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Aluminum complexes containing [RP(O)(2-O-3,5-tBu2C6H2)2]2− [R = tBu (3a), Ph
(3b)] have been synthesized, structurally characterized, and their reactivity studied
in comparison with those of their [RP(2-O-3,5-tBu2C6H2)2]2− [R = tBu (2a), Ph
(2b)] analogs. Treating AlMe3 with one equiv of H2[3a-b] in THF at 0◦C affords
quantitatively [3a-b]AlMe, subsequent reactions of which with benzyl alcohol in THF at
25◦C generate {[3a-b]Al(µ2-OCH2Ph)}2. The methyl [3a-b]AlMe and the benzyloxide
{[3a-b]Al(µ2-OCH2Ph)}2 are all active for catalytic ring-opening polymerization (ROP)
of ε-caprolactone and rac-lactide (rac-LA). Controlled experiments reveal that
{[3a]Al(µ2-OCH2Ph)}2 is competent in living polymerization. Kinetic studies indicate that
[3a]AlMe, in the presence of benzyl alcohol, catalyzes ROP of rac-LA at a rate faster
than [3b]AlMe and [2a]AlMe(THF) by a factor of 1.8 and 23.6, respectively, highlighting
the profound reactivity enhancement in ROP catalysis by varying the P-substituents of
these biphenolate complexes of aluminum.

Keywords: aluminum, biphenolate, ring-opening polymerization, lactone, lactide, catalyst

INTRODUCTION

The search for efficient catalyst precursors or initiators for catalytic ring-opening polymerization
(ROP) of cyclic esters continues to constitute an active area of exploratory chemistry (Kamber et al.,
2007; Thomas, 2010; Hillmyer and Tolman, 2014; Sarazin and Carpentier, 2015). In this regard,
metal complexes containing chelating biphenolate ligands have attracted significant attention.
These complexes are intriguing as their catalytic activities are finely tunable by judiciously varying
the peripheral substituents on the two phenolate rings and/or the bridge in between. While most
studies concentrate on metal complexes of tetradentate biphenolate ligands such as ONNO (Ovitt
and Coates, 2000; Zhong et al., 2002; Hormnirun et al., 2006; Zelikoff et al., 2009; Chen et al., 2012;
Gao et al., 2015; Jones et al., 2015; Kirk et al., 2016; MacDonald et al., 2016; McKeown et al., 2016;
Robert et al., 2017; Pang et al., 2018), OSSO (Buffet and Okuda, 2011; Buffet et al., 2011), ONSO
(Stopper et al., 2012), and ONOX (X = OR, NR2) (Alcazar-Roman et al., 2003; Gendler et al.,
2006; Tang and Gibson, 2007; Phomphrai et al., 2010; Wichmann et al., 2012) as exemplified in
Figure 1, parallel research centered upon tridentate counterparts is relatively rare (Chmura et al.,
2006; Chang and Liang, 2007; Hsu and Liang, 2010; Liang et al., 2011, 2013a,b,c,d,e; Huang et al.,
2013; Klitzke et al., 2014a,b; Chang et al., 2016).
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FIGURE 1 | Representative examples of chelating biphenolate ligands.

It has been documented that complexes of tridentate OOO
(Huang et al., 2013), ONO (1a-c) (Liang et al., 2013a,b,c,d,e),
and OPO (2a-b) (Chang and Liang, 2007; Hsu and Liang,
2010; Liang et al., 2011; Chang et al., 2016) are active
catalyst precursors for ROP of ε-caprolactone (ε-CL) or lactides
(LAs). Studies on complexes of 1 and 2 have revealed that
substituents at the pnictogen donor have decisive impacts on
ROP catalysis if living polymerization is the goal. Of note are
aluminum complexes of 2a that polymerize ε-CL and rac-LA
in a living manner to produce well-defined poly(ε-caprolactone)
(PCL) and poly(rac-lactide) (PLA), respectively (Chang et al.,
2016). In contrast, analogous complexes of 1a give instead
low molecular weight oligo(ε-caprolactone) or PCL with a
somewhat broad molecular weight distribution (Liang et al.,
2013b). Constitutionally, complexes of 1a and 2a are much
alike as both are pnictogen biphenolate derivatives carrying
a pnictogen-bound tert-butyl group. Having an extra benzylic
methylene moiety in each arm, however, the former ligand,
upon complexation, forms 6-membered chelating rings that are
therefore less rigid than the 5-membered chelating rings derived
from the latter. In an effort to better understand the effects
of chelating ring size (Lee et al., 2017) and ligand rigidity
(Liang et al., 2003a,b, 2005a,b, 2006; Huang and Liang, 2004;
MacLachlan and Fryzuk, 2005; Liang, 2006; MacLachlan et al.,
2007; Hung et al., 2014) on ROP catalysis, we turn our attention
to the oxidative forms of 2 that would persist with the same
rigidity but enlarge the chelating rings to be 6-membered. Such
biphenolate phosphinoxide derivatives OO’O are distinguished
from the ether-bridged OOO types that are intrinsically more
flexible in ligand backbone and lack of the opportunities of

changing substituents at the bridge donor. Note that complexes
of OO’O types of ligands are relatively undeveloped (Tanke et al.,
1991; Siefert et al., 2000; Paine et al., 2004; He et al., 2008;
Zhang et al., 2013; Taniyama et al., 2014). In this contribution, we
aim to demonstrate the syntheses of the first examples of OO’O
complexes of aluminum and their enhanced catalytic activities
in comparison with those of 2 with respect to ROP of ε-CL and
rac-LA.

RESULTS AND DISCUSSION

Ligand Synthesis
The protio ligand precursor H2[3b] is known (Siefert et al.,
2000). Its tert-butyl analog H2[3a] can be readily prepared
as an off-white solid in high yield from oxidation of H2[2a]
with hydrogen peroxide in THF under ambient conditions.
Its solution NMR data are consistent with a structure having
time-averaged Cs symmetry. The diagnostic signals of this
compound involve the downfield shift of its phosphorus
atom at 65 ppm in comparison with that of H2[2a] at −60
ppm (Hsu and Liang, 2010) and the singlet resonance of
its hydroxy protons at 12.19 ppm in comparison with the
doublet resonance of those in H2[2a] at 7.61 ppm with
JHP = 12Hz (Hsu and Liang, 2010). The lack of OH· · ·P
internuclear coupling and the downfield shift of the hydroxy
protons in H2[3a] are apparently a consequence of the 6-
membered OH· · ·O=P hydrogen bonding. Such intramolecular
hydrogen bonding is also confirmed by the solid state
structure of H2[3a] established by an X-ray diffraction study
(Figure S1, Table S1).
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Synthesis and Characterization of
Aluminum Complexes
Protonolysis of AlMe3 with one equiv of H2[3a-b] in THF at 0◦C
yields nearly quantitative [3a-b]AlMe (Figure 2). Interestingly,
these methyl complexes are not THF-bound as evidenced by their
1H NMR spectra. This result is reminiscent of 4-coordinate [1a–
c]AlMe (Liang et al., 2013b) but in contrast to 5-coordinate [2a-
b]AlMe(THF) (Chang et al., 2016), ascribable to the hardness
similarity of O (from phosphinoxide in 3) to N (from 1) rather
than P (from 2) in consideration of the distinct preferences of
these hard and soft donors to bind to a hard aluminum (Fryzuk
et al., 1996, 1998; Liang et al., 2004, 2010; Lee and Liang, 2005,
2009; Su and Liang, 2018). As a result, the solution structures of
[3a-b]AlMe and [1a–c]AlMe should be much alike. Subsequent
reactions of either isolated or in situ prepared [3a-b]AlMe with
one equiv of benzyl alcohol in THF at 25◦C afford {[3a-b]Al(µ2-
OCH2Ph)}2 as colorless crystals.

The solution NMR data of [3a-b]AlMe and {[3a-b]Al(µ2-
OCH2Ph)}2 are indicative of a mirror plane symmetry that
makes the two phenolate rings in 3 chemically equivalent as
evidenced by the observation of two distinct singlet resonances
for arylated tert-butyl groups in the 1H NMR spectra. The
methylene groups in the benzyloxide ligands of {[3a-b]Al(µ2-
OCH2Ph)}2 exhibit a singlet resonance in the 1H NMR spectra
at ca. 5.7 ppm, a chemical shift that is similar to that found for
{[2a-b]Al(µ2-OCH2Ph)}2 (Chang et al., 2016). A 1H NMR NOE
difference experiment of {[3a]Al(µ2-OCH2Ph)}2 was conducted
with selective irradiation on the methylene groups, resulting in
NOE enhancements of 5.14% for the arylated tert-butyl groups
ortho to the phenolate oxygen atoms and 3.21% for the P-
bound tert-butyl group. Note that these tert-butyl groups are
spatially far away from each other due to the inherent geometry
of the facially tridentate 3a. The concurrent NOE enhancements
on these tert-butyl groups thus strongly implicate a dimeric

structure of {[3a]Al(µ2-OCH2Ph)}2 in solution. Consistent
with the oxidized characteristics of the phosphorus atom in
phosphinoxide derivatives, the 31P chemical shifts of [3a-b]AlMe
and {[3a-b]Al(µ2-OCH2Ph)}2 are significantly downfield shifted
from those of their corresponding analogs of 2 (Chang et al.,
2016).

An attempt to characterize [3a]AlMe by X-ray crystallography
led instead to the structure of [3a]Al2Me4 that is an O-
bound AlMe3 adduct of [3a]AlMe (Figure 3). We attribute
this unexpected result to unintentional imbalance of reaction
stoichiometry that gives a trace amount of highly crystalline
[3a]AlMe•AlMe3. Following this lead, we attempted the
reactions of [3a]AlMe with one equiv of AlMe3 or H2[3a]
with two equiv of AlMe3. Unfortunately, these reactions result
ultimately in a mixture of equal molar [3a]AlMe and AlMe3
as evidenced by 1H and 31P{1H} NMR spectra of reaction
aliquots. Subsequent attempts to crystallographically characterize
[3a]AlMe have thus far been unsuccessful. Nevertheless, the
structure of [3a]AlMe•AlMe3 confirms the 4-coordinate nature
for the aluminum center of the [3a]AlMe moiety that has a
distorted tetrahedral coordination core similar to [1a–c]AlMe
(Liang et al., 2013b). The bond distances and angles of
[3a]AlMe•AlMe3 are unexceptional.

Colorless crystals of {[3a]Al(µ2-OCH2Ph)}2 suitable for X-
ray diffraction analysis were grown by layering pentane on top of
a concentrated THF solution at−35◦C. Figure 4 depicts its solid
state structure. Consistent with the NOE study, this complex is
a dimer, composed of two [3a]Al(OCH2Ph) units bridged with
the benzyloxide ligands. With the coordination of the facially
tridentate 3a, the aluminum atoms in {[3a]Al(µ2-OCH2Ph)}2
are therefore 5-coordinate. Its coordination geometry is
best described as distorted trigonal bipyramidal, having the
phosphinoxide donor and one of the bridging benzyloxide
ligands disposed at the axial positions [O(3)-Al(1)-O(4A) =

FIGURE 2 | Synthesis of biphenolate phosphinoxide complexes of aluminum.
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FIGURE 3 | Molecular structure of [3a]AlMe•AlMe3 with thermal ellipsoids
drawn at the 35% probability level. All hydrogen atoms and the methyl groups
in arylated tert-butyls are omitted for clarity. Selected bond distances (Å) and
angles (deg): Al(1)-O(2) 1.749(3), Al(1)-O(1) 1.764(3), Al(1)-C(33) 1.933(5),
Al(1)-O(3) 1.934(4), Al(2)-O(3) 1.753(4), Al(2)-C(34) 1.844(6), Al(2)-C(36)
1.872(6), Al(2)-C(35) 1.872(5), O(3)-P(1) 1.623(4), O(2)-Al(1)-O(1) 110.75(17),
O(2)-Al(1)-C(33) 111.5(2), O(1)-Al(1)-C(33) 108.6(2), O(2)-Al(1)-O(3) 98.48(17),
O(1)-Al(1)-O(3) 99.39(16), C(33)-Al(1)-O(3) 127.0(2), O(3)-Al(2)-C(34) 107.6(3),
O(3)-Al(2)-C(36) 121.0(2), C(34)-Al(2)-C(36) 107.5(3), O(3)-Al(2)-C(35) 107.2(2),
C(34)-Al(2)-C(35) 111.6(3), C(36)-Al(2)-C(35) 101.8(3), P(1)-O(3)-Al(2) 141.8(2),
P(1)-O(3)-Al(1) 103.2(2), Al(2)-O(3)-Al(1) 112.5(2).

165.10(8)◦]. The axial Al-OCH2Ph bond distances of 1.8726
(17) Å are longer than those disposed equatorially [1.8372 (17)
Å]. This indicates that the equatorial benzyloxide ligands are
more anionic in nature whereas those at the axial positions are
more dative. Consistent with this result, [2a]AlMe(THF), though
constitutionally different, holds a methyl ligand equatorially, and
a THF axially (Chang et al., 2016).

The P-bound tert-butyl groups in [2a]AlMe(THF) and
{[2a]Al(µ2-OCH2Ph)}2 are known to sterically repulse their
equatorial methyl and benzyloxide ligands away from the ideal
positions with the P-Al-C and P-Al-O angles of 105.51(12)◦

and 107.25(9)◦, respectively (Chang et al., 2016). Such steric
repulsion is apparently eased by moving the tert-butyl-bound
phosphorus atom to the β position in {[3a]Al(µ2-OCH2Ph)}2
as evidenced by the O(3)-Al(1)-O(4) angle of 90.14(8)◦. With
the incorporation of the rigid o-phenylene backbone and the 6-
membered chelating rings in {[3a]Al(µ2-OCH2Ph)}2, the O(1)-
Al(1)-O(3) [92.52(8)◦] and O(2)-Al(1)-O(3) [94.74(8)◦] angles
are notably wider than the corresponding angles (80.35(9)◦ and
84.17(9)◦) in the 5-membered chelating rings of {[2a]Al(µ2-
OCH2Ph)}2 (Chang et al., 2016). As such, the tert-butyl
groups ortho to the phenolate oxygen atoms in the former
are spatially closer to the axial benzyloxide ligands than those
in the latter. This should in principle encourage dissociation
of the datively bonded benzyloxide ligands and formation of
transient monomeric [3a]Al(OCH2Ph) for subsequent substrate
coordination. The similarity of Al(1)-O(4A) distance [1.8726(17)
Å] to that in {[2a]Al(µ2-OCH2Ph)}2 [1.878(2) Å] (Chang et al.,
2016) implicates surprisingly little difference in trans influence

FIGURE 4 | Molecular structure of {[3a]Al(µ2-OCH2Ph)}2 with thermal
ellipsoids drawn at the 35% probability level. All hydrogen atoms and the
methyl groups in arylated tert-butyls are omitted for clarity. Selected bond
distances (Å) and angles (deg): Al(1)-O(2) 1.7766(18), Al(1)-O(1) 1.7890(18),
Al(1)-O(4) 1.8372(17), Al(1)-O(3) 1.8414(17), Al(1)-O(4A) 1.8726(17),
Al(1)-Al(1A) 2.9360(14), O(3)-P(1) 1.5274(16), O(2)-Al(1)-O(1) 109.46(9),
O(2)-Al(1)-O(4) 117.94(9), O(1)-Al(1)-O(4) 132.10(9), O(2)-Al(1)-O(3) 94.74(8),
O(1)-Al(1)-O(3) 92.52(8), O(4)-Al(1)-O(3) 90.14(8), O(2)-Al(1)-O(4A) 95.13(8),
O(1)-Al(1)-O(4A) 94.67(8), O(4)-Al(1)-O(4A) 75.37(8), O(3)-Al(1)-O(4A)
165.10(8), Al(1)-O(4)-Al(1A) 104.63(8), P(1)-O(3)-Al(1) 114.84(10).

invoked by P=O and P for axial benzyloxide ligand dissociation
from these aluminum complexes.

Catalytic Ring-Opening Polymerization
Similar to aluminum derivatives of 1 (Liang et al., 2013b) and 2

(Chang et al., 2016), complexes [3a-b]AlMe and {[3a-b]Al(µ2-
OCH2Ph)}2 are all active for catalytic ROP of ε-CL and rac-
LA. To establish parallel comparison on reactivity of these
pnictogen derivatives, the catalysis of [3]AlMe and {[3]Al(µ2-
OCH2Ph)}2 was examined under conditions identical to those
employed for [1]AlMe (Liang et al., 2013b), [2]AlMe(THF)
(Chang et al., 2016), and {[2]Al(µ2-OCH2Ph)}2 (Chang et al.,
2016). To simplify tabulated discussion and to make consistency
with other mononuclear species, the benzyloxide complexes are
presented as a monomer. Table 1 summarizes their catalytic
activities with ε-CL. In the presence of one equiv of benzyl
alcohol, [3a]AlMe reacts slightly faster than [3b]AlMe with
100 equiv of ε-CL under the conditions employed (entry 1
vs. 3) though both reactions complete in 2 h (entries 2 and
4). The observed number averaged molecular weights (Mn’s),
however, are generally smaller than those expected. Studies
on Mn’s of these PCLs by 1H NMR spectroscopy also give
similar results (entry 2, 5.1 kg/mol; entry 4, 9.5 kg/mol). Both
[3a]AlMe and [3b]AlMe are more reactive than [2a]AlMe(THF)
and [2b]AlMe(THF) (entries 1 and 3 vs. 5 and 6) due apparently
to the discrepancy of 3 and 2 that invokes THF coordination and
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TABLE 1 | ROP of ε-CL by catalytic [3a-b]AlMe and [3a-b]Al(OCH2Ph)
a.

Entry Cat [cat]0/[I]0/[ε-CL]0 Time (h) conv (%)b Mn (calcd, kg/mol)c Mn (exp, kg/mol)d,e PDId

1 [3a]AlMe 1/1/100 1 72 8.3 3.4 1.14

2 [3a]AlMe 1/1/100 2 >99 11.5 5.2 1.15

3 [3b]AlMe 1/1/100 1 60 7.0 4.3 1.15

4 [3b]AlMe 1/1/100 2 >99 11.5 10.1 1.49

5f [2a]AlMe(THF) 1/1/100 1 45 5.2 3.4 1.08

6f [2b]AlMe(THF) 1/1/100 1 32 3.8 3.1 1.14

7 [1a]AlMe 1/1/100 1 35 4.1 3.6 1.36

8f [1a]AlMe 1/1/100 3 >99 11.5 10.6 1.38

9 [3a]Al(OCH2Ph) 1/0/100 2 >99 11.5 5.4 1.11

10g [3a]Al(OCH2Ph) 1/0/100 2 82 9.5 4.8 1.15

11 [3b]Al(OCH2Ph) 1/0/100 2 >99 11.5 10.6 1.29

12 [3a]Al(OCH2Ph) 1/0/200 3 >99 22.9 10.8 1.07

13 [3a]Al(OCH2Ph) 1/0/300 4 >99 34.4 14.9 1.07

14 [3a]Al(OCH2Ph) 1/0/400 4 >99 45.8 22.1 1.07

aUnless otherwise noted, all reactions were conducted in toluene (2.24mL total) at 70◦C with benzyl alcohol being the initiator, [cat]0 = 8.3mM.
bDetermined by 1H NMR analysis.
cCalculated from {fw of ε-CL × ([ε-CL]0/([cat]0 [I]0 )) × conversion} + fw of initiator, assuming one propagating chain per aluminum atom.
dMeasured by GPC in THF, calibrated with polystyrene standards.
eMultiplied by a corrected factor of 0.56 (Save et al., 2002).
fData selected from Chang et al. (2016).
gReaction run in THF.

retards ROP. Though [1a]AlMe, [2a]AlMe(THF), and [3a]AlMe
are all tert-butylated at their pnictogen atom, the polydispersity
indexes (PDIs) of PCLs produced from [2a]AlMe(THF) and
[3a]AlMe are smaller than those from [1a]AlMe (entries 1–2 and
5 vs. 7–8). All in all, [3a]AlMe is therefore a superior catalyst
precursor to [2a]AlMe(THF) that in turn outperforms [1a]AlMe
in this catalysis. These results underscore the decisive role that
the biphenolate bridges play in ROP catalysis.

Similar to that generated in situ, [3a]Al(OCH2Ph) finishes
polymerization of 100 equiv of ε-CL in toluene at 70◦C
in 2 h, producing quantitatively PCL having comparable Mn
and PDI (entry 9 vs. 2). End group analysis by 1H NMR
spectroscopy reveals a benzyl ester functionality, implicating that
this ROP proceeds with a coordination-insertion mechanism
that involves ε-CL coordination to the transient monomeric
[3a]Al(OCH2Ph) (vide supra) followed by insertion of this ε-
CL into the Al-OCH2Ph bond, allowing ε-CL to ring-open by
cleaving its acyl-oxygen bond for chain propagation. Consistent
with this rationale, the same reaction conducted in THF proceeds
relatively slower (entry 10). Nevertheless, the PCL thus produced
has a satisfactorily small PDI, indicating that the interfering THF
coordination is reversible and does not much induce undesirable
side reactions.

In contrast, PCL produced from catalytic [3b]Al(OCH2Ph)
has a relatively larger PDI (entry 11), reminiscent of that
acquired from [3b]AlMe as compared with [3a]AlMe (entries
4 vs. 2). Complexes [3a]AlMe and [3a]Al(OCH2Ph) thus
outperform [3b]AlMe and [3b]Al(OCH2Ph) in this catalysis.
Interestingly, [3a]Al(OCH2Ph) polymerizes ε-CL in a living
fashion. The PCLs thus produced (entries 9 and 12–14) have
Mn’s linearly proportional to the consumedmonomer-to-catalyst
ratios (Figure 5) while maintaining consistently small PDIs.

Table 2 summarizes ROP results with respect to rac-LA.
In the presence of one equiv of benzyl alcohol, [3a]AlMe
and [3b]AlMe complete polymerization of 100 equiv of rac-
LA in toluene at 70◦C in 6 h, producing PLAs quantitatively
(entries 1–2). The former complex is again a superior
catalyst precursor to the latter in view of the smaller PDI
derived. These reactions are faster than those by catalytic
[2a]AlMe(THF) and [2b]AlMe(THF) (entries 3–4) (Chang et al.,
2016). Interestingly, [3a]Al(OCH2Ph) is also competent in living
ROP of rac-LA (entries 5–8), affording PLAs having Mn’s
directly proportional to the consumed monomer-to-catalyst
ratios (Figure 6) while keeping their PDIs consistently small.
In contrast, PLA produced by catalytic [3b]Al(OCH2Ph) has
a relatively larger PDI (entry 9). A reaction run in THF
is again slow but does not change PDI much (entry 10).
Catalysis run at room temperature results in slow reaction
and low conversion (entry 11). In the presence of one equiv
of poly(ethylene glycol) methyl ether (Mn 2000, denoted
MePEG2000 in Table 2), [3a]AlMe polymerizes rac-LA to give
PEG-b-PLA copolymers with satisfactorily small PDIs (entries
12–13).

Kinetics of rac-LA polymerization by catalytic
[3a]Al(OCH2Ph) was studied. Monitoring the reaction progress
by 1H NMR spectroscopy reveals linear semilogarithmic plots
for rac-LA consumptions vs. time (Figure 7), indicating a
pseudo-first order dependence of the polymerization rates on the
concentrations of rac-LA, i.e., –d[rac-LA]/dt = kobs[rac-LA]1,
where kobs = kp[catalyst]x and kp = propagation rate constant.
A plot of the observed rate constants vs. concentrations of
[3a]Al(OCH2Ph) shows a linear dependence of the former
on the latter (Figure 8), thus giving x = 1. The overall rate
law of this catalysis is therefore expressed as –d[rac-LA]/dt =
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kp[catalyst][rac-LA], where kp = 1.47 (9) × 10−2 L mol−1 s−1 at
70◦C.

To kinetically quantify the P-substituent effect, we turn
our attention to the relative ROP rates of rac-LA by catalytic
[3a]AlMe, [3b]AlMe, [2a]AlMe(THF), and [2b]AlMe(THF) in
the presence of one equiv of benzyl alcohol. Figure 9 depicts
their semilogarithmic plots of rac-LA conversions with time.
As a result, the reactivity of these catalyst precursors follows
the order of [3a]AlMe > [3b]AlMe > [2a]AlMe(THF) >

[2b]AlMe(THF). In this catalysis, [3a]AlMe is more reactive
than [3b]AlMe by 1.8 times and [2a]AlMe(THF) is more
reactive than [2b]AlMe(THF) by 2.0 times. More importantly,

FIGURE 5 | Linear plot of corrected Mn of PCLs vs. monomers consumed to
[3a]Al(OCH2Ph) ratios (entries 9 and 12–14 in Table 1). Numbers shown in
parentheses indicate their corresponding PDIs.

[3a]AlMe is more reactive than [2a]AlMe(THF) by 23.6
times and [3b]AlMe is more reactive than [2b]AlMe(THF)
by 26.1 times. Collectively, tert-butyl is a superior P-
substituent to phenyl and P=O is a superior biphenolate
bridge to P in view of offering higher reactivity in this ROP
catalysis.

CONCLUSIONS

We have prepared the first examples of biphenolate
phosphinoxide complexes of aluminum and characterized
their solution and solid state structures by NMR spectroscopy

FIGURE 6 | Linear plot of corrected Mn of PLAs vs. monomers consumed to
[3a]Al(OCH2Ph) ratios (entries 5–8 in Table 2). Numbers shown in parentheses
indicate their corresponding PDIs.

TABLE 2 | ROP of rac-LA by catalytic [3a-b]AlMe and [3a-b]Al(OCH2Ph)
a.

Entry Cat [cat]0/[I]0/[rac-LA]0 Time (h) Conv (%)b Mn (calcd, kg/mol)c Mn (exp, kg/mol)d,e PDId

1 [3a]AlMe 1/1/100 6 >99 14.5 12.0 1.09

2 [3b]AlMe 1/1/100 6 >99 14.5 10.5 1.34

3f [2a]AlMe(THF) 1/1/100 7 40 5.9 3.0 1.08

4f [2b]AlMe(THF) 1/1/100 7 34 5.0 2.3 1.10

5 [3a]Al(OCH2Ph) 1/0/100 6 >99 14.5 12.8 1.10

6 [3a]Al(OCH2Ph) 1/0/200 6 >99 28.9 29.4 1.16

7 [3a]Al(OCH2Ph) 1/0/300 6 >99 43.3 39.0 1.16

8 [3a]Al(OCH2Ph) 1/0/400 6 >99 57.8 56.5 1.19

9 [3b]Al(OCH2Ph) 1/0/100 6 >99 14.5 13.2 1.23

10g [3a]Al(OCH2Ph) 1/0/100 6 67 9.8 8.8 1.16

11h [3a]Al(OCH2Ph) 1/0/100 6 12 1.8 NAi NAi

12j [3a]AlMe 1/1/100 48 98 16.1 14.3k 1.13

13j [3a]AlMe 1/1/200 48 92 28.5 21.1k 1.14

aUnless otherwise noted, all reactions were conducted in toluene (2.24mL total) at 70◦C with benzyl alcohol being the initiator, [cat]0 = 8.3mM.
bDetermined by 1H NMR analysis.
cCalculated from {fw of LA × ([LA]0/([cat]0 [I]0 )) × conversion} + fw of initiator, assuming one propagating chain per aluminum atom.
dMeasured by GPC in THF, calibrated with polystyrene standards.
eMultiplied by a corrected factor of 0.58 (Save et al., 2002).
fData selected from Chang et al. (2016).
gReaction run in THF.
hReaction run at room temperature.
iNot applicable due to the formation of low Mn oligomers.
jReaction run with MePEG2000 as the initiator.
kCorrected by applying a factor of 0.58 to the PLA block.
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FIGURE 7 | Semilogarithmic plots of rac-LA conversion with time employing catalytic [3a]Al(OCH2Ph) in toluene-d8 at 70◦C. [rac-LA]0 = 208mM; i, [cat]0 =

13.3mM, kobs = 1.89 (7) × 10−4 s−1; ii, [cat]0 = 6.65mM, kobs = 1.04 (7) × 10−4 s−1; iii, [cat]0 = 3.33mM, kobs = 4.15 (15) × 10−5 s−1; iv, [cat]0 = 1.66mM,
kobs = 1.85 (6) × 10−5 s−1.

FIGURE 8 | Plot of kobs vs. concentrations of [3a]Al(OCH2Ph) for ROP of
rac-LA in toluene-d8 at 70◦C; [rac-LA]0 = 208mM.

and X-ray crystallography, respectively. The coordination
chemistry of these complexes is compared with those of their
amine 1 (Liang et al., 2013b) and phosphine 2 (Chang et al., 2016)
counterparts, so are their catalytic activities with respect to ROP
of ε-CL and rac-LA. In addition to the inherent discrepancies of
neutral donors in 1, 2, and 3, the 6-membered chelating rings
rendered by the rigid 3 are advantageous to enhance substantially
the reactivity of aluminum complexes in comparison with those
derived from 1 and 2 as demonstrated by their relative ROP
rates. Of particular note is also the competence of 3a complexes
in living ROP of ε-CL and rac-LA.

EXPERIMENTAL SECTION

General Procedures
Unless otherwise specified, all experiments were performed
under nitrogen using standard Schlenk or glovebox techniques.
Compounds H2[tBuP(2-O-3,5-tBu2C6H2)2] (H2[2a]) (Hsu and

Liang, 2010) and H2[PhP(O)(2-O-3,5-tBu2C6H2)2] (H2[3b])
(Siefert et al., 2000) were prepared according to literature
procedures. ε-CL was dried over CaH2 (1 wt%) at 80◦C for
0.5 h and distilled under reduced pressure. rac-LA was purified
by recrystallization (four times) from mixtures of toluene and
ethyl acetate. All other chemicals were obtained from commercial
vendors and used as received. All solvents were reagent grade
or better and purified by standard methods. All NMR spectra
were recorded at room temperature in specified solvents unless
otherwise noted. Chemical shifts (δ) are listed as parts per million
downfield from tetramethylsilane and coupling constants (J) are
listed in hertz. Routine coupling constants are not listed. 1H
NMR spectra are referenced using the residual solvent peak
at δ 7.16 for C6D6 or δ 2.09 for toluene-d8 (the most upfield
signal). 13C NMR spectra are referenced using the internal
solvent peak at δ 128.39 for C6D6. The assignment of the carbon
atoms for all new compounds is based on the DEPT 13C NMR
spectroscopy. 31P NMR spectra are referenced externally using
85% H3PO4 at δ 0. The NOE data were obtained with a 1HNMR
NOEDIF experiment. GPC analyses were carried out at 45◦C
with HPLC grade THF supplied at a constant flow rate of 1.0
mL/min. Molecular weights (Mn and Mw) were determined by
interpolation from calibration plots established with polystyrene
standards. Mass spectra were recorded on a Finnigan MAT
95XL Mass Spectrometer. Elemental analysis was performed on
a Heraeus CHN-O Rapid analyzer.

X-Ray Crystallography
Crystallographic data for H2[3a], [3a]AlMe•AlMe3,
and {[3a]Al(µ2-OCH2Ph)}2 are available in
Supplementary Material. Data were collected on a
diffractometer with graphite monochromated Mo-Kα radiation
(λ = 0.7107 Å). Structures were solved by direct methods and
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FIGURE 9 | Semilogarithmic plots of rac-LA conversion with time employing (i) [3a]AlMe, kobs = 3.40 (13) × 10−4 s−1 (ii) [3b]AlMe, kobs = 1.87 (8) × 10−4 s−1 (iii)
[2a]AlMe(THF), kobs = 1.44 (2) × 10−5 s−1 (iv) [2b]AlMe(THF), kobs = 7.19 (7) × 10−6 s−1. Conditions: [cat]0 = [PhCH2OH]0 = 6.7mM, [rac-LA] = 670mM,
toluene-d8, 70

◦C.

refined by full matrix least squares procedures against F2 using
SHELXL-97 (Sheldrick, 1998). All full-weight non-hydrogen
atoms were refined anisotropically. Hydrogen atoms were placed
in calculated positions. CCDC 1540207, 1540209, 1540210
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_
request/cif.

Synthesis of
H2[tBuP(O)(2-O-3,5-tBu2C6H2)2] (H2[3a])
To a THF solution (10mL) of H2[2a] (500mg, 1.0 mmol)
was added H2O2 (0.23mL, 30% in aqueous solution, 2.0
mmol, 2 equiv) under ambient conditions. The solution was
stirred at room temperature for 3 h and evaporated to dryness
under reduced pressure. The solid thus obtained was washed
with acetonitrile (4mL) to afford the product as an off-white
solid; yield 450mg (87%). Colorless crystals suitable for X-
ray diffraction analysis were grown from a concentrated THF
solution at −35◦C. 1H NMR (C6D6, 300 MHz) δ 12.19 (s, 2,
ArOH), 7.62 (s, 2, ArH), 7.55 (d, 2, JHP = 12, ArH), 1.52 (s, 18,
ArCMe3), 1.27 (s, 18, ArCMe3), 1.20 (d, 9, 3JHP = 15, PCMe3).
31P{1H} NMR (C6D6, 121.5 MHz) δ 65.16. 13C{1H} NMR (C6D6,
75 MHz) δ 162.1 (s, C), 140.2 (d, JCP = 11.3, C), 139.1 (d, JCP =

6.8, C), 129.2 (s, ArH), 125.2 (d, JCP = 9.8, ArH), 109.1 (d, JCP =
89.3, C), 36.9 (d, JCP = 67.5, PCMe3), 35.8 (s, ArCMe3), 34.5 (s,
ArCMe3), 31.8 (s, ArCMe3), 30.0 (s, ArCMe3), 24.5 (s, PCMe3).
Anal. Calcd for C32H51O3P: C, 74.66; H, 9.99. Found: C, 74.65; H,
9.94. MS (EI): calcd for C32H51O3Pm/z 514.4, foundm/z 514.5.

Synthesis of [3a]AlMe
A THF solution (6mL) of AlMe3 (0.20mL, 2M in toluene, 0.4
mmol) was chilled to 0◦C. To this was added a pre-chilled THF
solution (6mL) of H2[3a] (206.2mg, 0.4 mmol) at 0◦C. The

reaction solution was stirred at room temperature for 1 h and
evaporated to dryness under reduced pressure. The solid thus
obtained was washed with pentane (2mL) to afford the product
as an off-white solid; yield 215.2mg (97%). 1H NMR (C6D6, 300
MHz) δ 7.58 (d, 2, JHH = 3.0, Ar), 7.41 (dd, 2, JHP = 15.0 and JHH

= 3.0, Ar), 1.54 (s, 18, ArCMe3), 1.36 (d, 9, 3JHP = 15, PCMe3),
1.19 (s, 18, ArCMe3), 0.01 (s, 3, AlMe). 31P{1H} NMR (C6D6,
121.5 MHz) δ 61.37. 13C{1H} NMR (C6D6, 75 MHz) δ 163.9 (s,
C), 141.6 (d, JCP = 6.8, C), 139.1 (d, JCP = 12.8, C), 129.4 (s,
CH), 122.5 (d, JCP = 12.8, CH), 114.1 (d, JCP = 90.0, C), 35.9 (s,
ArCMe3), 35.2 (d, JCP = 68.3, PCMe3), 34.3 (s, ArCMe3), 31.6
(s, ArCMe3), 29.7 (s, ArCMe3), 26.1 (s, PCMe3),−16.4 (s, AlMe).
Anal. Calcd for C33H52AlO3P: C, 71.44; H, 9.45. Found: C, 71.37;
H, 9.38. MS (EI): calcd for C33H52AlO3P m/z 554.4, found m/z
554.5.

Synthesis of [3b]AlMe
The procedures were all identical to those of [3a]AlMe except
using H2[3b] in the place of H2[3a], affording the product as
an off-white solid; yield 95%. 1H NMR (C6D6, 300 MHz) δ 7.70
(m, 2, Ar), 7.64 (d, 2, JHH = 1.2, Ar), 7.14 (d, 2, JHH = 1.2, Ar),
7.02 (m, 1, Ar), 6.92 (m, 2, Ar), 1.62 (s, 18, ArCMe3), 1.13 (s, 18,
ArCMe3), 0.05 (s, 3, AlMe). 31P{1H} NMR (C6D6, 121.5 MHz)
δ 55.06. 13C{1H} NMR (C6D6, 75 MHz) δ 164.4 (s, C), 141.4 (s,
C), 139.4 (d, JCP = 7.5, C), 134.1 (d, JCP = 6.8, CH), 129.8 (s,
CH), 129.0 (d, JCP = 6.8, CH), 128.4 (s, CH), 125.1 (d, JCP = 6.8,
CH), 112.8 (d, JCP = 62.3, C), 35.9 (s, CMe3), 34.2 (s, CMe3),
31.5 (s, CMe3), 29.7 (s, CMe3), −16.5 (s, AlMe). Anal. Calcd for
C35H48AlO3P: C, 73.13; H, 8.42. Found: C, 72.75; H, 8.26.

Synthesis of {[3a]Al(µ2-OCH2Ph)}2
A THF solution of [3a]AlMe was prepared in situ as describe
above from the reaction of H2[3a] (206.2mg, 0.4 mmol) and
AlMe3 (0.20mL, 2M in toluene, 0.4 mmol). To this was added
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PhCH2OH (43.2mg, 0.4 mmol). The reaction solution was
stirred at room temperature overnight and evaporated to dryness
under reduced pressure. The solid thus obtained was washed with
pentane (4mL × 2) to afford the product as an off-white solid;
yield 168.4mg (65%). 1H NMR (C6D6, 300 MHz) δ 7.76 (d, 4,
JHH = 7.5, Ar), 7.57 (d, 4, JHH = 2.1, Ar), 7.38 (dd, 4, JHP =

13.5 and JHH = 2.1, Ar), 7.21 (t, 4, JHH = 7.5, Ar), 7.01 (t, 2,
JHH = 7.2, Ar), 5.72 (s, 4, OCH2Ph), 1.54 (s, 36, ArCMe3), 1.18
(s, 36, ArCMe3), 1.12 (d, 18, JHP = 14.7, PCMe3). 31P{1H} NMR
(C6D6, 121.5 MHz) δ 56.74. 13C{1H} NMR (C6D6, 75 MHz) δ

164.9 (s, C), 143.0 (s, ipso-OCH2Ph), 141.4 (d, JCP = 6.8, C),
137.9 (d, JCP = 12.9, C), 128.8 (s, CH), 128.3 (s, CH), 125.8 (s,
para-OCH2Ph), 125.6 (s, CH), 122.4 (d, JCP = 12.6, CH), 114.01
(d, JCP = 91.5, C), 67.5 (s, OCH2Ph), 35.9 (s, ArCMe3), 35.2 (d,
JCP = 71.2, PCMe3), 34.2 (s, ArCMe3), 31.6 (s, ArCMe3), 30.1 (s,
ArCMe3), 25.8 (s, PCMe3). Anal. Calcd for (C39H56AlO4P)2: C,
72.40; H, 8.73. Found: C, 72.06; H, 8.47.

Synthesis of {[3b]Al(µ2-OCH2Ph)}2
The procedures were all identical to those of {[3a]Al(µ2-
OCH2Ph)}2 except using H2[3b] in the place of H2[3a], affording
the product as an off-white solid; yield 68%. 1H NMR (toluene-
d8, 300 MHz) δ 7.60 (m, 8, Ar), 7.25 (m, 4, Ar), 6.90–7.09 (m,
16, Ar), 5.65 (s, 4, OCH2Ph), 1.55 (s, 36, ArCMe3), 1.13 (s,
36, ArCMe3). 31P{1H} NMR (toluene-d8, 121.5 MHz) δ 51.75.
13C{1H} NMR (C6D6, 75 MHz) δ 165.5 (s, C), 143.4 (s, ipso-
OCH2Ph), 141.5 (d, JCP = 7.7, C), 138.2 (d, JCP = 13.4, C), 133.9
(d, JCP = 10.4, CH), 132.9 (s, CH), 129.2 (s, CH), 128.4 (s, CH),
127.6 (s, CH), 126.0 (s, CH), 125.2 (d, JCP = 14.3, CH), 125.0 (d,
JCP = 12.2, CH), 112.9 (d, JCP = 104.1, C), 67.7 (s, OCH2Ph),
35.9 (s, ArCMe3), 34.1 (s, ArCMe3), 31.5 (s, ArCMe3), 30.2 (s,
ArCMe3). Anal. Calcd for (C41H52AlO4P)2: C, 73.85; H, 7.86.
Found: C, 73.51; H, 7.65.

Catalytic ROP of ε-CL or rac-LA (Tables 1,
2)
A toluene solution (1mL) containing an alcohol initiator
(PhCH2OH or MePEG2000) where appropriate and monomer

(ε-CL or rac-LA having prescribed [monomer]0/[catalyst]0
ratios) was heated in an oil bath at 70◦C. To this was
added a toluene solution (1.24mL) of catalyst [3a-b]AlMe
(0.0187 mmol) or {[3a-b]Al(µ2-OCH2Ph)}2 (0.00935 mmol).
The reaction solution was stirred at 70◦C for a period of
prescribed time and quenched with a methanol solution
of HCl. The solid thus precipitated was washed with
hexane, isolated, and dried under reduced pressure until
constant weights.

Kinetic Studies on ROP of rac-LA
The procedures were similar to those described above except
that the reactions were conducted in toluene-d8. The monomer
conversion was monitored over time by 1H NMR spectrometry.
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