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Graphitic carbon nitride (g-C3N4) is always a research hotspot as a

metal-free visible-light-responsive photocatalyst, in the field of solar energy conversion

(hydrogen-production by water splitting). This critical review summarizes the

recent progress in the design and syntheses of two-dimensional (2D) g-C3N4 and

g-C3N4-based nanocomposites, covering (1) the modifications of organic carbon

nitrogen precursors, such as by heat treatment, metal or metal-free atoms doping,

and modifications with organic functional groups, (2) the influencing factors for the

formation of 2D g-C3N4 process, including the calcination temperature and protective

atmosphere, etc. (3) newly 2D g-C3N4 nanosheets prepared from pristine raw materials

and bulk g-C3N4, and the combination of 2D g-C3N4 with other 2D semiconductors

or metal atoms as a cocatalyst, and (4) the structures and characteristics of each type

of 2D g-C3N4 systems, together with their optical absorption band structures and

interfacial charge transfers. In addition, the first-principles density functional theory (DFT)

calculation of the g-C3N4 system has been summarized, and this review provides an

insightful outlook on the development of 2D g-C3N4 photocatalysts. The comprehensive

review is concluded with a summary and future perspective. Moreover, some exciting

viewpoints on the challenges, and future directions of 2D g-C3N4 photocatalysts are

discussed and highlighted in this review. This review can open a new research avenue

for the preparation of 2D g-C3N4 photocatalysts with good performances.

Keywords: two-dimensional g-C3N4, metal-free photocatalysts, atom doping, modification, heterojunction

INTRODUCTION

The energy crisis has become a growing concern as society continues to develop, which
further necessitates the development of sustainable energy sources to supersede traditional
fossil fuels (Chang et al., 2017; He et al., 2017a,b, 2018; Wang et al., 2018; Zhang G. G.
et al., 2018). The hydrogen produced by the photocatalytic water splitting reaction under
sunlight, resulting in solar-to-chemical energy conversion, has been deemed to play a key
role in resolving the solar-to-chemical energy conversion (Zhong et al., 2016; Zhang G. G.
et al., 2018; Zhang S. W. et al., 2018). As a half reaction of the hydrogen production
via water splitting, the reaction progress is the decrease of protons/water to hydrogen
(Bard and Fox, 1995; Zou et al., 2001). Although the produced hydrogen process refers to
the simple reactants, demanding only two electrons to generate a hydrogen molecule, the
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reaction kinetics is slow due to the large energy barriers in
the multiple reaction steps (Tu et al., 2013; Wondraczek et al.,
2015; Zhang N. et al., 2015; Zhang et al., 2017a). At the
same time, the reduction of water to hydrogen requires many
photo-induced holes with oxidant properties (Zhang et al.,
2014). Therefore, photocatalysts are indispensable for these
reactions, which can generate photo-induced electrons and
holes under sunlight. So far, the most effective photocatalysts
are still metal-based materials (Ma F. K. et al., 2016; Ma
Z. et al., 2016; Ai et al., 2018). However, the high cost
and heavy-metal-toxicity of these photocatalysts limit their
usage.

In recent decades, abundant non-metal photocatalysts, mainly
based on earth-abundant non-metals elements (P, S, N, and
C), have been explored. Among them is graphitic carbon
nitride (g-C3N4), which has recently been widely used in the
field of photocatalytic water splitting, as a metal-free and
environmentally friendly photocatalytic material, (Wang et al.,
2012, 2014; Low et al., 2014; Dong and Cheng, 2015), of
which the bulk and granulated g-C3N4 are the most widely
used electrocatalysts for hydrogen production. This seriously
inhibits the efficiency of photocatalytic water splitting (Zhang
G. G. et al., 2016). Moreover, the application of g-C3N4 is
restricted in the reaction because of its frequent photo-corrosion
under sunlight. Therefore, continuous efforts have been made to
develop more stable and efficient g-C3N4-based heterogeneous
photocatalysts in recent years (Wang et al., 2011; Shi et al.,
2015; Li G. et al., 2016; Yang et al., 2016). Additionally, as
a new type of two-dimensional (2D) material, 2D g-C3N4

FIGURE 1 | (A) XRD patterns of samples. (B) UV-Vis spectra of g-C3N4 and CNF-x (inset shows optical band gaps(E)g of g-C3N4 and sample-2.0). (C) XPS

spectrum of sample-2.0. (D) Solid-state MAS-NMR spectrum of sample-2.0 (Wang et al., 2010). Copyright 2010, American Chemical Society.

has been utilized as a photocatalyst in solar-driven water
splitting. The progress in this research field is discussed in this
review.

This critical review summarizes the recent progress made in
the formation of 2D g-C3N4 (g-C3N4-based nanocomposites) for
hydrogen production, and further elucidates the modifications
of functional groups, the influencing factors of the formation
process, new methods, heterojunction nanostructures, and
so on. In addition, the DFT calculations for the g-C3N4

systems are also summarized to provide an insightful outlook.
Finally, this review is concluded with a summary and future
perspective.

MODIFICATIONS OF CARBON NITRIDE

As a fascinating material, 2D g-C3N4 has attracted worldwide
attention (Ma et al., 2014; Liang et al., 2015), and promises
access to a wide field of applications compared with other
photocatalytic materials, due to its outstanding features, such
as its non-metal and non-toxicity (Liu G. et al., 2015; Zhang
G. G. et al., 2015; Zhang M. et al., 2016; Zhang et al.,
2017b). Furthermore, g-C3N4 is a wide-band gap indirect
semiconductor (Schwinghammer et al., 2013) with an appealing
electronic structure. This allows its direct use as a heterogeneous
photocatalyst. However, the photocatalytic effect of pure g-
C3N4 is inferior to those of metal semiconductor photocatalysts.
Therefore, some modifications, such as metal-free or metal atom
doping, are necessary to improve the photocatalytic effects of
g-C3N4.
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FIGURE 2 | (a) Image of the g-C3N4 and CN-S2.0. (b) TEM images of CN-S2.0 and (c) unmodified g-C3N4. (d) High resolution XPS spectra of samples. (e) EPR

spectra of samples in the dark. (F) UV–Vis spectra of samples (Zhang J. et al., 2012). Copyright 2012, American Chemical Society.

For the doping of g-C3N4 with metal-free atoms, halogen
elements are very important and effective (Groenewolt and
Antonietti, 2005; Chang et al., 2015; Han et al., 2016; Ye et al.,
2016; Ma et al., 2017), The ionic radii of the incorporated guests
of halogen elements decrease in the order F<Cl<Br (Chong et al.,
2013). Generally, by using a heating treatment (dicyandiamide)
in eutectic melting salt, such as LiY and KY (Y=F, Cl or Br),
bulk g-C3N4 can chemically and physically be exfoliated into
thin layers (Li+, K+ or X−) (Bojdys et al., 2013; Ma et al.,
2017). As early as 2010, Wang et al. reported the synthesis of a
fluorinated polymeric carbon nitride, which was employed as a
heterogeneous catalyst for hydrogen generation from water. In
addition, it was also used for the oxygenation of benzene into
phenol under visible light (Figure 1, Wang et al., 2010). Other
metal-free atoms are also used to dope g-C3N4, such as O, C,
N, P, S, and B (Ran et al., 2015; Feng et al., 2016; Lu et al.,
2017; Zhu et al., 2017). Zhang et al. used S8 (elemental sulfur)
and melamine as the raw materials to obtain g-C3N4-Sx, where
x refers to the quality of S8 (Zhang J. et al., 2012), in which
the absorption edges of CN-Sx samples became marginally red-
shifted with adding S8 contents (Figure 2), thus decreasing the
corresponding band gaps (Eg) from 2.76 to 2.58 eV (Zhang J.
et al., 2012).

The doping of g-C3N4 with metal atoms (Fe3+, Co2+, Ni2+,
Cu2+, Zn2+, K+, Na+, and Li+) has also been widely used to
enhance the catalytic properties of g-C3N4 (Figure 3, Pan et al.,

FIGURE 3 | Schematic structure of g-C3N4 framework with obtaining metal

ion (Ong et al., 2016). Copyright 2016, American Chemical Society.

2011; Yue et al., 2011; Ding et al., 2013; Tonda et al., 2014; Ye
et al., 2014; Ong et al., 2016). For example, Wang et al have
reported a g-C3N4 framework, including Zn2+ and Fe2+ for
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FIGURE 4 | (a) SEM images of melamine, and (b) layered CN. (c,d) AFM images of layered CN, (e) Infrared spectra of melamine and synthetic layered CN, (f) XPS

spectra of layered CN (C 1s) (Zhao G. et al., 2018). Copyright 2018, Wiley-VCH.

FIGURE 5 | Fabrication of 2D g-C3N4 nanosheets using a simple method from bulk g-C3N4 powders for hydrogen evolution under visible light (Yang et al., 2013).

Copyright 2013, Wiley-VCH.

the first time, which could improve the visible-light absorption,
decrease the band gap (Eg), expedite the charge mobility and
extend the lifetime of charge carriers. All these characteristics are
necessary to improve photocatalytic activity (Wang X. et al., 2009;
Wang X. C. et al., 2009).

Since Wang et al. proposed the preparation of g-C3N4 as
an efficient photocatalyst (Wang X. C. et al., 2009), g-C3N4

materials have gradually become a hot topic in the field of
energy and catalysis research, due to advantages such as its
low-cost, sustainability and visible-light response (Martin et al.,
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FIGURE 6 | Synthesis of hybrid nanostructures. (A) Schematic diagram of synthesis of α-Fe2O3/2D g-C3N4 hybrid structure. (B) AFM image of 2D g-C3N4. (C) SEM

image of α-Fe2O3 nanosheets (hexagonal structure). Scale bar: 100 nm. (D) TEM image of α-Fe2O3 nanosheet. (E) HRTEM image of α-Fe2O3 nanosheet. (F) SEM

image of the 2D g-C3N4. Scale bar: 100 nm. (G) HRTEM image of α-Fe2O3/2D g-C3N4 (3.8%) hybrid structure, Scale bar: 5 nm. (H) HRTEM image of α-Fe2O3/2D

g-C3N4 (39.8%) hybrid. Scale bar: 2 nm (She et al., 2017). Copyright 2017, Wiley-VCH.

2014a; Xu et al., 2015; Zheng et al., 2015; Kang et al., 2016;
Li J. et al., 2016). In recent years, high-efficiency 2D g-C3N4

nanosheet photocatalysts have been prepared by an organic
reaction. For example, phenylene groups can be part of carbon
nitrides through the copolymerization of 2-aminobenzonitrile
(CN-ABN0.5) with dicyandiamide (Zhang et al., 2010; Zhang
J. S. et al., 2012). The optical absorption edge of carbon
nitride red-shifted to 700 nm from that of the pristine carbon
nitride (460 nm), as the 2-aminobenzonitrile content increased.
The sample (CN-ABN0.05 with a platinum co-catalyst) showed

the topmost photocatalytic evolution of hydrogen (147 µmol
h−1) compared with pristine carbon nitride (18 µmol h−1 at
λ > 420 nm) (Zhang et al., 2010; Zhang J. S. et al., 2012).
Zhao et al. designed a 2D g-C3N4 organic material (with a
thickness of about 1.5 nm), which was successfully synthesized
from melamine raw materials for the first time. The synthetic
method for the 2D g-C3N4 organic material was simple and
efficient. Based on the organic synthesis theory, the synthetic
mechanism was theoretically explored (Figure 4, Zhao G. et al.,
2018). These photocatalysts have good photocatalytic hydrogen
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FIGURE 7 | (A) Schematic diagram of 2D MoS2/g-C3N4 nanocomposite preparation. (B) TEM and (C) HRTEM images of 2D MoS2/g-C3N4 nanocomposite (Li X. G.

et al., 2016). Copyright 2016, Elsevier.

FIGURE 8 | (A,B) Charge transfer in the conventional type-II g-C3N4-based

heterojunction systems (Fu et al., 2017). Copyright 2017, Wiley-VCH.

production compared to common bulk g-C3N4 (Zhao G. et al.,
2018).

THE G-C3N4 AND G-C3N4-BASED
NANOCOMPOSITES

Two-dimensional g-C3N4 with atomic thickness has become
a fascinating material in photocatalysis, because of the large

FIGURE 9 | Density functional theory of band structure (Thomas et al., 2008).

Copyright 2008, Royal Society of Chemistry.

specific surface area and efficiently photoexcited carriers, which
can decrease the possibility of electron-hole recombination
(Zhu et al., 2010; Shiraishi et al., 2014, 2015; Liu et al.,
2015a,b; Shi et al., 2015). However, the synthesis or exfoliation
of ultrathin (monolayer or bilayer) 2D g-C3N4 nanosheets
with a homogeneous thickness, continues to be a large-scale
challenge.
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It is known that g-C3N4 has a two-dimensional laminated
structure parallel to graphene and the theoretical specific surface
area of the ideal monolayer g-C3N4 can reach up to 2,500m

2 g−1.
Inspired by the formation of graphene from graphite exfoliation,
many effective ways have been explored for the exfoliation of raw

FIGURE 10 | Photocatalytic mechanism of g-C3N4 photocatalystt (Wang

et al., 2012). Copyright 2012, American Chemical Society.

bulk g-C3N4 to obtain a 2D ultrathin structure, such as ultrasonic
liquid exfoliation, chemical exfoliation, and thermal oxidation
exfoliation as well as other methods (Niu et al., 2012; Yang
et al., 2013; Feng et al., 2016). For example, Yang et al. prepared
g-C3N4 nanosheets from bulk g-C3N4 powders with a simple
and cost-effective liquid exfoliation method (Figure 5, Yang
et al., 2013). These nanosheets possess the structural features
of homogeneous decentralized carbon and nitrogen atoms, an
infinitesimal thickness, a large specific surface area (BET) and
an optimal bandgap, which can bring about good photocatalytic
activity with regards to the hydrogen evolution in visible light
(Yang et al., 2013).

Although these methods can effectively synthesize some g-
C3N4 nanosheets and improve the photocatalytic property,
the recombination of the electron-hole on the surfaces of
the 2D materials, remains a key issue for most single-
phase photocatalysts (Dong et al., 2013; Martin et al., 2014b;
Ye et al., 2015). Therefore, the concept of 2D g-C3N4-
based nanocomposites was proposed. Theoretical models have
predicted that the restoration of photo-generated electrons/holes
could be pounding down because of their effective spatial
isolation on the heterojunction interface (Dong et al., 2013).
Additionally, other advantages of photocatalytic reactions can
also be achieved such a: good visible-light absorption and
outstanding surface reaction activity. Herein, the design of 2D
g-C3N4-based nanocomposites has become a research hotspot
to improve the photocatalytic performance (Iwase et al., 2011;

FIGURE 11 | (A,B) TEM images, and (C) EDS mapping images of P-C3N4/ZnIn2S4 nanocomposites (Chen et al., 2016). Copyright 2016, Royal Society of Chemistry.
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FIGURE 12 | Water photolysis mechanism of P-C3N4/ZnIn2S4 photocatalyst

under simulated solar irradiation (Chen et al., 2016). Copyright 2016, Royal

Society of Chemistry.

Lin and Wang, 2014; Chen et al., 2015; Han et al., 2016; She
et al., 2016, 2017). For example, She et al reported that small
amounts of α-Fe2O3 nanosheets could actively promote the
exfoliation of g-C3N4, preparing a 2D hybrid structure that
exhibited an effective Z-scheme junction (She et al., 2017).
The nanostructured hybrids presented a high H2 evolution
rate >3 × 104 µmol g−1 h−1 and the quantum efficiency
was about 44.35% at 420 nm, which is the uppermost value
reported so far for g-C3N4 photocatalysts (Figure 6, She et al.,
2017).

A layered-structure, MoS2, is also a candidate for
incorporation with g-C3N4 to construct 2D/2D nanocomposites
(Hou et al., 2013; Li X. G. et al., 2016). For example, Li et al.
designed a 2D g-C3N4 and MoS2 heterojunction via means of
the self-assembly of 2D g-C3N4 with MoS2 nanosheets (Li X. G.
et al., 2016). As shown in Figure 7, the 2D g-C3N4 and MoS2
nanosheets were prepared from the exfoliation of bulk g-C3N4

and MoS2 raw materials, through ultrasonication (Li X. G. et al.,
2016). Thin g-C3N4 and MoS2 2D nanosheets were observed in
2D g-C3N4/MoS2 nanocomposites by TEM images (Figure 7).
This type of g-C3N4/ MoS2 photocatalysts also showed a good
photocatalytic effect.

MECHANISM OF A 2D G-C3N4

PHOTOCATALYST SYSTEM

In a single 2D g-C3N4 system, the photo-excited electrons
of the conduction band (CB) generally return to the valence
band (VB) (Tian et al., 2014), while the unpopular recovery of
photo-generated electrons and holes are a great disadvantage of
photocatalytic reactions (Yin et al., 2016). The photocatalyst is
used as a semiconductor, to intimately constitute with g-C3N4,

to create a suitable band structure. The spatial isolation of photo-
generated electrons and holes can be realized through an effective
charge transfer on the two semiconductor interfaces (Figure 8,
Jiang et al., 2013; Liu et al., 2016; Zhang X. J. et al., 2016;
Fu et al., 2017). Commonly, the bandgap of pristine g-C3N4

bandgap is about 2.7 eV and their CB and VB are situated at
−1.1 eV and +1.6 eV, respectively (Cao et al., 2015). g-C3N4 is
therefore used as a photocatalyst for photo-reduction reactions,
because of its sufficiently negative conduction band position in
Figure 8. Generally, 2D g-C3N4-based hetero-junction systems
are very effective in separating photo-generated electron/hole
pairs, because of the component photocatalyst has this kind of
Z-Z band structures (Cao et al., 2015). Therefore, an appropriate
band-structure is important to consider when choosing the
component photocatalyst for the structuring of 2D g-C3N4-based
heterojunction photocatalysts (Fu et al., 2017).

Additionally, the band gap requires that the oxidation of
the photo-generated hole has enough strength, in order to
obtain oxygen from the oxidation of water, and the photo-
generated electron must restore enough, to reduce the water,
in order to yield H2 (Li et al., 2012). In other words, the
location of the HOMO-LUMO band must consume the water
oxidation-reduction potential (Wang et al., 2012). As illustrated
in Figure 9, it is able to run half of two independent reactions,
by calculating the carbon nitride band positions (Thomas et al.,
2008; Maeda et al., 2014). The type of containment in an organic
semiconductor is a rare condition in Figure 10 (Wang et al.,
2012).

In 2016, Chen et al. fabricated a 2D/2D P-doped g-
C3N4/ZnIn2S4 photocatalyst by an in situ loading method,
wherein ZnIn2S4 nanosheets where grown on the P-doped
mesoporous g-C3N4 nanosheet surface (Chen et al., 2016). As
shown in Figure 11. the 2D nanosheet structure can clearly be
observed for the P-C3N4/ZnIn2S4 nanocomposites. Moreover,
the EDS mapping images of the P-C3N4/ZnIn2S4 show that all
the elements (Zn, In, S, C, N, and P) are evenly dispersed on
the surface of the photocatalyst (Chen et al., 2016). This type
of a special 2D/2D surface contact can provide more contact
areas between P-C3N4 and ZnIn2S4, which is conducive to an
effective charge carrier separation. Under light irradiation, the
photo-generated electrons can transfer from the CB of ZnIn2S4
to the CB of P-C3N4. Similarly, the photo-generated holes can
shift from the VB of P-C3N4 to the VB of ZnIn2S4, as shown
in Figure 12. The spatial isolation of photo-generated charge
carriers can vastly optimize the catalytic performance of the
P-C3N4/ZnIn2S4 photocatalyst (Chen et al., 2016).

SUMMARY AND OUTLOOK

Currently, two-dimensional g-C3N4, a metal-free and
visible-light-responsive photocatalyst, in the field of hydrogen-
production through water splitting, is a hot topic in research.
This critical review summarizes the ultramodern progress in
the design and preparation of 2D g-C3N4 and g-C3N4-based
composites. Although significant advances in 2D g-C3N4-
based photocatalysts have been made, photocatalytic efficiency
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remains too low. However, its wide application proves that 2D
g-C3N4-based photocatalysts are prospective materials in the
practical application of efficient sun-energy conversion in the
future.
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