

Promoting Effect of Cerium Oxide on the Catalytic Performance of Yttrium Oxide for Oxidative Coupling of Methane

Masaaki Haneda^{1,2*}, Yuya Katsuragawa¹, Yuichiro Nakamura^{1,2} and Atsuya Towata³

¹ Advanced Ceramics Research Center, Nagoya Institute of Technology, Tajimi, Japan, ² Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya, Japan, ³ Magnetic Powder Metallurgy Research Center, National Institute of Advanced Industrial Science and Technology, Nagoya, Japan

The promoting effect of CeO₂ on the catalytic performance of Y_2O_3 , which is moderately active catalyst, for the oxidative coupling of methane (OCM) reaction was investigated. The addition of CeO₂ into Y_2O_3 by coprecipitation method caused a significant increase in not only CH₄ conversion but also C₂ (C₂H₆/C₂H₄) selectivity in the OCM reaction. C₂ yield at 750 °C was increased from 5.6% on Y_2O_3 to 10.2% on 3 mol% CeO₂/Y₂O₃. Further increase in the CeO₂ loading caused an increase in non-selective oxidation of CH₄ to CO₂. A good correlation between the catalytic activity for the OCM reaction and the amount of H₂ consumption for the reduction of surface/subsurface oxygen species in the H₂-TPR profile was observed, suggesting the possibility that highly dispersed CeO₂ particles act as catalytically active sites in the OCM reaction. The ¹⁶O/¹⁸O isotopic exchange reaction suggested that the beneficial role of CeO₂ in the OCM reaction is to promote the formation of active oxygen species *via* the simple hetero-exchange mechanism, resulting in the promotion of CH₄ activation.

OPEN ACCESS

Edited by:

Cristina Artini, Università di Genova, Italy

Reviewed by:

Toshiyuki Masui, Tottori University, Japan Naoyoshi Nunotani, Osaka University, Japan

*Correspondence:

Masaaki Haneda haneda.masaaki@nitech.ac.jp

Specialty section:

This article was submitted to Physical Chemistry and Chemical Physics, a section of the journal Frontiers in Chemistry

Received: 17 July 2018 Accepted: 06 November 2018 Published: 22 November 2018

Citation:

Haneda M, Katsuragawa Y, Nakamura Y and Towata A (2018) Promoting Effect of Cerium Oxide on the Catalytic Performance of Yttrium Oxide for Oxidative Coupling of Methane. Front. Chem. 6:581. doi: 10.3389/fchem.2018.00581 Keywords: oxidative coupling of methane, cerium oxide, yttrium oxide, ¹⁶O/¹⁸O isotopic exchange, H₂-TPR

INTRODUCTION

Methane, which is the main constituent of natural gas, is an abundant hydrocarbon resource for energy and chemicals. Since methane is the most stable hydrocarbon, the selective oxidation to the chemicals seems to be difficult compared with other hydrocarbons. Therefore, in many cases, methane is first partially oxidized to synthesis gas ($CO + H_2$), and then converted to the chemicals such as methanol, acetic acid, light hydrocarbons and so on. This is well-known process as C1 chemistry.

On the other hand, as for the direct conversion of methane to the chemicals, oxidative coupling of methane (OCM) is regarded as energy efficient and simple chemical process for the production of higher hydrocarbons, especially, ethane and ethylene (Lunsford, 1995). The development of highly active OCM catalyst has been continuously performed over the past few decades (Hutchings et al., 1989; Arndt et al., 2011; Takanabe, 2012; Farrell et al., 2016) since the pioneering works of Keller and Bhasin (1982). The OCM reaction proceeds *via* the formation of methyl radicals formed by the reaction of methane with active oxygen species and subsequent coupling the methyl radicals (Dubois and Cameron, 1990). Therefore, designing the catalyst surface to create the active oxygen species such as O^- , O_2^{2-} , and O^{2-} for the OCM reaction must be the important strategy to develop highly active catalysts (Kumar et al., 2016).

1

Cerium oxide (CeO₂) is well-known material showing reversible oxygen release/absorb properties, so-called OSC (oxygen storage capacity) (Trovarelli, 1996), leading us to the expectation that CeO₂ can promote the activation of methane and then improve the catalytic performance for the OCM reaction. The promoting effect of CeO₂ on the OCM reaction has already been reported by many researchers. For example, Tang et al. (2011) reported that the addition of CeO₂ into Li/MgO caused an increase in the CH₄ conversion at lower reaction temperature with little change in C2 selectivity. They explained the promoting effect of CeO_2 by oxygen activation caused *via* the electron transfer between Ce^{4+}/Ce^{3+} and Li/MgO. A similar promoting effect of CeO2 was reported for Na/CaO (Pacheco Filho et al., 2000) and Li/MgO (Elkins et al., 2016). In case of alkali-doped catalysts, Li⁺O⁻ and Na⁺O⁻ sites are proposed to participate in oxygen activation (Ito et al., 1985; Lin et al., 1986). Therefore, the role of CeO₂ is suspected to improve the catalytic ability of Li⁺O⁻ and Na⁺O⁻ sites through the electronic interaction. On the other hand, Rane et al. (2006) investigated the additive effect of rare earth elements (La, Sm, Ce, Nd, and Yb) on the OCM activity of CaO, and found that CeO₂ is not good additive for the formation of C₂ products. This is probably due to the high ability of CeO₂ for the complete oxidation of CH₄ to CO₂ (Ferreira et al., 2012; Xu et al., 2018).

Recently, we have investigated that similarity of catalytically active sites for oxidative coupling of methane (OCM) and NO decomposition, and found that the catalysts showing the activity for the latter reaction are also active for the former reaction (Haneda et al., 2018). We also reported that the addition of small amount of CeO₂ into Ba/Y₂O₃ causes a significant increase in the NO decomposition activity (Doi et al., 2015), suggesting the possibility that CeO₂ behaves as effective promoter for the OCM reaction. In this study, we prepared CeO₂-promoted Y₂O₃ as the OCM catalyst by various methods, and found that CeO₂/Y₂O₃ prepared by coprecipitation method showed the highest OCM activity. The active state and the role of CeO₂ in the OCM reaction are discussed on the basis of its catalyst characterizations.

EXPERIMENTAL

Catalyst Preparation

A plural CeO₂-promoted Y_2O_3 catalyst was prepared by coprecipitation, homogeneous precipitation, impregnation and hydrothermal methods. The loading of CeO₂ was fixed at 3 mol%, except for the case of coprecipitation method. The details of CeO₂/Y₂O₃ catalysts as well as Y_2O_3 itself prepared in the present study are summarized in **Table 1**.

Yttrium Oxide (Y₂O₃)

 Y_2O_3 was prepared by precipitation method using yttrium(III) nitrate and ammonia aqueous solution, followed by drying and calcination at 800°C for 5 h in air.

Coprecipitation Method [CeO₂/Y₂O₃(CP)]

An aqueous solution of ammonia (10% NH₄OH, FUJIFILM Wako Pure Chemical Corporation) as a precipitation agent

was added to an aqueous solution of yttrium(III) nitrate $[Y(NO_3)_3 \cdot 6H_2O, FUJIFILM$ Wako Pure Chemical Corporation], and ammonium cerium(IV) nitrate $[(NH_4)_2Ce(NO_3)_6, FUJIFILM$ Wako Pure Chemical Corporation] at room temperature. The precipitate thus obtained was washed with distilled water, followed by drying and calcination at 800°C for 5 h in air. The loading of CeO₂ was changed from 1 to 10 mol%. The samples are abbreviated as CeO₂(*x*)/Y₂O₃(CP), where *x* is the loading of CeO₂.

Homogeneous Precipitation Method [CeO₂/Y₂O₃(HP)]

The precipitation of yttrium and cerium hydroxides was obtained by adding urea $[CO(NH_2)_2, FUJIFILM$ Wako Pure Chemical Corporation] to an aqueous solution of yttrium(III) nitrate and cerium(III) nitrate $[Ce(NO_3)_3.6H_2O, FUJIFILM$ Wako Pure Chemical Corporation] and stirring at 90°C for 24 h, and then washed with distilled water, followed by drying and calcination at 800°C for 5 h in air.

Impregnation Method [CeO₂/Y₂O₃(I)]

The deposition of Ce ions onto Y_2O_3 was carried out by impregnating Y_2O_3 powder, which was prepared by precipitation method as mentioned above, with an aqueous solution of cerium(III) nitrate, followed by drying and calcination at 800°C for 5 h in air.

Hydrothermal Method [CeO₂/Y₂O₃(HT)]

The oleate solution prepared by dissolving potassium oleate $(C_{17}H_{33}COOK, 19\%$ solution, FUJIFILM Wako Pure Chemical Corporation) with distilled water was added to an aqueous solution of yttrium(III) nitrate and ammonium cerium(IV) nitrate at room temperature under vigorously-stirred condition, followed by addition of ammonia aqueous solution. The mixture solution thus obtained was transferred to a Teflon vessel and then treated at 200°C for 6 h in an autoclave. The product thus obtained was washed with distilled water, followed by drying and calcination at 800°C for 5 h in air.

Catalyst Characterizations

X-ray diffraction (XRD) patterns were recorded using a Rigaku MiniFlex diffractometer with Cu Ka radiation at 30 kV and 15 mA. The scanning was done from $2\theta=15\text{--}65^\circ$ at a speed of 1 deg min⁻¹. The BET surface area of the catalysts was determined by N₂ physisorption at liquid nitrogen temperature using a BELSORP mini-II, after evacuating the samples at 300°C for 1 h. Raman spectra were measured with a Micro-RAM300/NK (Lambda Vision) equipped with a TE-cooled charge coupled device (CCD) detector and a green laser ($\lambda =$ 532 nm) under the ambient atmosphere. Direct observation of CeO₂/Y₂O₃(CP) samples by TEM was performed with a JEM-2100 (JEOL) operating at an acceleration voltage of 200 kV. H2-TPR measurement was conducted to estimate the reducibility of the catalysts (Haneda et al., 2015). The TPR profiles were obtained from room temperature to 800°C in a 30 cm³min⁻¹ flow of 5% H₂/Ar at a heating rate of 10 °C min⁻¹. The consumption of H₂ was monitored using a thermal conductivity detector (TCD).

	Preparation method	Crystallite size ^a (nm)	BET surface area (m ² g ⁻¹)
Y ₂ O ₃	Precipitation using NH ₃	40.0	23.9
CeO ₂ /Y ₂ O ₃ (CP)	Coprecipitation using NH ₃	25.1	26.3
CeO ₂ /Y ₂ O ₃ (HP)	Homogeneous precipitation using urea	25.3	27.5
CeO ₂ /Y ₂ O ₃ (I)	Impregnation	33.3	23.0
CeO ₂ /Y ₂ O ₃ (HT)	Hydrothermal at 200 $^\circ \text{C}$	9.7	13.0

TABLE 1 | Physico-chemical properties of CeO₂/Y₂O₃.

^a The crystallite size of Y_2O_3 was calculated from the XRD peak, given in **Figure 1**, from the (222) plane using Scherrer's equation.

The ${}^{16}\text{O}/{}^{18}\text{O}$ isotopic exchange reaction was carried out in a flow reactor system. An adequate amount of the sample (30 mg) was installed in a quartz reactor, and then pretreated in a flow of 5% O₂/He at 600°C for 1 h. After cooling to 100°C in flowing 5% O₂/He, the sample was purged with He at 100°C for 30 min. The reaction gas composed of 1% ${}^{18}\text{O}_2$ /He was fed to the catalyst at a rate of 20 cm³ min⁻¹, and then the temperature was increased up to 600 °C at a heating rate of 10°C min⁻¹. The masses of 32 (${}^{16}\text{O}_2$), 34 (${}^{18}\text{O}^{16}\text{O}$), and 36 (${}^{18}\text{O}_2$) were continuously monitored by a quadrupole mass spectrometer (PFEFFER OminiStar).

Activity Measurement

The catalytic activity for oxidative coupling of methane was evaluated using a fixed-bed continuous flow reactor. The reaction gas composed of 44.4% CH4 and 11.1% O2 diluted with He as the balance gas was fed to a 0.1 g catalyst that had been pretreated in situ in a flow of He at 650°C for 2 h at a rate of 45 cm³ min⁻¹. The effect of variation of CH_4/O_2 ratio was also investigated, where O2 concentration was varied over the range of 5.5-22.2% and CH₄ concentration was fixed at 44.4%. The reaction temperature was increased from 650 to 800°C in steps of 50°C, and the steady-state catalytic activity was measured at each temperature. The effluent gas was analyzed with the use of on-line gas chromatograph equipped with TCD and FID as a detector (Shimadzu GC-2014ATTF) using a Molecular Sieve 13X column (for analysis of O2, CH4, and CO), a Porapak QS column (for analysis of CO₂), and a DC-200 (20%)/Shimalite column (for analysis of C2H4 and C₂H₆).

RESULTS AND DISCUSSION

Activity of CeO₂/Y₂O₃ Prepared by Different Method

Figure 1A shows the XRD patterns of 3 mol% CeO_2/Y_2O_3 prepared by different method. Distinct XRD peaks indexed to the cubic phase of Y_2O_3 were observed for all the samples. No peaks due to CeO_2 were detected because of the low loading (3 mol%), suggesting the presence of CeO_2 nanoparticles. It is of interest that a shift of XRD peaks due to Y_2O_3 toward lower angle was observed for CeO_2/Y_2O_3 (HP) (**Figure 1B–b**), suggesting the formation of $CeO_2-Y_2O_3$ solid solution. This can be explained by the fact that the radius of Ce^{3+} ion $(0.114 \text{ nm})/Ce^{4+}$ ion (0.097 nm) is larger than that of Y^{3+} ion (0.09 nm) (Shannon, 1976). Homogeneous precipitation including Ce^{3+} and Y^{3+} ions may be produced under the conditions, where the pH of solution is gradually increased *via* the hydrolysis of urea.

Table 1 summarizes the crystallite size of Y_2O_3 , which was calculated from the XRD peak due to the (222) plane (2 θ =29.1°) using Scherrer's equation without the subtraction of the instrument broadening, where shape factor of "K" was used as 0.9, and the BET surface area of CeO₂/Y₂O₃. No significant difference in the crystallite size of Y₂O₃ was observed for CeO₂/Y₂O₃(CP), CeO₂/Y₂O₃(HP) and CeO₂/Y₂O₃(I). In accordance with this, these samples gave similar BET surface area in the range of 23–28 m²g⁻¹. On the other hand, the BET surface area of CeO₂/Y₂O₃(HT) was lower than those of other samples, although the crystallite size of Y₂O₃ was evaluated to be small. This conflict might be ascribed to the formation of aggregated Y₂O₃ crystallites with lessporous structure via hydrothermal process (Haneda et al., 2018).

Figure 2 shows the catalytic activity of 3 mol% CeO₂/Y₂O₃ for the OCM reaction. It appears that the addition of CeO₂ into Y₂O₃ by coprecipitation (CP), impregnation (I), and hydrothermal (HT) processes caused an increase in not only CH₄ conversion (Figure 2A) but also C₂ selectivity (Figure 2B) in the entire temperature range, suggesting that CeO₂ is effective additive for the OCM reaction. Since the participation of oxygen species such as O^- , O_2^- , O^{2-} , and O_2^{2-} formed on the catalyst surface in the activation of CH₄ molecule for the OCM reaction has been established by many researchers (Keller and Bhasin, 1982; Borchert and Baerns, 1997; Sekine et al., 2009; Takanabe, 2012; Liang et al., 2014), active oxygen species would be efficiently supplied from the lattice of CeO₂. On the other hand, as seen in **Figure 2**, $CeO_2/Y_2O_3(HP)$ showed lower CH_4 conversion and C_2 selectivity than Y₂O₃. This is probably ascribed to the formation of CeO₂-Y₂O₃ solid solution revealed from XRD measurements (Figure 1Bb), resulting in ineffective supply of active oxygen species. Taking into account the fact that CeO₂/Y₂O₃(HP) possesses similar physico-chemical properties, such as BET surface area and crystallite size (Table 1), with $CeO_2/Y_2O_3(CP)$ and $CeO_2/Y_2O_3(I)$, it is suspected the presence of the important factors affecting the catalytic activity of CeO2/Y2O3 for the OCM reaction.

FIGURE 1 | XRD patterns of (a) $CeO_2/Y_2O_3(CP)$, (b) $CeO_2/Y_2O_3(HP)$, (c) $CeO_2/Y_2O_3(I)$, (d) $CeO_2/Y_2O_3(HT)$ given in the wide range of $2\theta = 16 - 64^{\circ}$ (A) and in the expanded range of $2\theta = 28.0 - 30.5^{\circ}$ (B).

Effect of CeO₂ Loading on the Activity of CeO₂/Y₂O₃(CP)

Structural Characterization of CeO₂/Y₂O₃(CP)

In order to gain information on the activity controlling factor, the catalytic performance of $CeO_2(x)/Y_2O_3(CP)$ with different CeO_2 loading was examined. Structural characterizations were carried out. In **Table 2** are summarized the BET surface area of $CeO_2(x)/Y_2O_3(CP)$. It appears that no significant difference in the BET surface area was obtained in the range of $19-27 \text{ m}^2\text{g}^{-1}$. **Figure 3A** shows the XRD patterns of $CeO_2(x)/Y_2O_3(CP)$. No other peaks, except for those assignable to Y_2O_3 , were detected irrespective of CeO_2 loading. It is also noteworthy that a shift of XRD peaks by the addition of CeO_2 was not recognized. **Figure 3B** shows the Raman spectra of $CeO_2(x)/Y_2O_3(CP)$. Raman bands ascribed to $F_g + A_g$ mode of cubic Y_2O_3 with Ctype structure (Repelin et al., 1995; Yashima et al., 1997; Ubaldini and Carnasciali, 2008) were observed for all the samples, and their intensities were gradually decreased with an increase in CeO₂ loading. From XRD and Raman measurements, CeO₂ particles were revealed to present as highly dispersion state on the surface and/or in the bulk of Y_2O_3 .

In order to gain information on the dispersion state of CeO₂ particles, the morphology of CeO₂(x)/Y₂O₃(CP) with the CeO₂ loadings (x) of 0, 3, and 10 mol% was observed by TEM analysis. As can be seen in **Figures 4a–c**, the addition of CeO₂ into Y₂O₃ did not cause a significant change in the particle morphology, whereas the particle size was gradually decreased. This is in accordance with the crystallite size of Y₂O₃

(Table 2). These results suggest that the aggregated particles observed in TEM images mainly consist of Y2O3. Figures 4d-f show the TEM images of $CeO_2(x)/Y_2O_3(CP)$ observed at high magnification. Unfortunately, CeO2 and Y2O3 particles were not clearly distinguished each other because of low CeO₂ loading (<10 mol%) and the same crystal system (cubic). However, it appears from the comparison of Figures 4d,e that the surface morphology of Y2O3 was changed by addition of 3 mol% CeO₂. Namely, Y₂O₃ consists of the particles with smooth surface (Figure 4d), whereas the surface of Y₂O₃ particles in $CeO_2(3)/Y_2O_3(CP)$ seems to be rough (Figure 4e), suggesting the surface interaction between CeO2 and Y2O3. In other words, CeO₂ nanoparticles of which the size is smaller than the detection limit by TEM and XRD might be dispersed on the surface of Y₂O₃ particles. On the other hand, as seen in Figure 4f, $CeO_2(10)/Y_2O_3(CP)$ seems to be composed of a plurality of particles with different surface morphology. CeO2 nanoparticles might be present not only independently but also weakly interacting with Y2O3.

Catalytic Activity of $CeO_2/Y_2O_3(CP)$ for the OCM Reaction

Figure 5 shows the effect of CeO₂ loading on the catalytic activity of CeO₂(*x*)/Y₂O₃(CP) for the OCM reaction. As mentioned before, the addition of CeO₂ into Y₂O₃ caused an increase in not only CH₄ conversion but also C₂ selectivity in the entire temperature range. As can be seen in **Figure 5A**, CH₄ conversion was drastically increased by addition of 3 mol% CeO₂. Further increase in CeO₂ loading up to 10 mol% did not cause any change in the CH₄ conversion. In accordance with previous reports (Primet and Garbowski, 2002), CeO₂ seems to be good additive for the activation of CH₄ molecules. On the

other hand, as seen in Figure 5B, the effect of CeO₂ loading on the C₂ selectivity was slightly different from that on the CH₄ conversion. The C₂ selectivity was gradually increased with an increase in the CeO_2 loading up. The maximum C_2 selectivity was achieved at 3 mol% CeO2 loading. However, further increase in CeO₂ loading caused a gradual decrease in the C₂ selectivity. The optimum CeO₂ loading for the formation of C₂H₆/C₂H₄ as a product was found to be 3 mol%. As seen in Table 2, the highest BET surface area was obtained for $CeO_2(3)/Y_2O_3(CP)$. This is in agreement with the catalytic activity. However, although CeO₂(5)/Y₂O₃(CP) was found to possess similar BET surface area with CeO₂(3)/Y₂O₃(CP), the former catalytic activity was clearly lower than that of the latter catalyst. This suggests that the BET surface area is not only the important factor to determine the catalytic activity.

Since the CH₄/O₂ ratio is an important parameter to optimize the reaction conditions, the effect of CH₄/O₂ ratio on the catalytic activity of $CeO_2(3)/Y_2O_3(CP)$ was examined. As can be seen in Figure 6, an increase in the CH₄/O₂ ratio caused a decrease in the CH₄ conversion as well as an increase in the C₂ selectivity. This indicates that the reaction gas containing higher concentration of O₂ is favored for the activation of CH₄, resulting in high CH₄ conversion, while is also favored for the formation of undesirable CO₂, leading to low C₂ selectivity. The trade-off between CH₄ conversion and C₂ selectivity is well-known phenomena in the OCM reaction (Ghose et al., 2014; Godini et al., 2014; Ivanov et al., 2014). From the kinetic point of view, the activated CH₄ molecule (CH₃· radical) may preferentially react with O₂ species in the presence of excess O₂. It would be important to explore the optimum reaction conditions to achieve high C2 productivity.

TABLE 2 | BET surface area, crystallite size of Y2O3 and the amount of H2 consumption in H2-TPR of CeO2(x)/Y2O3(CP).

	BET surface area (m ² g ⁻¹)	Crystallite size ^a (nm)	Amount of H ₂ consumption of low-temperature peak ^b (μmol-H ₂ -g-cat ⁻¹)
Y ₂ O ₃	23.9	40.0	5.04
CeO ₂ (1)/Y ₂ O ₃ (CP)	23.3	31.0	6.82
CeO ₂ (3)/Y ₂ O ₃ (CP)	26.3	25.1	11.62
CeO ₂ (4)/Y ₂ O ₃ (CP)	22.6	21.1	9.17
CeO ₂ (5)/Y ₂ O ₃ (CP)	25.6	20.1	8.69
CeO ₂ (10)/Y ₂ O ₃ (CP)	19.3	19.9	5.09

^a The crystallite size of Y₂O₃ was calculated from the XRD peak, given in Figure 1, from the (222) plane using Scherrer's equation.

^b The amount of H₂ consumption for the reduction of surface/subsurface oxygen species in the temperature range of 100–400°C, given in Figure 7, was estimated.

Active Sites for the OCM Reaction Over $CeO_2/Y_2O_3(CP)$

XRD and Raman measurements revealed that CeO₂ particles are present as highly dispersion state on the surface and/or in the bulk of Y_2O_3 (**Figure 3**). In addition, TEM observation suggested that the dispersion state of CeO₂ particles is different depending on CeO₂ loading (**Figure 4**). In case of CeO₂(3)/ Y_2O_3 (CP), CeO₂ nanoparticles might be dispersed on the surface of Y_2O_3 particles, while CeO₂ nanoparticles might be present not only independently but also weakly interacting with Y_2O_3 in CeO₂(10)/ Y_2O_3 (CP). Therefore, the dispersion state of CeO₂ would be related to the catalytic activity. It is well known that the reduction of CeO₂ particles gradually proceeds from surface to bulk in the wide range from low to high temperature region, respectively (Yao and Yao, 1984; Trovarelli, 1996; Imagawa et al., 2011). In order to obtain an information on the dispersion state of CeO₂, H₂-TPR measurements were carried out. As given in **Figure 7**a, very broad H₂ consumption peaks in the temperature range of 100– 700°C were observed in the H₂-TPR profile of Y₂O₃. This is probably due to the reduction of oxygen species interacting with the defects sites in the lattice of Y₂O₃ with C-type structure. No significant change in the H₂-TPR profile was observed for CeO₂(1)/Y₂O₃(CP) (**Figure 7**b). This is in agreement with the

tendency of the catalytic activity (**Figure 5**). It is noteworthy that the addition of 3 mol% CeO₂ caused an appearance of distinct H₂ consumption peaks at around 200 and 600°C (**Figure 7**c). The area of H₂ consumption peak at around 600°C, which can be ascribed to the reduction of oxygen species in the bulk of CeO₂ (Yao and Yao, 1984; Trovarelli, 1996; Imagawa et al., 2011), was gradually increased with an increase in CeO₂ loading up to 10 mol%. In contrast, the low-temperature peak at around 200 °C due to the reduction of surface/subsurface oxygen species on CeO₂ particles (Yao and Yao, 1984; Trovarelli, 1996; Imagawa et al., 2011) was clearly decreased for CeO₂(*10*)/Y₂O₃(CP). These results suggest that the size of CeO₂ particles dispersed on the surface and/or in the bulk of Y₂O₃ was significantly increased with an increase in CeO₂ loading.

Table 2 summarizes the amount of H_2 consumption for the reduction of surface/subsurface oxygen species in the

temperature range of 100-400°C. It is of interest that the maximum amount of H₂ consumption was obtained for $CeO_2(3)/Y_2O_3(CP)$, and then decreased with CeO_2 loading. Figure 8 shows the relationship between the amount of H₂ consumption for the reduction of surface/subsurface oxygen species and the catalytic activity for the OCM reaction at 750 °C. It appears that the CH₄ conversion and C2 selectivity were linearly increased with an increase in the amount of H₂ consumption. This clearly indicates that oxygen species on the surface/subsurface of highly dispersed CeO₂ particles can effectively activate CH₄ molecule, resulting in the selective formation of C₂H₆/C₂H₄. On the basis of XRD, Raman, TEM, and H2-TPR measurements, we can conclude that the creation of highly dispersed CeO₂ particles is one of the strategies for the catalyst design leading to the development of highly active OCM catalysts.

FIGURE 7 [H_2 -TPR profiles of CeO₂(x)/Y₂O₃(CP) with different CeO₂ loading. (a) Y₂O₃, (b) CeO₂(1)/Y₂O₃(CP), (c) CeO₂(3)/Y₂O₃(CP), (d) CeO₂(4)/Y₂O₃(CP), (e) CeO₂(5)/Y₂O₃(CP), (f) CeO₂(10)/Y₂O₃(CP).

Catalytic Role of CeO₂ in the OCM Reaction

Since CeO₂ is well-known material showing reversible oxygen release/absorb properties (Trovarelli, 1996), the ¹⁶O/¹⁸O isotopic exchange reaction was carried out to clarify the possibility of O₂ activation as catalytically role of CeO₂ in the OCM reaction. Martin and Duprez (1996) and Duprez (2006) investigated the oxygen mobility of various kinds of oxide by using the ¹⁶O/¹⁸O isotopic exchange reaction, and proposed two mechanisms depending on the type of oxide. One group is non-reducible oxide such as Al₂O₃, SiO₂, ZrO₂ and MgO, and the other is reducible oxide such as CeO₂ and CeO₂-ZrO₂. In the former case, the

simple hetero-exchange that occurs with the participation of only one oxygen of the oxide at each step of the following equations (1) and (2):

$${}^{18}O_2(g) + {}^{16}O(s) \rightarrow {}^{18}O^{16}O(g) + {}^{18}O(s)$$
 (1)

$${}^{18}O^{16}O(g) + {}^{16}O(s) \rightarrow {}^{16}O_2(g) + {}^{18}O(s)$$
 (2)

Here, the consecutive evolution of ${}^{18}O{}^{16}O$ and ${}^{16}O_2$ can be observed. On the other hand, the isotopic exchange reaction over reducible oxides takes place *via* the multiple-hetero exchange mechanism, where the reaction between a molecule dioxygen (${}^{18}O_2$) in gas phase and two atomic oxygens (${}^{16}O$) of the solid occurs the following equation (3) or (4):

$${}^{18}O_2(g) + 2^{16}O(s) \rightarrow {}^{18}O^{16}O(g) + {}^{18}O(s) + {}^{16}O(s) \quad (3)$$

$${}^{18}O_2(g) + 2^{16}O(s) \rightarrow {}^{16}O_2(g) + 2^{18}O(s) \quad (4)$$

In this case, ¹⁶O₂ and ¹⁶O¹⁸O seem to be simultaneously evolved.

Figure 9 shows the profiles of ${}^{16}O_2$ and ${}^{16}O^{18}O$ evolution and ${}^{18}O_2$ consumption in the ${}^{16}O/{}^{18}O$ isotopic exchange reaction over Y_2O_3 and $CeO_2(3)/Y_2O_3(CP)$. It appears that both catalysts gave similar profiles for each O_2 species. The evolution of ${}^{16}O^{18}O$ and the consumption of ${}^{18}O_2$ were simultaneously observed, followed by the ${}^{16}O_2$ evolution at higher temperature. This suggests that the simple hetero-exchange mechanism is favored on Y_2O_3 and CeO_2/Y_2O_3 with lower CeO_2 loading, although the O_2 activation over CeO_2 -containing sample was suspected to be governed by the multiple-hetero exchange mechanism. This is probably due to the high dispersion state of CeO_2 nanoparticles on the surface of Y_2O_3 , as revealed by H_2 -TPR measurement (**Figure 7**).

Dong et al. (2004a,b) investigated the oxygen mobility of CeO_2 -ZrO₂ based catalyst with different structural homogeneity, and reported that oxygen species activated at lower temperature *via* the multiple-hetero exchange mechanism is highly active for the complete oxidation reaction. It can be expected that oxygen species with moderate activity, which was evolved *via* the simple hetero-exchange mechanism, plays a beneficial role in CH₄ activation (Kumar et al., 2016), leading to the selective oxidation to C_2H_6/C_2H_4 . Taking into account the fact that the temperature for the evolution of $^{16}O^{18}O$ and $^{16}O_2$ was significantly lowered by addition of CeO₂ into Y₂O₃ (**Figure 9**), we can conclude that the catalytically role of CeO₂ in the OCM reaction is to promote the formation of active oxygen species *via* the simple hetero-exchange mechanism.

CONCLUSION

The catalytic activity of Y_2O_3 for the OCM reaction was effectively improved by addition of CeO₂. Among the catalysts tested here, CeO₂/Y₂O₃ prepared by coprecipitation method showed the highest activity. The optimum CeO₂ loading was 3 mol%. From the structural characterizations by XRD, Raman and TEM, CeO₂ particles were found to be dispersed on the

surface of Y₂O₃ without the formation of CeO₂-Y₂O₃ solid solution. H₂-TPR measurements revealed that the amount of H₂ consumption for the reduction of CeO₂ surface was increased with an increase in CeO₂ loading and then reached the maximum at 3 mol%. Highly dispersed CeO₂ particles was suspected to act as catalytically active sites in the OCM reaction. From the ¹⁶O/¹⁸O isotopic exchange reaction, the beneficial role of CeO₂ in the OCM reaction was concluded to promote the formation of active oxygen species *via* the simple hetero-exchange mechanism.

REFERENCES

- Arndt, S., Laugel, G., Levchenko, S., Horn, R., Baerns, M., Scheffler, M., et al. (2011). A critical assessment of Li/MgO-based catalysts for the oxidative coupling of methane. *Catal. Rev. Sci. Eng.* 53, 424–514. doi: 10.1080/01614940.2011.613330
- Borchert, H., and Baerns, M. (1997). The effect of oxygen-anion conductivity of metal-oxide doped lanthanum oxide catalysts on hydrocarbon selectivity in the oxidative coupling of methane. J. Catal. 168, 315–320. doi: 10.1006/jcat.1997.1662
- Doi, Y., Haneda, M., and Ozawa, M. (2015). Promoting effect of CeO₂ on the catalytic activity of Ba-Y₂O₃ for direct decomposition of NO. Bull. Chem. Soc. Jpn. 88, 117–123. doi: 10.1246/bcsj.2014 0230
- Dong, F., Suda, A., Tanabe, T., Nagai, Y., Sobukawa, H., Shinjoh, H., et al. (2004a). Characterization of the dynamic oxygen migration over Pt/CeO₂-ZrO₂ catalysts by ¹⁸O/¹⁶O isotopic exchange reaction. *Catal. Today* 90, 223–229. doi: 10.1016/j.cattod.2004.04.030
- Dong, F., Suda, A., Tanabe, T., Nagai, Y., Sobukawa, H., Shinjoh, H., et al. (2004b). Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO₂-ZrO₂. *Catal. Today* 93–95, 827–832. doi: 10.1016/j.cattod.2004.06.076
- Dubois, J. L., and Cameron, C. J. (1990). Common features of oxidative coupling of methane cofeed catalysts. *Appl. Catal.* 67, 49–71. doi: 10.1016/S0166-9834(00)84431-0
- Duprez, D. (2006). "Oxygen and hydrogen surface mobility in supported metal catalysts study by ¹⁸O/¹⁶O and ²H/¹H exchange", in *Isotopes in Heterogeneous Catalysis*, eds J. S. J. Hargreaves, S. D. Jackson, and G. Webb (London: Imperial College Press), 133–182.
- Elkins, T. W., Roberts, S. J., and Hagelin-Weaver, H. E. (2016). Effects of alkali and alkaline-earth metal dopants on magnesium oxide supported rare-earth oxide catalysts in the oxidative coupling of methane. *Appl. Catal. A* 528, 175–190. doi: 10.1016/j.apcata.2016.09.011

AUTHOR CONTRIBUTIONS

MH: worked on the experimental setup; YK and YN: conducted the experiments; AT: carried out the TEM analysis.

ACKNOWLEDGMENTS

This study was supported by a Grant-in-Aid for Scientific Research (No. 16K14046, 18K05294) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

- Farrell, B. L., Igenegbai, V. O., and Linic, S. (2016). A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 6, 4340–4346. doi: 10.1021/acscatal.6b01087
- Ferreira, V. J., Tavares, P., Figueiredo, J. L., and Faria, J. L. (2012). Effect of Mg, Ca, and Sr on CeO₂ based catalysts for the oxidative coupling of methane: investigation on the oxygen species responsible for catalytic performance. *Ind. Eng. Chem. Res.* 51, 10535–10541. doi: 10.1021/ie3001953
- Ghose, R., Hwang, H. T., and Varma, A. (2014). Oxidative coupling of methane using catalysts synthesized by solution combustion method: Catalyst optimization and kinetic studies. *Appl. Catal. A*, 472, 39–46. doi: 10.1016/j.apcata.2013.12.004
- Godini, H. R., Gili, A., Görke, O., Arndt, S., Simon, U., Thomas, A., et al. (2014). Sol-gel method for synthesis of Mn-Na₂WO₄/SiO₂ catalyst for methane oxidative coupling. *Catal. Today* 236, 12–22. doi: 10.1016/j.cattod.2014.01.005
- Haneda, M., Kaneko, T., Kamiuchi, N., and Ozawa, M. (2015). Improved three-way catalytic activity of bimetallic Ir-Rh catalyst supported on CeO₂-ZrO₂. *Catal. Sci. Technol.* 5, 1792–1800. doi: 10.1039/c4cy01502a.
- Haneda, M., Tanaka, M., Doi, Y., and Bion, N. (2018). Oxidative coupling of methane over Ba-doped Y₂O₃ catalyst – Similarity with active site for direct decomposition of NO. *Mol. Catal.* 457, 74–81.doi: 10.1016/j.mcat.2018.07.010
- Hutchings, G. J., Scurrell, M. S., and Woodhouse, J. R. (1989). Oxidative coupling of methane using oxide catalysts. *Chem. Soc. Rev.* 18, 251–283. doi: 10.1039/cs9891800251
- Imagawa, H., Suda, A., Yamamura, K., and Sun, S. (2011). Monodisperse CeO₂ nanoparticles and their oxygen storage and release properties. *J. Phys. Chem. C* 115, 1740–1745. doi: 10.1021/jp109878
- Ito, T., Wang, J., Lin, C. H., and Lunsford, J. H. (1985). Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J. Am. Chem. Soc. 107, 5062–5068. doi: 10.1021/ja00304a008
- Ivanov, D. V., Isupova, L. A., Gerasimov, E., Yu., Dovlitova, L. S., Glazneva, T. S., et al. (2014). Oxidative methane coupling over Mg, Al, Ca, Ba, Pb-promoted SrTiO₃ and Sr₂TiO₄: influence of surface composition and microstructure. *Appl. Catal. A* 485, 10–19. doi: 10.1016/j.apcata.2014.07.024

- Keller, G. E., and Bhasin, M. M. (1982). Synthesis of ethylene via oxidative coupling of methane. I. Determination of active catalysts. J. Catal. 73, 9–19. doi: 10.1016/0021-9517(82)90075-6
- Kumar, G., Lau, S. L. J., Krcha, M. D., and Janik, M. J. (2016). Correlation of methane activation and oxide catalyst reducibility and its implications for oxidative coupling, ACS Catal. 6, 1812–1821. doi: 10.1021/acscatal.5b02657
- Liang, Y., Li, Z., Nourdine, M., Shahid, S., and Takanabe, K. (2014). Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts. *ChemCatChem* 6, 1245–1251. doi: 10.1002/cctc.201400018
- Lin, C. H., Campbell, K. D., Wang, J. X., and Lunsford, J. H. (1986). Oxidative dimerization of methane over lanthanum oxide. J. Phys. Chem. 90, 534–537. doi: 10.1021/j100276a004
- Lunsford, J. H. (1995). The catalytic oxidative coupling of methane. Angew. Chem. Int. 34, 970–980. doi: 10.1002/anie.199509701
- Martin, D., and Duprez, D. (1996). Mobility of surface species on oxides. 1. Isotopic exchange of ¹⁸O₂ with ¹⁶O of SiO₂, Al₂O₃, ZrO₂, MgO, CeO₂, and CeO₂-Al₂O₃. Activation by noble metals. Correlation with oxide basicity. *J. Phys. Chem.* 100, 9429–9438. doi: 10.1021/jp9531568
- Pacheco Filho, J. G. A., Eon, J. G., and Schmal, M. (2000). Oxidative coupling of methane on Ce/Na/CaO catalysts. *Catal. Lett.* 68, 197–202. doi: 10.1023/A:1019064310606
- Primet, M., and Garbowski, E. (2002). "Fundamentals and application of ceria in combustion reactions", in *Catalysis by Ceria and Related Materials*, ed A. Trovarelli (London: Imperial College Press), 407–429.
- Rane, V. H., Chaudhari, S. T., and Choudhary, V. R. (2006). Comparison of the surface and catalytic properties of rare earth-promoted CaO catalysts in the oxidative coupling of methane. *J. Chem. Technol. Biotechnol.* 81, 208–215. doi: 10.1002/jctb.1387
- Repelin, Y., Proust, C., Husson, E., and Beny, J. M. (1995). Vibrational spectroscopy of the C-form of yttrium sesquioxide. J. Solid State Chem. 118, 163–169. doi: 10.1006/jssc.1995.1326
- Sekine, Y., Tanaka, K., Matsukata, M., and Kikuchi, E. (2009). Oxidative coupling of methane on Fe-doped La₂O₃ catalyst. *Energy Fuels* 23, 613–616. doi: 10.1021/ef800665r.

- Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A 32, 751–767. doi: 10.1107/S0567739476001551
- Takanabe, K. (2012). Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling. J. Jpn. Petrol. Inst. 55, 1–12. doi: 10.1627/jpi.55.1
- Tang, L., Yamaguchi, D., Wong, L., Burke, N., and Chiang, K. (2011). The promoting effect of ceria on Li/MgO catalysts for the oxidative coupling of methane. *Catal. Today* 178, 172–180. doi: 10.1016/j.cattod.2011.07.014
- Trovarelli, A. (1996). Catalyti properties of ceria and CeO₂-containing materials. *Catal. Rev. Sci. Eng.* 38, 439–520. doi: 10.1080/016149496080 06464
- Ubaldini, A., and Carnasciali, M. M. (2008). Raman characterization of powder of cubic RE₂O₃ (RE = Nd, Gd, Dy, Tm, and Lu), Sc₂O₃ and Y₂O₃. *J. Alloy. Compd.* 454, 374–378. doi: 10.1016/j.jallcom.2006.12.067
- Xu, J., Peng, L., Fang, X., Fu, Z., Liu, W., Xu, X., et al. (2018). Developing reactive catalysts for low temperature oxidative coupling of methane: on the factors deciding the reaction performance of Ln₂Ce₂O₇ with different rare earth A sites. *Appl. Catal. A* 552, 117–128. doi: 10.1016/j.apcata.2018.01.004
- Yao, H. C., and Yao, Y. F. Y. (1984). Ceria in automotive exhaust catalysts. I. Oxygen storage. J. Catal. 86, 254–265. doi: 10.1016/0021-9517(84)90371-3
- Yashima, M., Lee, J.-H., Kakihana, M., and Yoshimura, M. (1997). Raman spectral characterization of existing phases in the Y₂O₃-Nb₂O₅ system. *J. Phys. Chem. Solids* 58, 1593–1597. doi: 10.1016/S0022-3697(97)00098-X

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Haneda, Katsuragawa, Nakamura and Towata. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.