (Rh) of P5A-CrMo6 in water solution with time. Charge ratio of P5A-CrMo6 is 10:10. The concentration of P5A-CrMo6
is 0.05 mg/mL. (B) Zeta potential of the P5A-CrMo6 self-assemblies with charge ratio 10:10 at 0.05 mg/mL in water solution. (C) TEM image of the self-assemblies

immediately after mixed together. (D) TEM images of self-assemblies after 17th day.

In order to explore the assembly structure, scanning electron
microscopy (SEM) and zeta potential were taken. As shown
in Supplementary Figure 9, the sphere aggregates were solid
structure. And the zeta potential of the aggregates was
determined to be +30mV, shown in Figure 3B, indicating that
the outer surface of these aggregates is covered by cations,

probably the cationic P5A. The composition of these nanospheres
determined by elemental analysis was CrMo6:P5A= 3.3:1, which
indicated that the CrMo6 anion is surrounded by P5A in the
form of P5A·(CrMo6)3.3, shown in Supplementary Table S1.
The structure was still maintained as supported by FTIR spectra,
shown in Supplementary Figure 10. The peaks at 908 cm−1
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n (Mo-Ob-Mo) and 945 cm−1 n (Mo-Od, Od = terminal
oxygen) are consistent with the structure of CrMo6, indicating
the Anderson-type structure is maintained during assembling.
Herein, the diameter of P5A (10.0 Å) by DFT calculation is larger
than CrMo6 (8.7 Å). The surface occupation of CrMo6 is greater
than 2/3. As a result, no classical reverse bilayer can be formed
(Volkmer et al., 2000; Bu et al., 2002, 2005; Qi et al., 2008; Li et al.,
2017). The tight packing of rigid balls instead of classical reverse
bilayer were the probably formed state. It is consistent with solid
aggregates detected by SEM and TEM. The assembled structure
assumed be arranged as shown in Figure 1.

Catalytic oxidations of aldehydes into carboxylic were
investigated to further explore the function of the P5A-
CrMo6 nanospheres, shown in Figure 4. Air as oxidant was
simply flushed into the reaction flask (with a balloon) under
aqueous reaction conditions. Through optimizing the catalytic

FIGURE 4 | Representative examples of oxidation of aldehydes.

reaction temperature conditions, we chose 30◦C as the reaction
temperature. Taking catalytic oxidation benzaldehyde to benzoic
acid as the key research example, the reaction kinetics was
monitored by liquid chromatography at different time points,
shown as Figure 5A. For nanospheres, after 3 h, the yield of
benzoic acid has reached more than 96%. According to the
control experiments, when the catalyst is Anderson-type POMs
Na3[CrMo6O18(OH)3] alone, the yield reaching 90% needs at
least 4 h. When only cationic P5A is used as catalyst, reaching
above 90% of yield needs at least 6 h. Since the aldehydes
oxidation is an auto-oxidation process, when there is no catalyst,
the benzaldehyde can also be oxidized, however, reaching above
90% yield needs at least 8 h. In general, most kinds of aldehydes
are stable, despite being prone to autoxidation, requiring a
long reaction time. Water, the most environmental benign
solvent, was chosen as the solvent in this oxidation process.
Unfortunately, most of aldehydes can’t be dissolved in water,
for example, the lauric aldehyde. The cationic pillararenes are
a new kind of phase transfer catalysis similar to TBABr, which
can drag the insoluble organic aldehyde into water. It is the
key factor to improve the contact area between catalyst and
substrate. As heterogeneous catalysts, the nanospheres have the
synergistic catalytic effect of Anderson type POM CrMo6 and
organic cationic P5A which acts as phase transfer catalyst.

In order to explore the scope and functional-group
compatibility of these nanospheres, a number of functionalized
aldehydes were used as substrates to carry out the reaction under
the optimized conditions, shown in Figure 6. Aromatic aldehyde
bearing a methyl group was oxidized in quantitative yields above
99% (products 2) after 12 h. Halogen-substituted aldehydes such
as 4-bromobenzaldehyde were tolerated under the optimized
reaction conditions and the corresponding carboxylic acids were
obtained in quantitative yields above 99% (products 3). However,
when aromatic aldehydes bearing electron-withdrawing groups
such as 4-nitrobenzaldehydes, 4-hydroxybenzaldehyde, 2-
hydroxybenzaldehyde, 4-methoxybenzaldehyde, the obtained
oxidized carboxylic acid yields are low (products 4–7).
Because of the water-solubility of 4-hydroxybenzaldehyde

FIGURE 5 | Reaction dynamics (A) and catalytic experiment of recycled of nanospheres (B).
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FIGURE 6 | Investigation of substrate scope.

and 2-hydroxybenzaldehyde, their oxidation yields are
relatively higher compared with 4-nitrobenzaldehyde and
4-methoxybenzaldehyde. Heterocyclic aromatic aldehyde such
as 4-pyridinecarboxaldehyde was also oxidized with a yield
about 53% (products 8). The aliphatic aldehyde such as lauric
aldehyde was also tested. Interestingly, the oxidation yield is
surprisingly high, with an essentially quantitative yield of 91%
(products 9). The strong host-guest interaction between the
cationic pillar[5]arenes and lauric aldehyde or lauric acid might
result in water-insoluble lauric aldehyde penetrating the positive
pillar[5]arenes because of electrostatic interaction, hydrogen
bond interaction and CH/π interaction, and then lauric aldehyde
might be more susceptible to be oxidized.

The recycling and stability of the nanosphere catalysts
were also evaluated. After six cycles, the catalytic yield of
nanospheres is still above 80%, shown in Figure 5B. The
structure of the catalyst is basically unchanged after six
reaction cycles as confirmed by FT-IR spectrum, shown
in Supplementary Figure 10. Unfortunately, the spherical
aggregates unable to maintain their original morphology after
the second cycle of experiments, but the aggregates are still kept
in nanosized, shown in Supplementary Figure 11. This result
explained why the catalytic activity still maintained after six
cycles.

CONCLUSION

In summary, we exploited the co-assembly of polyanionic
functional chromium centered POM [CrMo6O18(OH)3]3− and
polycationic functional pillar[5]arenes in aqueous solution.
Interestingly, the nanospheres were formed and their diameters
were variable along with the changing of charge ratios of

CrMo6:P5A in ionic complexes. The regularity of the assembly
of different charge ratio was detected through DLS, and the
morphology of these nanospheres were observed by SEM and
TEM. Combined with zeta potential, we presumed a structural
model to this system. The well-defined nanospheres were
explored as the catalyst for catalytic oxidation of aldehydes into
carboxylic acids. Synergy effect which combined both advantages
of [CrMo6O18(OH)3]3− and P5A offers better catalytic effect
with relatively good conversion. Future directions of this work
are aimed at continuing to find amazing nanostructures, probing
the mechanism and exploiting different applications.
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