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In this paper using quantum-mechanical (QM) calculations in combination with Bader’s

quantum theory of “Atoms in Molecules” (QTAIM) in the continuum with ε = 1, we

have theoretically demonstrated for the first time that revealed recently highly-energetic

conformers of the classical A·T DNA base pairs – Watson-Crick [A·T(wWC)], reverse

Watson-Crick [A·T(wrWC)], Hoogsteen [A·T(wH)] and reverse Hoogsteen [A·T(wrH)] – act

as intermediates of the intrapair mutagenic tautomerization of the T nucleobase owing to

the novel tautomerisation pathways: A·T(wWC)↔A·T∗(w⊥WC); A·T(wrWC)↔A·T∗O2(w
⊥
rWC);

A·T(wH)↔A·T∗(w⊥H); A·T(wrH)↔A·T∗O2(w
⊥
rH). All of them occur via the transition states

as tight ion pairs (A+, protonated by the N6H2 amino group)·(T−, deprotonated by the

N3H group) with quasi-orthogonal geometry, which are stabilized by the participation

of the strong (A)N6+H· · · O4−/O2−(T) and (A)N6+H· · · N3−(T) H-bonds. Established

tautomerizations proceed through a two-step mechanism of the protons moving in the

opposite directions along the intermolecular H-bonds. Initially, proton moves from the

N3H imino group of T to the N6H2 amino group of A and then subsequently from

the protonated N6+H3 amino group of A to the O4/O2 oxygen atom of T, leading

to the products – A·T∗(w⊥WC), A·T
∗
O2(w

⊥
rWC), A·T

∗(w⊥H), and A·T∗O2(w
⊥
rH), which are

substantially non-planar, conformationally-labile complexes. Thesemispairs are stabilized

by the participation of the (A)N6H/N6H’· · ·N3(T) and (T)O2H/O4H· · ·N6(A) H-bonds, for

which the pyramidalized amino group of A is their donor and acceptor. The Gibbs free

energy of activation of these mutagenic tautomerizations lies in the range of 27.8–29.8

kcal·mol−1 at T = 298.15K in the continuum with ε = 1.

Keywords: mutagenic tautomerisation, transition state, proton transfer, Watson-Crick, reverse Watson-Crick,

Hoogsteen and reverse Hoogsteen, classical A·T DNA base pairs, wobble structure

INTRODUCTION

Clarification at the microstructural level of the physico-chemical mechanisms underlying the
formation of the mutagenic tautomers of the DNA bases via the mutagenic tautomerization of
the classical Watson-Crick DNA base pairs is a matter of extreme importance for such branches
of life science as molecular biophysics and molecular biology, since it enables us to understand
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the sources of the genome instability (Watson and Crick, 1953a,b;
Löwdin, 1963, 1966; Topal and Fresco, 1976). Genome instability
is frequently associated with mutations in DNA, playing role in
cancer development due to DNA replication errors (Liu et al.,
2014; Tomasetti et al., 2017).

Mutagenic tautomerization of the DNA bases attracts
researchers’ curiosity since the establishment of the spatial
architecture of DNA molecule (Watson and Crick, 1953a) and
further formulation of the tautomeric hypothesis of the origin of
the spontaneous point mutations by Watson and Crick (Watson
and Crick, 1953b).

Distinguished quantum chemist Per-Orlov Löwdin
proposed original idea based on the electronic structure of
the complementary A·T and G·C pairs of the DNA bases
(Löwdin, 1963, 1966), which makes possible their conversion
into the high-energy tautomerized states – A∗·T∗(L) and
G∗·C∗(L) base pairs [currently known as Löwdin’s base pairs;
here and below rare, in particular mutagenic (Brovarets’ and
Hovorun, 2010a; Brovarets’, 2015), tautomers are marked with
an asterisk] causing origin of the transitions and transversions
during the DNA replication. Löwdin believed that these
transformations should be carried out by the double proton
transfer (DPT) in the opposite directions along the neighboring
intermolecular hydrogen (H) bonds through the quantum
tunneling. These representations played an extremely important
role in the formation of new visions in quantum biology
and attracted the attention of a wide range of Löwdin’s
followers (Florian et al., 1994; Gorb et al., 2004; Bertran et al.,
2006; Cerón-Carrasco and Jacquemin, 2013; Maximoff et al.,
2017).

However, from the physico-chemical point of view it was
established that generally accepted Löwdin’s mechanism of
the DPT along the intermolecular H-bonds in the Watson-
Crick DNA base pairs cannot be the source of the formation
of the mutagenic tautomers of the nucleobases due to the
absence of the reverse barrier of tautomerization in the
A·T(WC) pair of the DNA bases and its small value in
comparison with kT (0.62 kcal·mol−1 at T = 298.15K) for the
G·C(WC) DNA base pair (Gorb et al., 2004; Bertran et al.,
2006; Brovarets’ et al., 2012; Brovarets’ and Hovorun, 2014a,b,
2015a).

Recently, we have proposed another mechanism of the
mutagenic tautomerization of the A·T(WC) and G·C(WC)
pairs of the DNA bases, which is alternative to Löwdin’s
approach, occurring via the sequential intrapair proton transfer
and shifting of the bases relative each other, which ultimately
leads to the wobble configuration (Brovarets’ and Hovorun,
2015b). Moreover, we have discovered this intrinsic ability
to perform wobble↔Watson-Crick / Watson-Crick↔wobble
tautomeric transitions via the sequential intrapair proton transfer
for all possible incorrect base mispairs, which are active
players in the field of the spontaneous point mutagenesis:
purine·pyrimidine – G·T and A·C (Brovarets’ and Hovorun,
2009, 2015c,d, 2016), purine·purine – A·A, A·G and G·G
(Brovarets’ and Hovorun, 2015e,f) and pyrimidine·pyrimidine
– C·C, C·T and T·T (Brovarets’ and Hovorun, 2015f,g).
Notably, these interconverisons are accompanied by a significant

rebuilding of the base mispairs with Watson-Crick architecture
into the mismatches wobbled toward both minor and major
DNA grooves and vice versa. Moreover, it was established
that these tautomerisation reactions occur non-dissociatively
and are accompanied by the consequent replacement of the
unique patterns of the intermolecular specific interactions along
intrinsic reaction coordinate (IRC) (Brovarets’ et al., 2013,
2017a,b).

These data allows to suggest that the intrapair tautomeric
transition of the wobble pairs from the main tautomeric
form into the rare, mutagenic, having a WC or close to its
configuration, and vice versa, is the key to understanding
of the microstructural mechanisms of the emergence of the
spontaneous transitions and transversions at theDNA replication
(Brovarets’ and Hovorun, 2009, 2015b,c,d, 2016). Moreover,
these theoretical approaches have been partly experimentally
confirmed for some DNA/RNA purine·pyrimidine pairs
(Nedderman et al., 1991, 1993; Kimsey et al., 2015, 2018).

In this study, we succeeded to further elaborate such
approach and to reveal new mechanism of the mutagenic
tautomerization of the classical A·T DNA base pairs (Scheme 1)
as their intrinsic property, lying beyond classical representations
at the microstructural level and which was not presented in
the literature before. For the first time, it was theoretically
shown using QM/QTAIM methods, that the transition of
these pairs into the substantially non-planar, high-energy
conformers (Brovarets’ et al., 2018a) provokes intrapair
mutagenic tautomerization of the T DNA base from the
canonical, diketo into the rare, enol tautomeric forms
T∗ and T∗O2 (Brovarets’ and Hovorun, 2014a, 2015b,d;
Brovarets’ et al., 2014a, 2015). Moreover, for the first time
we have investigated in details conformationally-tautomeric
properties of the classical A·T DNA base pairs (Brovarets’ et al.,
2018b,c,d,e).

Transition states (TSs) of these mutagenic tautomerisations
are tight ion pairs (A+, protonated by the N6H2 amino group;
T−, deprotonated by the N3H group) with quasi-orthogonal
geometry, which are stabilized by the participation of the strong
(A)N6+H· · ·O4−/O2−(T) and (A)N6+H· · ·N3−(T) H-bonds.
Discovered reaction of the mutagenic tautomerization proceeds
through the stepwise mechanism of the PT along the H-bonds:
primarily proton moves from the imino group N3H of T to
the N6H2 amino group of A and then proton transfers from
the protonated N6+H3 amino group of A to the O4/O2 oxygen
atom of T, leading to the products, which are substantially non-
planar, conformationally-labile complexes. These complexes are
stabilized by the participation of the (A)N6H/N6H′· · ·N3(T) and
(T)O2H/O4H· · ·N6(A) H-bonds, for which the pyramidalized
amino group of A DNA base acts as their donor and acceptor.
The Gibbs free energy of the activation of the mutagenic
tautomerizations lies in the range of 27.79–29.83 kcal·mol−1 at
T = 298.15K in the continuum with ε = 1.

Also in this study, it was shown that the formed A·T∗(w⊥WC),
A·T∗(w⊥H), A·T∗O2(w

⊥
rWC) and A·T∗O2(w

⊥
rH) complexes can

conformationally interconvert according to the pathways A·T∗

(w⊥WC)↔A·T∗(w⊥H) and A·T∗O2(w
⊥
rWC)↔A·T∗O2(w

⊥
rH)

through three different TSs.
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SCHEME 1 | Geometrical structures of the classical A·T DNA base pairs – Hoogsteen A·T(H), reverse Hoogsteen A·T(rH), Watson-Crick A·T(WC), reverse

Watson-Crick A·T(rWC) (Brovarets’, 2013b). Electronic 1Eint and Gibbs free 1Gint energies of the interaction (MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level

of theory, in kcal·mol-1), relative Gibbs free energies 1G and electronic energies 1E (MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory in the continuum with

ε =1 at T=298.15 K in kcal·mol-1) are presented below complexes in brackets. Dotted lines indicate AH· · ·B H-bonds – their lengths H· · ·B are presented in

angstroms; carbon atoms are in light-blue, nitrogen – in dark-blue, hydrogen – in grey and oxygen – in red.

COMPUTATIONAL METHODS

Geometries of the investigated DNA base pairs and TSs of
their mutual tautomeric and conformational transformations, as
well as their harmonic vibrational frequencies were calculated
at the B3LYP/6-311++G(d,p) level of theory (Hariharan and
Pople, 1973; Krishnan et al., 1980; Lee et al., 1988; Parr
and Yang, 1989; Tirado-Rives and Jorgensen, 2008), using
Gaussian’09 package (Frisch et al., 2009) followed by the IRC
calculations in the forward and reverse directions from each TS
using Hessian-based predictor-corrector integration algorithm
(Hratchian and Schlegel, 2005). A scaling factor that is equal
to 0.9668 (Brovarets’ and Hovorun, 2010b,c,d, 2011; El-Sayed
et al., 2015) was applied in this study for the correction of the
harmonic frequencies of all DNA base pairs and TSs of their
tautomeric and conformational transitions. We have confirmed
the TSs, localized by Synchronous Transit-guided Quasi-Newton
method (Peng et al., 1996), on the potential energy landscape
by the presence of one and only one imaginary frequency in
the vibrational spectra of the complexes. We applied standard
TS theory for the estimation of the activation barriers of
the tautomeric transformations (Atkins, 1998). Single point
electronic energy calculations have been performed using MP2
level of theory (Frisch et al., 1990) and aug-cc-pVDZ Dunning’s
cc-type basis set (Kendall et al., 1992), which was confirmed

as appropriate level of theory for the analogous systems and
tasks (Lozynski et al., 1998; Danilov et al., 2005; Matta, 2010;
Rutledge and Wetmore, 2012; Brovarets’ and Pérez-Sánchez,
2016, 2017; Brovarets’ et al., 2016, 2018f; Brovarets’ andHovorun,
2018a).

All calculations were performed for the base pairs in the
continuum with a dielectric constant of ε = 1 as their intrinsic
property, that is adequate formodeling of the processes occurring
in real systems (Bayley, 1951; Dewar and Storch, 1985; Petrushka
et al., 1986; García-Moreno et al., 1997; Mertz and Krishtalik,
2000; Bebenek et al., 2011; Wang et al., 2011; Maximoff
et al., 2017) without deprivation of the structurally functional
properties of the bases in the composition of DNA (Brovarets’
and Pérez-Sánchez, 2016, 2017; Brovarets’ et al., 2016, 2018f).

The Gibbs free energy G for all structures was obtained in the
following way:

G = Eel + Ecorr, (1)

where Eel - electronic energy, while Ecorr - thermal correction.
The Gibbs free energy of activation or barrier for the

forward tautomeric/conformational transition was calculated
as the difference between the Gibbs free energy of the TS
and reactant of the reaction. The Gibbs free energy for the
reverse tautomeric/conformational transition was calculated as
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the difference between the Gibbs free energy of the TS and
product of the reaction.

Electronic interaction energies 1Eint were calculated at
the MP2/6-311++G(2df,pd) level of theory as the difference
between the total energy of the base pair and energies of
the monomers and corrected for the basis set superposition
error (BSSE) (Boys and Bernardi, 1970; Gutowski et al., 1986)
through the counterpoise procedure (Sordo et al., 1988; Sordo,
2001).

Bader’s quantum theory of Atoms in Molecules (QTAIM)
(Bader, 1990; Matta and Hernández-Trujillo, 2003; Matta, 2014;
Lecomte et al., 2015) was applied to analyse the electron density
distribution, using software package AIMAll (Keith, 2010). The
presence of the bond critical point (BCP), namely (3,−1) BCP,
and a bond path between hydrogen donor and acceptor or
between two electronegative covalently bonded atoms, as well as
the positive value of the Laplacian at this BCP (1ρ > 0), were
considered as criteria for the H-bond or attractive van der Waals
contact formation (Matta et al., 2006; Brovarets’ and Hovorun,
2014c, 2018b; Brovarets’ et al., 2014b). Wave functions were
obtained at the level of theory used for geometry optimisation.

The energies of the attractive van der Waals contacts (Matta
and Boyd, 2007; Brovarets’ et al., 2018a) in the TSs of the
conformational transitions of the tautomerized base pairs were
calculated by the empirical Espinosa-Molins-Lecomte (EML)

formula (Espinosa et al., 1998; Mata et al., 2011), based on the
electron density distribution at the (3,−1) BCPs of the specific
contacts:

E = 0.5 · V(r), (2)

in this formula V(r) is a value of a local potential energy at the
(3,−1) BCP.

The energies of the conventional AH···B H-bonds were
evaluated by the empirical Iogansen’s formula (Iogansen, 1999):

EAH···B = 0.33 ·
√

△v− 40, (3)

in this formula 1ν is a magnitude of the frequency shift of
the stretching mode of the AH H-bonded group involved in
the AH···B H-bond relatively the unbound group. The partial
deuteration was applied in order to avoid the effect of vibrational
resonances (Brovarets’ and Hovorun, 2015h; Brovarets’ et al.,
2018a).

The atomic numbering scheme for the DNA bases was
conventional (Saenger, 1984).

OBTAINED RESULTS AND DISCUSSION

In our previous study, for the first time we have succeeded
to establish in the classical biologically-important A·T

FIGURE 1 | Discovered new reaction pathways of the T mutagenic tautomerization in the classical A·T DNA base pairs through the double proton transfer. νi –

imaginary frequencies at the TSs of the conformational transitions. For more designations refer to Scheme 1.
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DNA base pairs with Cs symmetry – Watson-Crick (WC),
reverse Watson-Crick A·T(rWC), Hoogsteen A·T(H) and
reverse Hoogsteen A·T(rH) DNA base pairs (Scheme 1)
(Donohue and Trueblood, 1960; Haschemeyer and Sobell,
1963; Hoogsteen, 1963; Brovarets’, 2013a,b; Yang et al.,
2015; Poltev et al., 2016; Zhou, 2016; Szabat and Kierzek,
2017) – novel high-energetic, dynamically-stable, mirror-
symmetrical A·T(wWC)R,L, A·T(wH)R,L, A·T(wrWC)R,L and
A·T(wrH)R,L conformational states (Figure 1) (Brovarets’
et al., 2018a). Their distinguished feature is significantly
non-planar structure (C1 symmetry), which is caused
by the pyramidal structure of the ≥C6N6H2 amino
fragment of the A DNA base, which amino group acts
simultaneously as a donor and an acceptor of the specific
intermolecular interactions with T DNA base by two
(T)N3H· · ·N6(A) and (A)N6H/N6H′ · · ·O4/O2(T) H-
bonds (the N6H′ bond has trans-orientation relatively
the N1C6 bond of A). Each of the four A·T Watson-
Crick DNA base pairs transfers into the aforementioned
conformers via two mirror-symmetric pathways through
the TSA·T(WC)↔A·T(wWC)R,L, TSA·T(rWC)↔A·T(wrWC)R,L,
TSA·T(H)↔A·T(wH)R,L and TSA·T(rH)↔A·T(wrH)R,L (C1 symmetry).
At this, mirror-symmetrical complexes, which are enantiomers,
are marked with the subscripts R and L. Notably, enantiomers
in the achiral environment demonstrate identical scalar physico-
chemical characteristics and differ only by the direction of the
dipole moment.

Possible biological role of these conformers was also
elucidated, in particular – their participation in the non-
dissociative conformational interconversions of all four classical
A·T DNA base pairs (Brovarets’ et al., 2018b,e). Recently, we
have identified novel pathway of the mutagenic tautomerisation
of these structures through the quasi-orthogonal transition state
as A− · T+ (Brovarets’ et al., 2018c).

These data inspired us to elaborate further this novel point
of view for the classical objects such as biologically-important
A·T DNA base pairs and allow to suggest the possibility of
the mutagenic tautomerization of T through the stepwise PT
along the appropriate intermolecular H-bonds from the N3H
imino group of T to the N6 atom of the N6H2 amino group
of A in the just-mentioned conformers and further – from the
protonated amino group NH+3 of A to the O4/O2 oxygen atoms
of T depending on the starting pair.

Performed quantum-chemical calculations
completely confirm this assumption (Figures 1, 2 and
Supplementary Information, Tables 1, 2).

It was established that novel pathways of the mutagenic
tautomerization of the T DNA base in the classical A·T DNA
base pairs (Scheme 1) are initiated by their spontaneous
conformational transition into the high-energy A·T(wWC)R,L,
A·T(wH)R,L, A·T(wrWC)R,L and A·T(wrH)R,L conformers as well
as are controlled by the TSs as tight ion pairs (A+, protonated
by the N6H2 amino group)·(T−, deprotonated by the N3H
imino group) with electronic energy of interaction 1Eint ∼145

FIGURE 2 | Pathways of the conformational transformations of the complexes - products of the T mutagenic tautomerization in the classical A·T DNA base pairs

through the double proton transfer. For the designations see Figure 1.
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kcal·mol−1. These TSs – TSA
+·T−

A·T(wWC)R,L↔A·T∗(w⊥WC)L,R

(20.76), TSA
+·T−

A·T(wrWC)R,L↔A·T∗O2(w⊥rWC)L,R

(23.06), TSA
+·T+

A·T(wH)R,L↔A·T∗(w⊥H)L,R (19.00) and

TSA
+·T−

A·T(wrH)R,L↔A·T∗O2(w⊥rH)L,R (21.48 kcal·mol−1) are
characterized by the quasi-orthogonal arrangement of the bases
relatively each other and are stabilized by the participation of
the two non-equivalent strong H-bonds (A)N6+H· · ·N3−(T)
and (A)N6+H· · ·O4−/O2−(T) [the first of them is significantly
weaker (∼15.1–18.6 kcal·mol−1), than the second one (∼22.5–
23.1 kcal·mol−1)]. Protonated amino group N6+H3 of A for
these TSs acts simultaneously as donor and acceptor of the H-
bonding and has such spatial orientation, that its N6+H/N6+H′

bond, which is not involved in the H-bonding with T, lies in the
plane of the purine ring (Figure 1, Tables 1, 2).

Significantly non-planar A·T∗(w⊥WC)R,L (10.44),
A·T∗(w⊥H)R,L (14.69), A·T∗O2(w

⊥
rWC)R,L (9.20) and

A·T∗O2(w
⊥
rH)R,L (13.75) kcal·mol−1 complexes (C1 symmetry),

which are the products of these mutagenic tautomerizations,
are stabilized by the two anti-parallel (T)O4H/O2H· · ·N6(A)
(∼5.5) and (A)N6H/N6H′· · ·N3(T) (∼4.5 kcal·mol−1) H-bonds
(Figure 1 and Tables 1, 2).

It is worth to mention that each of the investigated tautomeric
and conformational transitions proceed through two mirror-
symmetric pathways and do not change cys/trans mutual
orientation of the N1H and N9H glycosydic bonds of the bases.
At the mutagenic tautomeric transformations of the DNA bases
some R/L structures transfer into the other L/R structures and
vice versa (Figures 1, 2).

Terminal tautomerized complexes are conformationally-labile
and pairwise interconvert into each other according to four
mechanisms (Tables 1, 2).

Two of these tautomerization reactions are controlled by
the TSs – TS1,2A·T∗(w⊥WC)R,L↔A·T∗(w⊥H)R,L

(14.0, 10.9 cm−1) and

TS1,2A·T∗O2(w⊥rWC)R,L↔A·T∗O2(w⊥rH)R,L (13.4, 11.1 cm−1) with low
values of the imaginary frequencies provided in the brackets.
At this, one-single intermolecular (T)O4H/O2H· · ·N6(A) H-
bond between the O4H/O2H hydroxyl groups of T∗/T∗O2 and
N6 nitrogen atom of the piramidalized amino group of A
participates in the stabilization of the TS1s. In the case of
TS2s, when T hangs over A, the (T)O4H/O2H· · ·N6(A) H-bond
coexists together with attractive van der Waals contacts with
significantly increased ellipticity – N3· · ·C6 and O2· · ·C4 in the
case of TS2A·T∗(w⊥WC)↔A·T∗(w⊥H) and N3· · ·C6 in the case of

TS2A·T∗O2(w⊥WC)↔A·T∗O2(w⊥H) (Table 2). Notably, conformational
transformations, which are controlled by the TS1s are the most
energetically favorable (1.86 and 1.92) in comparison with the
TS2s (2.56 and 2.63 kcal·mol−1) (Table 1). In these cases R/L
structures are converted into the other R/L structures.

Two other mechanisms of the conformational
transformations are accompanied by the anisotropic rotation of
the A amino group around the exocyclic C6N6 bond, one R/L
structures transform into the others L/R structures and vice versa.
In these cases TSs – TS3,4A·T∗(w⊥WC)R,L↔A·T∗(w⊥H)L,R (8.38 and
8.61 kcal·mol−1) and TS3,4A·T∗O2(w⊥rWC)R,L↔A·T∗O2(w⊥rH)L,R

(7.88 and 8.36 kcal·mol−1) are characterized by the
considerably higher values of imaginary frequencies (168.9,
156.4, 144.9, 127.5 cm−1) and stabilized by two antiparallel
(T)O4/O2H· · ·N6(A) and (A)N6H/N6H′· · ·N3(T) H-bonds,
the first of which is significantly stronger, then the other one
(Table 2).

All tautomeric and conformational transitions without
exceptions are dipole-active processes, since they are

TABLE 1 | Energetic characteristics (in kcal·mol−1 ) of the discovered mutagenic tautomerizations of the T DNA base in the classical A·T DNA base pairs via the DPT and

conformational transformations of their products obtained at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory in the continuum with ε = 1 at T =
298.15K (see Figures 1, 2).

Tautomeric / conformational transition ν
a
i

1Gb 1Ec 11GTS
d 11ETS

e 11Gf 11Eg

A·T(wWC )R,L↔A·T*(w⊥WC)L,R 945.3 10.44 9.64 20.76 22.14 10.32 12.49

A·T(wrWC )R,L↔A·T*O2(w
⊥
rWC )L,R 749.4 14.69 13.66 23.06 23.66 8.37 10.00

A·T(wH )R,L↔A·T*(w⊥H)L,R 906.9 9.20 8.53 19.00 20.23 9.80 11.70

A·T(wrH )R,L↔A·T*O2(w
⊥
rH)L,R 704.8 13.75 13.22 21.48 22.41 7.72 9.20

A·T*(w⊥WC)R,L
1
←→A·T*(w⊥H)R,L 14.0 −0.17 −0.11 1.86 0.65 2.02 0.76

A·T*(w⊥WC)R,L
2
←→A·T*(w⊥H)R,L 10.9 −0.17 −0.11 2.56 0.90 2.73 1.01

A·T*(w⊥WC)R,L
3
←→A·T*(w⊥H)L,R 168.9 −0.17 −0.11 8.38 8.42 8.55 8.53

A·T*(w⊥WC)R,L
4
←→A·T*(w⊥H)L,R 156.4 −0.17 −0.11 8.61 8.52 8.77 8.63

A·T*O2(w
⊥
rWC)R,L

1
←→A·T*O2(w

⊥
rH)R,L 13.4 −0.18 −0.06 1.92 0.73 2.10 0.79

A·T*O2(w
⊥
rWC)R,L

2
←→A·T*O2(w

⊥
rH)R,L 11.1 −0.18 −0.06 2.63 0.97 2.81 1.03

A·T*O2(w
⊥
rWC)R,L

3
←→A·T*O2(w

⊥
rH)L,R 144.9 −0.18 −0.06 7.88 7.88 8.07 7.94

A·T*O2(w
⊥
rWC)R,L

4
←→A·T*O2(w

⊥
rH)L,R 127.5 −0.18 −0.06 8.36 8.07 8.54 8.13

a Imaginary frequency at the TS of the tautomeric/conformational transition, cm−1.
bThe Gibbs free energy of the product relatively the reactant of the tautomeric/conformational transition (T = 298.15K).
cThe electronic energy of the product relatively the reactant of the tautomeric/conformational transition.
dThe Gibbs free energy barrier for the forward tautomeric/conformational transition.
eThe electronic energy barrier for the forward tautomeric/conformational transition.
fThe Gibbs free energy barrier for the reverse tautomeric/conformational transition.
gThe electronic energy barrier for the reverse tautomeric/conformational transition.
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TABLE 2 | Electron-topological, geometrical and energetic characteristics of the specific intermolecular contacts – H-bonds and attractive van der Waals contacts in the

investigated DNA base pairs and TSs of their tautomeric and conformational transformations obtained at the B3LYP/6-311++G(d,p) level of QM theory in the continuum

with ε = 1 at T = 298.15K (see Figures 1, 2).

Complex AH···B H−bond/

A···B van der

Waals contact

ρa 1ρb 100·εc dd
A···B

de
H···B

6 AH· · · Bf EAH···B/E
g
A···B µh

A·T(wWC )R,L N6H· · ·O4 0.020 0.070 4.53 2.990 2.065 150.0 4.84 2.57

N3H· · · N6 0.013 0.040 17.05 3.215 2.345 142.8 2.47

TSA
+·T−

A·T(wWC )R,L↔A·T*(w⊥
WC

) N6+H· · · O4− 0.112 0.077 1.34 2.494 1.379 155.5 23.13** 3.26

N6+H· · · N3− 0.092 0.051 2.61 2.544 1.505 146.4 18.61**

A·T*(w⊥WC) O4H· · · N6 0.028 0.078 6.20 2.929 1.963 166.1 5.56 4.16

N6H· · · N3 0.017 0.056 10.90 3.018 2.240 132.0 4.11

A·T(wrWC )R,L N6H· · ·O2 0.020 0.071 4.08 2.993 2.062 151.2 3.79 2.68

N3H· · · N6 0.011 0.034 20.35 3.273 2.420 141.0 2.11

TSA
+·T−

A·T(wrWC )R,L↔A·T*O2 (w
⊥
rWC

)
N6+H· · · O4− 0.111 0.080 1.70 2.494 1.379 155.7 22.97** 5.14

N6+H· · · N3− 0.078 0.075 2.45 2.573 1.575 144.5 15.44**

A·T*O2(w
⊥
rWC

) O2H· · · N6 0.032 0.084 4.89 2.872 1.907 164.6 5.55 5.56

N6H· · · N3 0.018 0.057 10.59 3.006 2.232 131.3 5.44

A·T(wH )R,L N6H’· · · O4 0.018 0.062 4.93 3.010 2.132 143.5 3.70 5.88

N3H· · · N6 0.014 0.043 8.80 3.186 2.296 145.1 2.81

TSA
+·T−

A·T(wH )R,L↔A·T*(w⊥H )
N6+H’· · · O4− 0.109 0.085 1.39 2.497 1.389 155.2 22.50** 4.54

N6+H’· · · N3− 0.091 0.053 2.62 2.545 1.509 146.1 18.41**

A·T*(w⊥H) O4H· · · N6 0.029 0.079 4.98 2.923 1.957 166.2 5.65 5.23

N6H’· · · N3 0.016 0.054 14.79 3.013 2.276 128.1 3.94

A·T(wrH )R,L N6H’· · · O2 0.015 0.052 8.40 3.051 2.213 138.8 3.29 6.10

N3H· · · N6 0.016 0.047 6.58 3.155 2.259 145.8 2.98

TSA
+·T−

A·T(wrH )R,L↔A·T*O2 (w
⊥
rH )

N6+H’· · · O2− 0.109 0.088 1.76 2.497 1.389 155.4 22.50** 5.47

N6+H’· · · N3− 0.076 0.077 2.43 2.576 1.583 144.1 15.07**

A·T*O2(w
⊥
rH) O2H· · · N6 0.033 0.085 3.81 2.863 1.896 164.9 5.77 5.50

N6H’· · · N3 0.016 0.053 15.69 3.004 2.284 126.4 5.17

TS1A·T*(w⊥
WC

)R,L↔A·T*(w⊥H )R,L O4H· · · N6 0.031 0.081 2.57 2.906 1.928 170.0 5.92 4.68

TS2A·T*(w⊥
WC

)R,L↔A·T*(w⊥H )R,L O4H· · · N6 0.030 0.079 1.84 2.925 1.948 170.0 5.94 4.19

N3· · · C6 0.006 0.017 221.70 3.458 - - 0.84*

O2· · · C4 0.002 0.006 121.20 4.331 - - 0.25*

TS3A·T*(w⊥
WC

)R,L↔A·T*(w⊥H )L,R O4H· · · N6 0.046 0.097 2.21 2.754 1.765 167.2 8.35 1.19

N6H’· · · N3 0.017 0.054 18.48 2.984 2.284 124.3 2.77

TS4A·T*(w⊥
WC

)R,L↔A·T*(w⊥H )L,R O4H· · · N6 0.043 0.095 2.22 2.775 1.793 165.9 7.99 5.85

N6H· · · N3 0.017 0.055 15.55 2.983 2.271 125.3 2.82

TS1A·T*O2 (w
⊥
rWC

)R,L↔A·T*O2 (w
⊥
rH )R,L

O2H· · · N6 0.035 0.086 2.80 2.854 1.877 168.4 6.73 5.75

TS2A·T*O2 (w
⊥
rWC

)R,L↔A·T*O2 (w
⊥
rH )R,L

O2H· · · N6 0.035 0.086 2.17 2.863 1.882 170.1 6.80 5.04

N3· · · C6 0.005 0.017 205.60 3.396 - - 0.81*

TS3A·T*O2 (w
⊥
rWC

)R,L↔A·T*O2 (w
⊥
rH )L,R

O2H· · · N6 0.051 0.097 1.92 2.716 1.725 165.9 9.17 2.73

N6H’· · · N3 0.017 0.055 17.37 2.978 2.276 124.3 3.00

TS4A·T*O2 (w
⊥
rWC

)R,L↔A·T*O2 (w
⊥
rH )L,R

O2H· · · N6 0.048 0.096 1.94 2.735 1.752 164.4 8.81 7.28

N6H’· · · N3 0.017 0.057 13.87 2.972 2.254 125.7 3.10

aThe electron density at the (3,−1) BCP of the specific contact, a.u.
bThe Laplacian of the electron density at the (3, −1) BCP of the specific contact, a.u.
cThe ellipticity at the (3,−1) BCP of the specific contact.
dThe distance between the A and B atoms of the AH· · · B / A· · · B specific contact, Å.
eThe distance between the H and B atoms of the AH· · · B H-bond, Å.
fThe H-bond angle, degree.
gThe energy of the specific contact, calculated by Iogansen’s (Iogansen, 1999), EML (Espinosa et al., 1998; Mata et al., 2011; marked with an asterisk) or Nikolaienko-Bulavin-Hovorun
(Nikolaienko et al., 2012; marked with a double asterisk) formulas, kcal·mol−1.
hThe dipole moment of the complex, D.
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accompanied by a noticeable change in the dipole moment
of the involved complexes (Table 2).

Interestingly, that among all without exception investigated
in this work H-bonded structures, the total energy of the
intermolecular specific contacts (H-bonds and attractive van der
Waals contacts) contribute only a part of the electron energy
of the monomer interactions (0.26–0.98; see Figures 1, 2). This
result is in a good agreement with the previously published data
for the others H-bonded pairs of nucleotide bases (Brovarets’ and
Hovorun, 2014d).

Notably, the methyl group of the T DNA base does not change
its orientation during all, without exception, processes of the
tautomeric and conformational transformations. Moreover, the
heterocycles of the DNA bases remain planar, despite their ability
for the out-of-plane bending (Govorun et al., 1992; Hovorun
et al., 1999; Nikolaienko et al., 2011).

Finally, we would like to emphasize the fact that the presence
of the conformational transitions between the complexes
– products of the A·T∗(w⊥WC)R, L↔ A·T∗(w⊥H)R, L and
A·T∗O2(w⊥rWC)R, L↔ A·T∗O2(w⊥rH)R, L, tautomerizations
indicating the close structural relationship between
tautomerization the classical A·T(WC) and A·T(H) DNA
base pairs, on the one hand, and A·T(rWC) and A·T(rH), on the
other hand (Brovarets’ et al., 2018b,e).

CONCLUSIONS

In this study, we came out from the existing framework of the
mechanisms of the origin of the mutagenic tautomerization of
the classical A·T DNA base pairs (Brovarets’, 2013b; Brovarets’
et al., 2018a,b,c,d,e).

Here we have shed light on the revealed for the first time
physico-chemical mechanism of the intrapair mutagenic
tautomerization of the T DNA base within the novel
highly-energetic conformers of the classical A·T DNA base
pairs – Watson-Crick [A·T(wWC)], reverse Watson-Crick
[A·T(wrWC)], Hoogsteen [A·T(wH)] and reverse Hoogsteen
[A·T(wrH)], which have been analyzed in details in our
previous paper (Brovarets’ et al., 2018a). These reactions
– A·T(wWC)↔A·T∗(w⊥WC), A·T(wrWC)↔A·T∗O2(w

⊥
rWC),

A·T(wH)↔A·T∗(w⊥H), A·T(wrH)↔A·T∗O2(w
⊥
rH) –

proceed through the stepwise proton transfer via the
TSs as tight A+·T− ion pairs, which Gibbs free energy
of activation lies in the range of 27.79–29.83 kcal·mol−1

at T=298.15K, thus creating the substantially non-
planar, conformationally-labile complexes – A·T∗(w⊥WC),
A·T∗O2(w

⊥
rWC), A·T∗(w⊥H) and A·T∗O2(w

⊥
rH). Furthermore,

formed complexes involving mutagenic T∗/T∗O2 tautomers
are able to conformationally interconvert between each other

according to reaction pathways – A·T∗(w⊥WC)↔A·T∗(w⊥H)
and A·T∗O2(w

⊥
rWC)↔A·T∗O2(w

⊥
rH).
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