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A simple model, based on spherical geometry, is applied to the description of release

kinetics of metal species from nano- and micro-plastic particles. Compiled literature data

show that the effective diffusion coefficients, Deff, for metal species within plastic polymer

bodies are many orders of magnitude lower than those applicable for metal ions in bulk

aqueous media. Consequently, diffusion of metal ions in the aqueous medium is much

faster than that within the body of the plastic particle. So long as the rate of dissociation of

any inner-sphere metal complexes is greater than the rate of diffusion within the particle

body, the latter process is the limiting step in the overall release kinetics of metal species

that are sorbed within the body of the plastic particle. Metal ions that are sorbed at

the very particle/medium interface and/or associated with surface-sorbed ligands do not

need to traverse the particle body and thus in the diffusion-limiting case, their rate of

release will correspond to the rate of diffusion in the aqueous medium. Irrespective of the

intraparticulate metal speciation, for a given diffusion coefficient, the proportion of metal

species released from plastic particles within a given time frame increases dramatically

as the size of the particle decreases. The ensuing consequences for the chemodynamics

and bioavailability of metal species associated with plastic micro- and nano-particles in

aquatic systems are discussed and illustrated with practical examples.

Keywords: microplastic, nanoplastic, kinetics, dynamic metal speciation, bioavailability

INTRODUCTION

Microplastics (MPs) are ubiquitous worldwide in the water column of freshwater and marine
systems (Barnes et al., 2009; Baldwin et al., 2016; Leslie et al., 2017; Schmidt et al., 2017), in
sediments (Blumenröder et al., 2017; Graca et al., 2017; Leslie et al., 2017; Wang et al., 2017),
in soils (Scheurer and Bigalke, 2018; Zhang and Liu, 2018; Zhou et al., 2018), and within biota
(Foekma et al., 2013; Goldstein and Goodwin, 2013; Lusher et al., 2015; Leslie et al., 2017; Digka
et al., 2018; Piccardo et al., 2018; van der Hal et al., 2018). The size range of plastic particles
denoted as being MPs generally corresponds to a diameter in the range 100 nm to 5mm (European
Food Safety Authority, 2016; Alimi et al., 2018). Current monitoring approaches for MPs in the
water column employ plankton nets, and thus particles with dimensions smaller than some 10µm
are not collected. Nevertheless, strategies are emerging for detection and size characterization of
nanoplastics (NPs), i.e., plastic particles with diameter in the range of order 1–100 nm (ter Halle
et al., 2017). The number of NPs in the environment remains to be verified, but very high numbers
of these entities could be present: in addition to primary sources, NPs will be generated by abiotic
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and biotic degradation of MPs. For example, UV degradation
of MPs has been shown to generate NPs (Gigault et al., 2016;
Lambert and Wagner, 2016a,b), and digestive fragmentation
has been proposed as a means by which NPs can be rapidly
generated fromMPs (Dawson et al., 2018). Indeed, embrittlement
of plastics by abiotic processes will likely facilitate their further
degradation by biotic processes. Simply from mass conservation,
one spherical particle of 10µm radius could generate 109

particles of 10 nm radius. Indeed, for MPs collected from marine
systems, the reported number distributions as a function of size
show that as the size decreases, the increase in abundance follows
a power law (Enders et al., 2015; Erni-Cassola et al., 2017), and
studies on MP degradation patterns show a similar trend (ter
Halle et al., 2016). It is thus anticipated that in aquatic ecosystems
the number of plastic particles in a given size fractionwill increase
with time from the micro to the nanoscale.

Plastic particles represent a heterogeneous class of
materials in terms of their physical features (size, shape)
and physicochemical properties, e.g., chemical functionality,
porosity, hydrophobicity. The distribution of types of polymers
found in floating and beached plastic particles reflects the
release abundance and properties of the original polymers, e.g.,
density, as well as degradation processes, e.g., photooxidation,
hydrolysis, acquisition of organic coatings. The composition
of floating and beached plastics is dominated by high and
low density polyethylene (HDPE, LDPE) ca. 50–70%, and
polypropylene (PP) ca. 20%, plus a few percent each of
polyamides (PA), polyvinyl chloride (PVC), polystyrene (PS),
and poly(ethyleneterephthalate) (PET) (Constant et al., 2018;
Digka et al., 2018; Falcou-Préfol et al., 2018; Suaria et al., 2018).
A similar abundance distribution of polymers is found for MPs
in biota sampled in aquatic ecosystems (Digka et al., 2018),
suggesting that biouptake is not very selective with respect to the
polymer type.

In addition to the bulk polymer, plastics contain a range of
associated compounds, which generally includes diverse species
of metals and organics. Such compounds include those that are
inherent components of the original material, e.g., plasticizers,
stabilizers, surface modifiers, flame retardants, and pigments,
as well as those that are environmentally acquired by sorption
from the surroundings. For the case of metals, Pb and Zn
compounds are used as stabilizers in plastics, and Pb and Cd
compounds are used as color pigments. The inherent metal
content of plastics, on a w/w basis, can be up to ca. 1% Cd,
ca. 2% Pb, and ca. 10% Zn. In Europe, the use of Pb and Cd
additives in plastics is now restricted, but such regulations are not
internationally applicable, and there are large quantities of legacy
plastics in the environment. In addition to the inherent metal
content, plastics can sorb metals from the environment into the
polymer matrix as well as via sorbed coatings of complexing
organic matter (Ashton et al., 2010; Holmes et al., 2012, 2014;
Rochman et al., 2014; Brennecke et al., 2016). Several studies have
documented the metal contents of environmentally-collected
plastic particles (Holmes et al., 2012; Imhof et al., 2016; Massos
and Turner, 2017; Wang et al., 2017; Vedolin et al., 2018).
Furthermore, degradation of plastics in the environment, e.g., via
photooxidation and hydrolysis, generates new sorption sites for

uptake of metals (Fotopoulou and Karapanagioti, 2012; Turner
and Holmes, 2015). Accordingly, it is anticipated that plastic
particles will modify the chemical speciation, bioavailability, and
potential toxicity of trace metals in their contact with a given type
of water column. Herein we initiate a framework for assessing the
potential impact of MP and NP particles on the chemodynamics
and bioavailabilities of hydrated trace metal ions, Maq, in aquatic
media. The focus herein is on the release kinetics of metal ions
from plastic particles that have been immersed/suspended in an
aquatic system for an extended period. Accordingly, the relevant
metal species include those that are an inherent component
of the original plastic material as well as those that have been
sorbed from the aqueous environment. The rate of association of
metal ions with plastic particles upon their release into aquatic
systems will generally follow the framework already elaborated
for nanoparticulate complexants (Pinheiro et al., 2005; van
Leeuwen and Buffle, 2009; van Leeuwen et al., 2017), albeit that
hydrophobic interactions may also play a role.

THEORY

Physicochemical Features of Plastic
Particles in Aqueous Media
Upon their release into aquatic systems, plastic particles will
sorb water. Water penetrates polymeric materials by hydrogen-
bonding interactions, and different types of polymers hydrate to
varying extents. For example, at saturation, PET was found to
have a water content of ca. 1 water molecule per 10 monomer
units, whilst Nylon had ca. 6 waters per 10 monomers (Langevin
et al., 1994). Furthermore, whilst water molecules sorbed in
hydrophobic polymers may be less interacting with each other as
compared to that in pure water (Fukuda et al., 1990), hydrogen-
bonded water clusters have been proposed as a general feature
of hydrophobic plastic matrices (Mountz et al., 2005). Literature
data on the diffusion coefficient of water and metal species in
various polymer phases are collated in Table 1. For metals, the
conditions typically refer to non-acidic aqueous media.

Diffusion coefficients have also been reported for elements
that form monovalent ions. For Na+, a diffusion coefficient of
1.5 × 10−13 m2 s−1 in Nylon-6 at T = 50◦C has been reported
(Iijima et al., 1978), and the diffusion coefficient for Li+, Na+,
and K+ in low water content acrylate and methacrylate polymers
is found to be of the order of 10−13 m2 s−1 (Chang et al., 2018).

The range of diffusion coefficients, D, reported for H2O
and metal species reflects differences in crystallinity, plasticizer
content and % humidity at which the measurements were made.
In the case of water, measurements refer to diffusion of water
(vapor) into an initially dry polymer phase; in the case of metal
ions, the measurement typically refers to diffusion into or out
of the water-saturated polymer (immersed in aqueous solution).
The diffusing metal ions are proposed to be at least partially
hydrated (Reuvers et al., 2014). The permeation of water into the
polymer phase causes a degree of plasticization and a reduction
in the glass transition temperature, which in turn can modify
the diffusivity of water (Marais et al., 2000; Mountz et al., 2005;
Reuvers et al., 2015; Dubelley et al., 2017). Nevertheless, across all
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polymer types shown in Table 1, the effective diffusion coefficient
Deff for water lies in the range 10−11 to 10−14 m2 s−1. In contrast,
a much greater range of Deff values is found for the metal species.
This range reflects the nature of the diffusing species, i.e., the free
metal ion and/or small complexes that are mobile in the polymer
phase, and the strength of the interactions with immobile sites on
the polymer backbone (see following section).

Release Kinetics of Metal Ions From
Plastic Particles
The data collated in Table 1 show that the effective diffusion
coefficients for metal species in polymer phases are orders of
magnitude lower than those for diffusion of free hydrated metal
ions in bulk aqueous media (typically ca. 8 × 10−10 m2 s−1; von
Stackelberg et al., 1953). For the case in which metal species are
situated within the body of the plastic particle (whether being
inherent components of the polymer matrix or acquired from
the surroundings), the problem thus reduces to evaluating the
release kinetics for the case where diffusion within the particle
body is the rate-limiting step. The basic mathematical framework
for this case has been developed by Crank (1979). The leading
conservation equation for diffusive release of metal, M, from a
spherical body of radius rp into the surrounding medium is:

∂cM(r,t)

∂t
= Deff

[

∂2cM(r,t)

∂r2
+

2

r

(

∂cM(r,t)

∂r

)]

(1)

where r is the distance from the center of the particle, cM(r,t)is the
concentration of metal species inside the particle at position r and
time t, and Deff is the effective diffusion coefficient for M inside
the particle. If the relevant diffusing species are the freemetal ions
whereas M is immobile during the time of its association with
reactive sites in the polymer backbone, then Deff is simply given
by the pertaining diffusion coefficient of the free M:

Deff =
DM,fcM,f

cM,t
[m2s−1] (2a)

where DM,f is the diffusion coefficient for the free metal ion
within the particle body (as defined by diffusion in the hydrated
zones and/or inside the polymer phase), and cM,f and cM,t are the
respective concentrations of the free metal ion and the total M
within the particle. If the diffusing species also includes mobile
and labile metal complexes, ML, where L is e.g., a stabilizer
present in the polymer phase (as applicable for some of the data
in Table 1) then Deff represents the mean diffusion coefficient of
the free M and the complex ML:

Deff =
DM,fcM,f + DMLcML

cM,t
[m2s−1] (2b)

where DML and cML are the respective diffusion coefficient
and concentration of mobile metal complexes in the polymer
phase. The ratio cM,f/cM,t (Equation 2a) or (cM,f + cML)/cM,t

(Equation 2b) represents the mobile fraction of intraparticulate
M. Equation (2) assumes that the free and complexed forms of
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M are in equilibrium with each other, i.e., at the particle/medium
interface ML is labile on the timescale of the diffusive process.
This condition amounts to the rate constant for dissociation
of the complex species, kisd , being sufficiently high to outweigh
the corresponding rate constant for diffusion inside the polymer
phase. Themagnitude of kisd is determined by the thermodynamic
stability of the metal complex and the inner-sphere dehydration
rate constant of the metal ion.

Equation (1) is solved under the initial and boundary
conditions pertaining to (i) randomly distributed M in the
particle body in the starting situation of the release process, and
(ii) insignificance of the fast diffusion inside the external medium,
such that the concentration of M at the medium side of the
particle/medium interface is essentially zero (limiting flux). The
latter condition requires a sufficiently low volume fraction of
plastic particles. These conditions correspond to:

initial condition:

t = 0 : 0 < r < rp : cM = c
p
M; r > rp : c

aq
M = 0 (3a)

where c
p
M is the initial uniform (smeared-out) concentration of

M inside the particle and c
aq
M is the concentration of M in the

surrounding bulk aqueous medium.
boundary condition:

t > 0; r = rp : c
0
M = 0 (3b)

with c0M(r = rp) being the concentration of M at the particle
surface.

The solution for Equation (1) with boundary conditions (3a)
and (3b) is (Crank, 1979):

M(t)

M(t→∞)
= 1−

(

6

π2

∞
∑

n=1

1

n2
exp

[

−n2π2(t/τ )
]

)

(4)

where M(t) is the amount that has been released from the
spherical particle at time t, M(t→∞)is the amount that has been
released at infinite time, and τ is the fundamental time constant
(= r2p/Deff) for diffusive release from the particle. Equation (4)
is used to predict the extent to which inherent and sorbed M is
released from the body of MPs and NPs.

For the case of metal ions that are present at the particle
surface, i.e., sorbed at the particle/water interface or sorbed
by surface-sorbed ligands such as natural organic matter, the
release process does not involve diffusion through the polymer
phase. For metal ions that are sorbed to the surface of the
polymer matrix, the diffusion-controlled rate constant, kd,p, for
dissociation is given by (van Leeuwen et al., 2017):

kd,p = 3DMf el,d(1+ K2D
int ΓS)/r

2
p [s−1] (5)

where DM is the diffusion coefficient for the metal ion in
bulk aqueous medium, f el,d is the electrostatic coefficient for
conductive diffusion away from the particle (see van Leeuwen
et al., 2017 for details), K2D

int (m
2 mol−1) is the intrinsic stability

constant for inner-sphere complexes between the metal ion and
the surface sorption sites, and ΓS is the surface concentration

of binding sites (mol m−2). The intrinsic stability constant
represents the inherent chemical affinity between a metal ion and
a reactive site, after correction for the long-range electrostatics
beyond those on the scale of atom–atom interactions (Town and
van Leeuwen, 2016). For metal ions that are associated with a
permeable surface coating of e.g., natural organic matter or other
complexants, kd,pis given by (van Leeuwen et al., 2017):

kd,p = 3DMf el,d(1+ K3D
int cS)/r

2
p [s−1] (6)

where K3D
int (m3 mol−1) is the intrinsic stability constant for

inner-sphere complexes between the metal ion and the binding
sites within the permeable coating and cS is the concentration of
binding sites within the permeable coating (mol m−3).

In the general case of plastic particles in environmental media,
the applicable K int values and the concentrations of binding
sites are unknown. However, for the limiting case in which the
intrinsic binding affinity becomes immaterial, e.g., in an acidic
gut environment, the applicable kd,p is the conventional one for
diffusion from an uncharged, non-complexing sphere (Zhang
et al., 2007; van Leeuwen et al., 2012):

kd,p = 3DM/r2p [s−1] (7)

It is pertinent to note that the model of a randomly filled
sphere might be a poor model for an arbitrary plastic particle
in the environment. Development of a more sophisticated
interpretation framework is hindered by the current lack of
quantitative information on the pore structure within the
particle body, the thermodynamic and kinetic features of metal-
polymer species, etc. Until such details are at hand, our simple
sphere model provides an order-of-magnitude estimate of the
characteristic time of release of M from plastic particles, and this
may serve as an important starting point for future work.

RESULTS AND DISCUSSION

Predicted Diffusion Limited Release
Kinetics of M From Plastic Particles
Since the diffusion coefficient for M species within the plastic
matrix is much smaller than that in bulk water (Table 1), we
apply Equation (4) to predict the release kinetics of M species
from within the body of plastic particles. The applicable Deff is
determined by the fraction of the total M that is present in the
form of free ions andmobile complexes within the polymer phase
(Equation 2). The typical timescale, τrel, required for the complete
release of M from nano- and micro-plastic particles is shown in
Figure 1 as a function of particle size (rp) and intraparticulate
mobility (Deff) of the species of M. The figure indicates that, over
the timescale of 1 h, M species with a Deff greater than order
of 10−20 m2 s−1 would be completely released by small plastic
nanoparticles (rp up to order 10 nm). The fraction of the total M
in the plastic particles that would be released within 1 h is shown
in Figure 2 as a function of the particle radius and Deff. The
results show that metal species with a Deff of 5 × 10−13 m2 s−1

would be practically completely released within 1 h from particles
with rp up to order 100µm. In contrast, over the 1 h timescale,

Frontiers in Chemistry | www.frontiersin.org 5 December 2018 | Volume 6 | Article 627

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Town et al. Biochemodynamics of Metal-Plastic Species

significant release ofM species for whichDeff is of order 10
−16 m2

s−1 or less is only expected for particles in the nanosize regime.
These results fit with ad hoc observations of increased release of
M from plastics as the size of the particles is decreased (Fowles,
1977; Wilson et al., 1982).

Application of Theory to Describe Release
Kinetics of M From Plastic Particles
The setting of interest is the release of M from plastic particles
that have been ingested by biota. The pH varies along the
digestive tract according to the involved compartment and the
organism’s physiology. The stomach, or equivalent digestive
compartment, is generally acidic. Furthermore, intracellular
digestion within acidic vesicles such as lysosomes can be an
important process in some organisms. Notably, microplastics
have been shown to accumulate in the lysosomal system of
mussels (vanMoos et al., 2012). In acidicmedia, any complexes of
M, e.g., those added as stabilizers as well as those between M and
immobile sites on the polymer backbone, will tend to dissociate.
That is, the concentration of free M in the polymer phase, cM,f,
and the ensuing Deff (Equation 2), is expected to be greater than
that operative for equivalent MPs in the bulk aqueous medium
at circumneutral pH. Accordingly, ingestion of plastic particles
may lead to localized release of metal ions into certain tissues and
intracellularly via lysosomes.

For plastic particles in aquatic ecosystems, the amount of
associated metal ions will vary with the type of polymer and
associated additives as well as the conditions prevailing at a given
location. For example, using a short term (2 h) extraction of MPs
with 10% nitric acid, the highest level of extractable Cd amongst a
diverse range of beach collectedMPs was found to be 0.93mg g−1

from a PVC particle (Munier and Bendell, 2018). Estimation of
metal availability from ingested particles typically involves use of
physiologically-based extractions, e.g., acidic enzymatic solutions
(Oomen et al., 2002). In the case of MPs, typically only a small
fraction of the total M content is released over the timescales
considered. For example, a 7 day physiologically-based extraction
of beach collectedMPs was found to release ca. 2% of the total Cd
content (Massos and Turner, 2017). The authors did not report
the size distribution of the MPs, but only particles that were
visible to the naked eye were collected, and the reported average
mass of ca. 35mg per particle suggests that the particles were of
mm dimensions. Thus, the low extractability of Cd is in line with
our computations: Figure 1 shows that for rp of 0.1mm, only the
M with Deff of order 10

−12 m2 s−1 would be released after 7 days
(ca. 106 s).

The applicability of our simple sphere model to describe the
time course of M release from MPs is illustrated by use of data
for Pb and Cd release from irregular fragments (“shavings” of ca.
0.1 g) of beach-collected polyurethane (Turner and Lau, 2016),
polypropylene and polyethylene (Turner, 2018). The MPs were
extracted with a model gut solution (pepsin, pH 2.5, 40◦C) for
220 h (Turner and Lau, 2016; Turner, 2018). Figure 3 compares
the reported time course of M release with that predicted by
Equation (4). The “shavings” of 0.1 g were modeled as a sphere
with rp of 3 × 10−3 m, and an effective diffusion coefficient

in the range 2.5 × 10−12 to 8 × 10−12 m2 s−1 provides a
reasonable description of the data (Figure 3). The magnitude of
Deff suggests that the diffusing species is the (partially) hydrated
metal ion (cf. data inTable 1). Furthermore, this finding indicates
that the amount of M that is surface sorbed, or associated with
surface sorbed complexants, must be negligible with respect to
that which is located within the particle body. The applicable
diffusion coefficient for surface-associated M is that for the free
M in the bulk aqueous medium, Equation (7), i.e., ca. two
orders of magnitude greater than the observed value. The authors
reported that up to ca. 10% of the total M content of the MPs
was extractable within 220 h (Turner and Lau, 2016; Turner,
2018). This outcome implies that the proportion of M that is not
extracted remains associated with immobile sites on the polymer
backbone and/or in the form of complex species that have a
diffusion coefficient orders of magnitude lower than that for the
free M in the polymer phase (Table 1). In the latter case, the
timescale of diffusive release of free M may be separated from
that of the mobile complexes even if the system is fully labile (van
Leeuwen, 2011).

Potential Bioavailability of Metals
Associated With Micro- and Nano-Plastics
There are conflicting reports in the literature concerning the
effect of plastic particles on the bioaccumulation and potential
toxicity of metals. Furthermore, many studies do not report the
extent of metal-particle association in the exposure medium, and
thus meaningful interpretation is impossible (Davarpanah and
Guilhermino, 2015; Barboza et al., 2018). The results discussed in
the preceding sections highlight that the potential bioavailability
of metals associated with plastic particles will depend on their
physicochemical forms in the particle body, the size of the
particles, as well as the timescale of the exposure.

As an illustrative example, we consider a laboratory based
study on the effect of spherical polyethyleneMPs (rp = 30µm) on
the uptake of Ag by adult zebrafish (wet weight ca. 0.5 g) (Khan
et al., 2015). The results showed that in the presence of Ag-MP
entities, the Ag content of intestinal tissues after 4 h exposure was
approximately a factor of 10 greater than that found following
exposure to Ag+ only (at the same total Ag concentration of 9.27
× 10−6 mol m−3) (Khan et al., 2015). In the presence of the
MPs, 76% of the total Ag was associated with the particles. The
Ag in this case was not an initially inherent component of the
MP and the applicable Deff will depend on the strength of the
sorptive binding of Ag to the polymer backbone (Equation 2).
For the given size of MP (rp = 30µm), our computations predict
that Ag with a Deff of order 10−12 m2 s−1 would be completely
released within 1 h, whilst if the Deff is of order 10−16 m2 s−1

then <10% would be released in this timeframe (Figures 1, 2).
For the given exposure conditions, the reported Ag content in
the intestinal tissues would correspond to the total Ag content
of 868 MPs per fish. Although the authors did not attempt to
determine the presence of MPs in the intestinal tissue (Khan
et al., 2015), their ingestion is expected given that the fish were
starved for 24 h prior to exposure and the MP content in the
medium was 103 particles per mL. It is noteworthy that the total
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FIGURE 1 | Typical time, τrel, required for complete release of M from plastic particles as a function of the effective diffusion coefficient Deff (y-axis) and the particle

radius, rp (indicated above each line). Typical values of Deff reported for M in polymers are indicated by horizontal gray dashed lines (see Table 1).

FIGURE 2 | Fraction of total M released from a plastic particle in 1 h as a function of the particle radius, rp, and the effective diffusion coefficient, Deff, values indicated

on the figure. The inset is an amplification of the result for Deff = 10−20 m2 s−1.

Ag body burden of the zebrafish in this short term exposure was
reduced in the presence of MPs (by a factor of ca. 2.5) (Khan
et al., 2015). In another study, a longer term, 3 week exposure
of Cd and MPs to zebrafish revealed changes in the tissue
distribution of accumulated Cd in the presence of MPs, as well
as differences in biochemical markers and gene expression (Lu
et al., 2018). Overall these observations suggest that the uptake

route and timescale of accumulation of metal species associated
withMPs, as well as the subcellular compartmentalization of such
metal species, can differ substantially from that for free aqueous
metal ions. It can be anticipated that nanoparticulate plastics will
have even more dramatic effects on the chemical and biological
reactivity of associated metal species (van Leeuwen et al., 2013,
2017); Figures 1, 2.
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FIGURE 3 | Comparison of experimentally measured (points) (Turner and Lau,

2016; Turner, 2018) and computed (dashed curves) release of Pb (blue

symbols) and Cd (green and red symbols) as a function of time from fragments

of beach-collected plastics. The dashed curves were computed using

Equation (4) with particle radius = 3 × 10−3 m and the Deff values indicated

on the figure. The plastic samples correspond to ca. 0.1 g “shavings” of

polyurethane (blue symbols), polypropylene (red symbols), and polyethylene

(green symbol). See text for details.

CONCLUSIONS AND OUTLOOK

Plastics have a very long residence time in the environment
and contain a metal load in the form of additives and
environmentally acquired metals. The association of metal ions
with plastic particles in aquatic systems will modify their
speciation dynamics, and in turn their potential bioavailability.
The association of metal species with plastic particles alters the
spatial scale and timescale of the external and internal exposure
conditions in a manner that depends on the physicochemical
features of the particles, notably rp, as well as the physiology
of the organisms, e.g., feeding behavior, gastric digestion, and
gut retention times. Nanoparticle sized plastics may be of
particular concern because all forms of M associated with
the particle body are expected to be released within a short
timescale in acidic gut and lysosomal environments. Such
local bolus release of metal ions may trigger toxic effects.
Nevertheless, even if metal species associated with plastic
particles at typical environmental concentrations do not cause
acute toxicity, they may well alter the timescale of exposure and
the sub-cellular compartmentalization of metal species within
organisms, resulting in subtle and long-term detrimental effects
on ecosystems.

For environmental risk assessment purposes, quantitative data
is needed on the amount and physicochemical speciation of
metal ions associated withmicro- and nano-plastic particles. This
information, together with knowledge on MP and NP ingestion
rates and other physiological factors such as gut transition
times, can be used to estimate the potential significance of

plastic particles as vectors for metal exposure, as compared to
metal exposure via the aqueous phase and diet. Particularly for
filter feeders, e.g., mussels, metals released from ingested plastic
particles may be significant as compared to metal exposure via
the water phase. For example, consider a typical marine exposure
scenario for Cd(II) in which the concentration of aqueous Cd(II)
is ca. 0.1 nM (WHO, 1992; OECD, 1994) and microplastics
are present in the range 1–100,000 particles per m3 (Enders
et al., 2015; Auta et al., 2017). Approximately 20% of the MPs
collected in one study (Enders et al., 2015) had an rp of order
5µm which is similar to the size of dietary particles ingested
by mussels. A mussel with a filtration rate of order 2 L per
hour per individual (Yakan et al., 2011) would be exposed to
0.2 nM of Cd(II) per hour via the aqueous phase and potentially
10−5 to 1 nM per hour via ingested MPs (assuming that 20%
of the MPs have an rp of order 5µm and a Cd content of 1%
w/w which is completely released). This simple estimate ignores
the potential metal exposure that may derive from ingestion
of nanoplastic particles. As detailed herein, the amount of M
released in practice from ingested particles will depend on the
size of the particles, the assimilation efficiency, the prevailing gut
conditions and the transit time through the digestive tract. The
significance of metal exposure via plastic particles as compared
to other ingested organic and inorganic particles will be highly
variable.

Whilst the present context is release of M from ingested
particles, the concepts are generically applicable to the
chemodynamic features of metal species associated with
plastic particles. The outcomes of our work are also significant
for analyses of the allowed migratabilities of metals in plastic
consumer goods, e.g. toys. Current test procedures for migration
of compounds in polymeric materials specify sample dimensions
of ca. 6mm (European Committee for Standardization,
2018); evidently the actual migratable amount of metals, ánd
the timescale of their release, will be strongly dependent
on the size of the particles (Fowles, 1977; Wilson et al.,
1982).

The simple model presented herein may serve as an educated
starting point for predicting the chemical reactivity and potential
bioavailability ofmetals associated with spherical plastic particles,
and can be adapted to different particle geometries. Development
of a more quantitative interpretation framework is hampered
by the lack of information on the physicochemical features
of polymeric particles, e.g., internal pore structure, and the
thermodynamic stability and kinetic features of M-polymer
associates. Future work will develop a comprehensive model
for the chemodynamics and bioavailability of metal species
associated with plastic particles that linksM release kinetics to the
ensuing bioaccumulation and subcellular distribution of metal
species.
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