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Acetylene gas (C2H2) is one of the main arc discharge characteristic gases dissolved

in power transformer oil. It is of great potential to monitor the fault gas on-line by

applying gas sensor technology. In this paper, gas sensors based on nanorods and

nanoneedles assembled hierarchical NiO structures have been prepared. Herein, we

focus on investigate the relationship between the sizes of the assembling blocking units

and gas sensing properties. It can be found that the addition of CTAB/EG plays a vital

role in controlling the sizes of blocking unit and assembly manner of 3D hierarchical

structures. A comparison study reveals that an enhanced gas sensing performance

toward C2H2 for the sensor based on nanoneedle-assembled NiO flowers occurs over

that of nanorod-assembled NiO. This enhancement could be ascribed to the larger

specific area of needle-flower, which provides more adsorption and desorption sites for

chemical reaction as well as effective diffusion channels for C2H2. Besides, a method

of calculating the specific surface area without BET testing was presented to verify the

results of gas sensing measurement. The possible growth mechanism and gas sensing

mechanism were discussed. Such a synthesis way may open up an avenue to tailor the

morphologies and control the sizes of blocking units of some other metal oxides and

enhance their gas sensing performances.

Keywords: NiO, hierarchical structures, blocking units, sensor, gas sensing performances

INTRODUCTION

As we all know, the stable and reliable operation of power transformers is particularly important
for the safety and stability of power system. When the oil-immersed power transformers work
for a long time, the insulating oil, and paper will gradually deteriorate and produce various
trace characteristic gases, which actually dissolve in transformer insulation oil (Singh and
Bandyopadhyay, 2010). When the power transformer has the spark of oil or arc discharge fault,
it will generate the fault characteristic gas with acetylene gas (C2H2) as the main component. It is of
great potential to monitor the fault gas on-line by applying gas sensor technology. The monitoring
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of C2H2 gas content can predict the internal latent failure of the
transformer (Chen et al., 2013; Jin et al., 2017). So, C2H2 gas is
selected as the target gas in this paper.

A common method for detecting C2H2 gas dissolved in
transformer oil is metal oxide semiconductor (MOS) based gas
sensor (Zhu and Zeng, 2017). Among various MOS sensing
materials, nickel oxide (NiO) as a wide band gap (Eg = 3.6–
4.0 ev) p-type semiconductor has taken a dominated position due
to its outstanding physical and chemical properties. Recently,
NiO has been extensively applied in multifarious application
fields such as electrode materials (Zhang et al., 2004), solar cells
(Nakasa et al., 2005), catalysts (Kaminski et al., 2018), and gas
sensors (Cao et al., 2015a; Yu et al., 2017).

It’s believed that one-dimensional (1D) nanostructures with
large surface to volume have great potential to improve the
sensing properties. However, there are some shortcomings for
1D structure, i.e., inevitable serious stacking configuration and
thermal/ chemical instability. Given this, the sensing materials
can be designed into three–dimensional (3D) hierarchical
structure assembled by 1D blocking units, which not only
prevents the 1D blocking units from serious stacking but also
inherits the merits of 1D nanomaterials (Duo et al., 2016; Zhu
et al., 2018). The ability to control the assembly configuration,
the morphology and size of building units in hierarchical
architectures is of utmost importance for the realization of
multifunctional nanodevices (Kim and Yong, 2011). Recently,
assembly of 1D blocking units into hierarchical structures
has been a hot topic in the research. But there are few
explorations about the synthesis of hierarchical structures with
size-controllable blocking units and studying the influence of the
size of the assembling units on gas sensing performances.

In this paper, nanorods, and nanoneedles assembled 3D
flower-like NiO hierarchical structures were successfully
synthesized via hydrothermal synthesis. Herein, we focus on
investigate the relationship between the sizes of the assembling
blocking units and gas sensing properties. It can be found that
the addition of CTAB/EG plays a vital role in controlling the
sizes of blocking unit and assembly manner of 3D hierarchical
structures. A comparison study reveals that an enhanced gas
sensing performance toward C2H2 for the sensor based on
nanoneedle-assembled NiO flowers occurs over that of nanorod-
assembled NiO. In order to shed light on this phenomenon,
a method of calculating the specific surface area without
BET testing was presented to verify the results of gas sensing
measurement. Based on our experimental results, the possible
formation mechanism of two kinds of NiO nanoflowers is
primarily discussed. It’s expected that this study can promote
the development of gas sensing materials via lower dimensional
assembly.

EXPERIMENTAL

Synthesis of the Nanorods-Assembled
Hierarchical NiO Nanoflowers
In a typical experiment of nanorods assembled NiO nanoflowers,
0.4 g of Ni(NO3)2·6H2O was added to 40ml of distilled water

under vigorous stirring for 10min. 0.18 g of cetyltrimethyl
ammonium bromide (CTAB) was introduced into the above
solution. Then, under continuous magnetic stirring, ammonia
(NH3·H2O, 25%) was dripped into the mixed solution to obtain
the pH = 9. After thorough mixing, the resulting mixture was
transferred to a 50ml autoclave and maintained overnight at
180◦C. After cooling naturally, the precipitates were washed
sequentially and dried in air at 60◦C. Finally, the powder was
calcined at 500◦C for 2 h. The sample was labeled as rod-flower.

Synthesis of the Nanoneedles-Assembled
Hierarchical NiO Nanoflowers
Typically, 0.4 g of NiCl2·6H2O and 0.08 g of Na2C2O4 were
poured into 15ml of distilled water. Then 25ml ethylene glycol
(EG) was added into the solution with sequentially stirring. The
mixed solution was loaded into a 50ml autoclave and heated to
160◦C for 12 h. The subsequent process including centrifugation,
washing, drying and calcining are the same as the above. The
sample after annealing was designated as needle-flower.

Characterization
Crystal structure of as-prepared samples was examined through
X-ray diffraction (XRD, D/Max-1200X, Rigaku). The surface
morphologies and nanostructures of the samples were inspected
by scanning electronic microscopy (SEM, JEM-6700F) and
transmission electron microscopy (TEM, JEM-1200EX).

The detailed process about the fabrication of planar gas
sensor and gas-sensing test is as follows Jin et al. (2017).
Firstly, the appropriate amount of as-prepared NiO powders
was fully ground and mixed with diethanolamine and ethanol
to form a slurry suspension. The pastes were evenly coated
onto the electrodes of sensor’s substrate. Then, the sensor was
placed in aging platform and maintained at 120◦C for 100 h to
improve the stability of the sensor. Gas sensing properties toward
C2H2 were measured using a CGS-1TP (Chemical Gas Sensor-
1 Temperature Pressure) intelligent gas sensing analysis system.
The sensor was placed on the heating table of the gas chamber
and two probes were adjusted to ensure good electrical signals of
the sensing materials. Then, the working temperature was set and
air was delivered into the chamber at a constant flow rate. When
the resistance of the sensor was stable in the air, it’s denoted as
Ra. Then, a certain amount of target gas was injected into the
chamber through the injection hole. The change of resistance
curve in the software was observed until the resistance value was
stable again, denoted as Rg. The target gas flow was vented and
the sensor was exposed to air again. The concentration of target
gas (C2H2) was controlled by the mass flow controllers (MFC)
with the following equation (Equation 1):

Gas concentration (ppm)

=
Flow rate (target gas)× Gas cylinder (target gas)

Flow rate (target gas) + Flow rate (air)
(1)

The response (S) of the sensor was defined as the ratio of Rg to
Ra. And the response (recovery) time was regarded as the time
required reach 90% of the total resistance change.
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RESULTS AND DISCUSSION

Morphology and Structure
Figure 1A shows the XRD patterns of the obtained samples. The
identified peaks in two curves can be well matched with the cubic
crystalline structure of NiO (JCPDS Card no. 04-0835) without
observable impurity peaks, demonstrating that high purity of
NiO. Morphologies and structural features of the samples are
characterized by SEM and TEM, as shown in Figures 1B–E. From
Figure 1B, the NiO hierarchical nanoflowers are assembled from
a bunch of well-defined nanorods. The roots of these nanorods
come together while the tips are detached. Figure 1C illustrates
that each individual nanorod from the flower shared the same
geometric center. The average diameter of these nanorods is
∼900 nm and the length is ∼6µm. Additionally, some rods
are scattered around flower-like structures. As observed in
the inset of Figure 1C, the size of nanorods was similar to
what we had observed in SEM images. In Figure 1D, the
nanoneedles are assembled into homogeneously distributed
flower-like structures (AlHadeethi et al., 2017). The magnified
SEM image in Figure 1E displays the nanoneedles are thicker
at roots with sharper emanative ends. Each needle is ∼2.5 um
in length and ∼80 nm in diameter at the middle, which is in
consistence with the observation in TEM image (the inset of
Figure 1E).

Formation Mechanism
Based on the above observations, we proposed a possible
formation mechanism for the morphologies evolution of the
nanorod-assembled NiO nanoflowers, as shown in Figure 2A.
Firstly, ammonia aqueous acts as an alkaline reagent to release
OH− ions. CTAB is a surfactant with a hydrophobic part (Li Y.

Q. et al., 2015; Liu et al., 2017). When the Ni(OH)2 comes across
CTAB, Ni(OH)2 will be preferably absorbed on the CTA+ heads.
Subsequently, the grown Ni(OH)2 nanoparticles are connected
with each other by orientation attachment to form many
nanorods. It’s proposed that CTAB seemingly acts as an adhesive
to gather the nanorods together (Li T. M. et al., 2015; Miao
et al., 2017). Finally, the nanorods self-assemble into the ultimate
flower-like architectures driven by the minimum surface energy
theory.

For the formation of the nanoneedle-assembled hierarchical
NiO nanoflowers (Figure 2B), firstly, Ni2+ and C2O

2−
4 can be

illustrated as a NiC2O4·2H2O polymer type ribbon owing to
the complexation of Ni+ and C2O

2−
4 . EG is a surfactant with

symmetrical structures and functional group-OH, which serves
as a ligand to Ni and blocked the crystal surface paralleled
to [0,1,1] direction (Cao et al., 2015b). And then the above
microstructures are connected with each other along [0,1,1]
direction fabricate the needle-like structures. With the reaction
time goes by, NiC2O4·2H2O nanoneedles aggregate with each
other to assemble into hierarchical needle-flower. Finally, NiO
nanoflowers are obtained by thermal calcination.

Gas Sensing Properties
To further study the connection between the size of the
assembling units and gas sensing performances, we conduct gas
sensing experiments. Firstly, we investigate gas response curves
with temperature changing toward 200 ppm C2H2. In Figure 2C,
there is a volcano-shaped trend for the changes in gas response
of both kinds of nanoflowers. Apparently, the gas response of
the needle-flower NiO is higher than that of rod-flower. The
responses at peaks are 15.76 and 25.71 at 300◦C, respectively
(Long et al., 2018; Zhang et al., 2018). Herein, we determine the

FIGURE 1 | (A) XRD patterns of the obtained samples. (B,C) SEM images of the rod-flower NiO and TEM image in the inset of (C). (D,E) SEM images of the

needle-flower NiO and TEM image in the inset of (E).
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FIGURE 2 | (A,B) Schematic of the formation process. (C) Gas response as the function of operating temperature under C2H2 concentration of 200 ppm. (D) The

response and recovery characteristics of rod-flower and needle-flower NiO under C2H2 concentration of 200 ppm at 300◦C. (E) A simplified model to calculate the

surface area of hierarchical NiO nanoflowers.

optimum working temperature to be 300◦C for the later testing.
Figure 2D demonstrates the response and recovery characteristic
of hierarchical NiO nanoflowers toward 200 ppmC2H2 at 300

◦C.
Both sensors exhibit excellent gas sensing performances. It’s
clearly seen that the response of the needle-flower NiO is higher
than that of rod-flower. Besides, the needle-flower NiO exhibits
a shorter response and recovery time (23 and 26 s) compared
with that of the rod-flower NiO (34 and 32 s). In addition, a
comparison about the sensing performances of NiO sensors in
this work and other literature reports is summarized in Table 1.
It is not difficult to find that the needle-flower NiO based gas
sensor in this paper has excellent gas sensing characteristics and
has great potential to be a promising candidate for gas-sensitive
materials (Lin et al., 2015; Lu et al., 2016; Majhi et al., 2018; San
et al., 2018).

Whether the working temperature vs. response or the
response and recovery characteristic, sensor based on needle-
flower NiO absolutely prevails over that of rod-flower. This
may be attributed to the needle-flower’s high surface area. In
order to verify this hypothesis, we use a simple simplified model
to calculate the surface area of the hierarchical NiO structures
(Figure 2E) from associated literature (Lee, 2009; Zhang et al.,
2012). We made a slight change according to our data based on
the theory. Whether constituent blocking units are nanorods or
naononeedles, this proposal has reasonable guiding significance
to conduct qualitative analysis. In this modified model, the
specific surface area (Equation 2) is

S ∼=
(πr2 + 2πrh)n

nπr2ρ
∼

1

ρ
(1+

2h

r
) (2)
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TABLE 1 | Comparison of NiO based gas sensor in this work and those literature

reports.

Sensing

materials

Target gas

(ppm)

Temperature

(◦C)

Response References

Needle-flower NiO Acetylene

200 ppm

300 25.71 This work

Rod-flower NiO Acetylene

200 ppm

300 15.76 This work

Hollow NiO/SnO2

heterostructure

Acetylene

100 ppm

206 13.8 Lin et al., 2015

Porous cactus-like

NiO

Acetone 100

ppm

260 13.51 Lu et al., 2016

NiO/ZnO

heterojunction

microflowers

Formaldehyde

100 ppm

200 13.1 San et al., 2018

Pristine NiO

nanoparticles

Ethanol

100 ppm

300 1.88 Majhi et al., 2018

Core-shell

Au@NiO

Ethanol

100 ppm

200 2.54 Majhi et al., 2018

Where S stands for the specific surface area, r is the equivalent
radius of 1D unit, h is the length of 1D unit which can
be also expressed as the radius of hierarchical structures,
n is the number and ρ is the density of 1D unit. To
a specific material, ρ can be considered as a constant. So
S is proportional to h/r. Through the measurement and
calculation, the h/r value (66.7) of the nanoneedles is ∼5
times that of the nanorods (13.4). So the S of the needle-
flower is larger. It can explain why the needle-flower NiO
shows higher gas response and rapid response/recovery behavior.
The larger specific area will provide many adsorption and
desorption sites for oxygen, leading to the increasement in the
conductivity.

Gas Sensing Mechanism
The sensing mechanism of NiO-based gas sensors involves three
serial reactions: adsorption-oxidation-desorption (Zhu et al.,
2017). In the case of p-type semiconductor, its carrier is the
hole with positive charge. Specifically, when the sensor is in
the air, oxygen molecules react with NiO surface (Equations 3,
4). Due to the above reaction, electrons on the NiO surface
combine with O2 to form oxygen negative ions (O−

2 , O
−, and

O2−). This process cause the decrease of electrons and the
increase of holes to form a hole accumulation layer, resulting
in the resistance of the sensor decreases correspondingly. When
NiO surface comes into contact with C2H2 gas, oxygen ions
will oxidize gas molecules into CO2 and H2O, and releases
electrons to recombine with holes (Equations 5, 6), leading
to the decrease of carriers in hole accumulation layer and an
increase in the resistance (Balamurugan et al., 2014; San et al.,
2015).

O2 (gas) → O2 (ads) (3)

O2 (ads)+ ne− → On− (ads) (4)

C2H2 (gas) → C2H2 (ads) (5)

C2H2 (ads)+On−(ads)− → CO2 +H2O+ ne− (6)

CONCLUSION

In summary, nanorods and nanoneedles assembled NiO
hierarchical structures have been successfully synthesized via
a hydrothermal method and annealing process. Based on the
comparative studies, we draw a conclusion that the size (length
and diameter) of blocking units has a great influence on
gas sensing properties of hierarchical structures. The integral
morphologies and sizes of blocking units can be controlled
by tuning the additives. Here, CTAB/EG was introduced as
a structure-directing agent to regulate the aggregation and
assembly. Compared with rod-flower NiO, the needle-flower
NiO based sensor exhibits an enhanced gas sensing performance.
This enhancement could be ascribed to the larger specific area of
needle-flower, which provides more adsorption and desorption
sites for chemical reaction as well as abundant effective diffusion
channels for C2H2. The results hold a novel point in constructing
highly efficient gas sensors. The detection capability of gas
sensors determines the effectiveness of transformer on-line
monitoring. Therefore, optimize the morphology and structure
of gas sensitive materials is very meaningful work. Gas sensors
with the advantages of miniaturization structure, high sensitivity,
and fast response speed have very high practical value in power
system security.
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