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The computational prediction of unbinding rate constants is presently an emerging topic

in drug design. However, the importance of predicting kinetic rates is not restricted

to pharmaceutical applications. Many biotechnologically relevant enzymes have their

efficiency limited by the binding of the substrates or the release of products. While aiming

at improving the ability of our model enzyme haloalkane dehalogenase DhaA to degrade

the persistent anthropogenic pollutant 1,2,3-trichloropropane (TCP), the DhaA31 mutant

was discovered. This variant had a 32-fold improvement of the catalytic rate toward TCP,

but the catalysis became rate-limited by the release of the 2,3-dichloropropan-1-ol (DCP)

product from its buried active site. Here we present a computational study to estimate

the unbinding rates of the products from DhaA and DhaA31. The metadynamics and

adaptive sampling methods were used to predict the relative order of kinetic rates in the

different systems, while the absolute values depended significantly on the conditions

used (method, force field, and water model). Free energy calculations provided the

energetic landscape of the unbinding process. A detailed analysis of the structural and

energetic bottlenecks allowed the identification of the residues playing a key role during

the release of DCP from DhaA31 via the main access tunnel. Some of these hot-spots

could also be identified by the fast CaverDock tool for predicting the transport of ligands

through tunnels. Targeting those hot-spots bymutagenesis should improve the unbinding

rates of the DCP product and the overall catalytic efficiency with TCP.

Keywords: unbinding kinetics, protein engineering, molecular dynamics, metadynamics, adaptive sampling,

CaverDock

INTRODUCTION

Until recently, the modern methods of structure-based drug design relied primarily on the
high binding affinity toward the targets to predict their biological performance. However,
that paradigm has been changed once it was realized that the half-life of a drug is equally
important to define its in vivo efficacy, and hence both thermodynamics and kinetics profiles
must be taken into account (Lu and Tonge, 2010). For this reason, we have recently
witnessed a boom of different methods for the computational prediction of receptor-ligand
(un)binding kinetics (Chiu and Xie, 2016; Ferruz and De Fabritiis, 2016; Dickson et al.,
2017; Rydzewski and Nowak, 2017; Bruce et al., 2018; Kokh et al., 2018). The importance
of determining association and dissociation rates (kon and koff, respectively), however, is
not restricted to the field of drug design. In structural biology and biocatalysis, the
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study of the thermodynamics and kinetics of binding and
unbinding can be very important to attain a deep understanding
of the biological processes of interest. There are well-known
cases where the substrate binding or the product release are
the rate-limiting steps in the catalytic cycle (Wang et al., 2001;
Bosma et al., 2003; Yao et al., 2005). Interestingly, it has been
shown that the substrate unbinding, under certain condition,
may also have a positive impact on the enzymatic turnover
(Reuveni et al., 2014).Therefore, the computational study of
the (un)binding processes might reveal their kinetic and/or
thermodynamics bottlenecks, and, in some cases, lead to finding
improved biocatalysts for biotechnological applications.

The haloalkane dehalogenases (HLDs, E.C.3.8.1.5) are one
of such cases. These bacterial enzymes can perform the
hydrolytic conversion of halogenated aliphatic compounds
into the respective alcohols (Scheme 1A). They have several
practical applications, namely in the synthesis of enantiopure
chemical compounds, recycling of by-products, bioremediation,
and biosensing (Koudelakova et al., 2013). As several other
haloalkanes, 1,2,3-trichloropropane (TCP) is an anthropogenic
compound which sometimes ends up contaminating the
groundwater as a recalcitrant toxic pollutant. Therefore,
biodegradation would be a possible solution for the remediation
of the contaminated sites (Samin and Janssen, 2012). The HLD
from R. rhodochrous, DhaA, can only moderately hydrolyze
TCP into 2,3-dichloropropan-1-ol (DCP). However, the 5-point
mutant DhaA31 (Figure 1) has been reported to display a
turnover number enhanced by 32-fold, resulting in a turnover
number (kcat) of 1.26 s−1 (Pavlova et al., 2009). DhaA31 is
currently one of the best known HLDs in hydrolyzing TCP,
and it has been included in the biodegradation pathway to
stepwise convert the toxic TCP into glycerol (Dvorak et al., 2014;
Kurumbang et al., 2014).

The HLDs have a buried active site connected to the
surface by molecular tunnels (Figure 1). Their catalytic cycle
(Scheme 1B) consists of: the substrate binding to the enzyme
(1), rearrangement of the substrate in the catalytic site to form
a reactive configuration (2), a multi-stage chemical step (3), and
the release of the alcohol and halide products to regenerate the
free enzyme (4). The chemical step involves an SN2 attack of
the D106 nucleophile on the electrophilic carbon atom of the
substrate (DhaA numeration according to UniProt ID P0A3G2).
The halide ion and the alkyl-enzyme intermediate are formed,
the latter is attacked by a water molecule, activated by the
catalytic base H272, which ultimately leads to the final products
(Verschueren et al., 1993; Kutý et al., 1998; Marques et al.,
2017). It is known that the hydrolysis of TCP by the wild-type
DhaA (DhaAwt) is rate-limited by the SN2 reaction, while in
DhaA31 the slowest step is the release of DCP. This knowledge
was attained from comparison of steady-state kinetic rates with

Abbreviations: TCP, 1,2,3-trichloropropane; DCP, 2,3-dichloropropan-1-ol;
HLD, haloalkane dehalogenase; MTD, metadynamics; funnel-MTD, funnel-
metadynamics; CV, collective variable; RMSD, root-mean-square deviation; MD,
molecular dynamics; HTMD, high throughput molecular dynamics; FES, free
energy surface; τ , average transition time; MSM,Markov state model; SD, standard
deviation.

SCHEME 1 | Catalytic cycle of the HLDs. (A) Hydrolytic dehalogenation

reaction catalyzed by the HLDs converting TCP to DCP. (B) Illustration of the

respective catalytic cycle: (1) binding of TCP (orange and green balls) to the

enzyme tunnels that connect the buried active site (pink cavity) to the bulk

solvent; (2) formation of the pre-reactive Michaelis complex (the nucleophile

D106 and the halide-stabilizing residues N41-W107 are represented in

magenta and gray, respectively), (3) chemical steps converting TCP into DCP

(cyan, green, and red balls) and Cl− (dark green ball), (4) release of the

products to regenerate the free enzyme. The unbinding of DCP (step 4,

highlighted with the blue arrows) is the kinetic bottleneck that limits the rate of

DhaA31, and is the focus of this work. Adapted with permission from Marques

et al. (2017). Copyright 2017 American Chemical Society.

pre-steady-state rates (Pavlova et al., 2009; Marques et al.,
2017). Moreover, the mutations C176F and V245F in DhaA31
contributed the most to the improvement of the SN2 step toward
TCP, whilst most of its bulky mutations—including C176F—
narrow down the molecular tunnels and thus hinder the release
of the alcohol product (Marques et al., 2017).

By accelerating the DCP unbinding from DhaA31 with
mutagenesis, without hampering other steps in the catalytic cycle,
we might improve the efficiency of DhaA31 to degrade TCP even
further, which is desirable for biotechnological applications. We
have recently targeted the geometric bottleneck of DhaA31’smain
tunnel, with mutations introduced to position 176, that had a
high impact on the catalysis with different substrates (Kaushik
et al., 2018). However, only minor improvements in the activity
toward TCP were attained. The present work allows us to tackle
the challenge from a new perspective.

Here we report a thorough computational study of the
unbinding of DCP from DhaA31 and DhaAwt. Initially, we
calculated the kinetic rates using metadynamics (MTD), and
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FIGURE 1 | Structures of the studied HLDs with their respective tunnels. (A) Crystal structures of the wild-type DhaA (DhaAwt; PDB-ID: 4E46) and (B) DhaA31 mutant

(PDB-ID: 3RK4). The tunnels were calculated using CAVER 3.02 (Chovancova et al., 2012): the main tunnel (p1) is shown as the blue surface and the slot tunnel (p2) as

green; the catalytic residues (Cα atoms) are represented as magenta spheres and the mutations in DhaA31 (I135F, C176Y, V245F, L246I, and Y273F) as cyan spheres.

adaptive sampling under different simulation conditions. This
helped us to assess the best procedures for predicting absolute
and relative unbinding rates. Next, we performed free energy
calculations using funnel-metadynamics (funnel-MTD), and
calculated the energetic profiles of the product unbinding.
This allowed us to compare the energy barriers, identify the
thermodynamic bottlenecks, and thus predict several hot-spots
for mutagenesis that could potentially improve the release of
the DCP product and thus enhance the conversion of TCP by
DhaA31.

MATERIALS AND METHODS

Metadynamics Unbinding Kinetics
System Preparation
The complexes of DhaA31 and DhaAwt bound with DCP
and chloride products in their active site were prepared using
the positions of DCP (only the R-enantiomer was studied
here) docked into the corresponding crystal structures (PDB
entries 3RK4 and 4E46, respectively), protonated and treated
as previously described (Marques et al., 2017). The positions of
the Cl− ion were taken from the respective crystal structures.
The PREPI parameters for DCP were prepared using the
Antechamber module of AmberTools 14 (Case et al., 2014), from
the MOL2 structure containing the partial atomic charges, as
previously calculated (Marques et al., 2017), and compiled using
the atom types of GAFF force field. The topology and coordinates
of the complexes hydrated only with the crystallographic water
molecules were generated with tLEaP module of AmberTools
14, with the protein, and ions described by the AMBER ff12SB
force field (Maier et al., 2015), and converted to the GROMACS
format using the ACPYPE script (Sousa da Silva and Vranken,
2012). Each system was solvated with a cubic box of TIP3P water
molecules (Jorgensen et al., 1983) with the edges at least 8 Å away
from the protein atoms and then neutralized with Na+ ions using
the editconf module of GROMACS 5.0 package (Abraham et al.,
2015).

System Equilibration
Energy minimization was performed with GROMACS 5.0.7
(Abraham et al., 2015) without restraints to relax the whole
system, using the steepest descent method until the maximum
force converged to values below 1 kJ/mol·nm with a maximum
of 500 steps. The Particle Mesh Ewald method was used for the
treatment of the long range non-bonding interactions beyond the
10 Å cut-off (Darden et al., 1993), and the periodic boundary
condition was applied. Equilibration dynamics was run in two
steps: a first equilibration of 500 ps in the isothermal-isobaric
ensemble (NPT), at 1 atm, with the isotropic Berendsen barostat
(Berendsen et al., 1984), and coupling constant 0.2 ps, and
a second one of 1 ns in the isothermal-isochoric ensemble
(NVT). Both steps were conducted at 300K with the velocity-
rescaled Berendsen thermostat, to ensure the proper canonical
ensemble (Bussi et al., 2007), with constant for coupling of 0.1
ps. All simulations were performed with the periodic boundary
conditions in all directions, the Verlet pair-lists scheme (Verlet,
1967) with cut-off values of 10 Å for both short-range coulombic
and van der Waals potentials, and the LINear Constraint Solver
(LINCS) (Hess et al., 1997) algorithm to constrain the bonds and
eliminate drifts. The integration time step was 2 fs and the energy
and coordinates of the system were recorded every 1 ps.

Setup of the Collective Variable
A path-based collective variable (path CV) was defined to
describe the release process of DCP along the p1 tunnel,
according to the formalism as previously described (Branduardi
et al., 2007; Bonomi et al., 2008). It involves a distance s
along a reference path that leads from state A (the fully
bound state, the docked conformation in the active site) to
B (fully unbound state, with DCP in the bulk solvent). The
path was constructed based on several snapshots selected from
previous accelerated molecular dynamics (aMD) simulations
with DhaA31 and DhaAwt (Marques et al., 2017) to have DCP
at different distances and orientations between states A and
B. In total 9 frames were chosen for each system, and only

Frontiers in Chemistry | www.frontiersin.org 3 January 2019 | Volume 6 | Article 650

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Marques et al. Ligand Unbinding in Enzyme Engineering

the ligand and the residues of p1 tunnel in contact with DCP
during the release were selected as the path reference (Figure S1
and Table S1). The path CV (hereafter termed p3) was then
defined by the root mean square deviation (RMSD) space.
From a further analysis of a set of unbinding metadynamics
simulations, it was found that the direct variable of the path
s (named p3.sss) was degenerated and hence was not suitable
to be used alone in this study. The degeneracy was lifted
using a second CV, which was the distance (d1) between the
center of mass of DCP to the active site cavity, defined by the
center of mass of the atoms Y176-Cβ, F205-Cα, L209-Cα, and
H272-Cα for DhaA31, and C176-Cβ, F205-Cα, L209-Cα, and
H272-Cα for DhaAwt. The λ parameter was set to 92 for the
DhaA31/DCP and 100 for DhaAwt/DCP. The values of λ were
obtained from the analysis of the RMSD matrix obtained from
the frames.

Infrequent Metadynamics Simulations
All metadynamics (MTD) simulations were performed using
PLUMED (Tribello et al., 2014) plugin, version 2.2.3 with
the GROMACS 5.0.7 (Abraham et al., 2015) code. The NVT
ensemble at 300K was used as in the equilibration, with
further position restraints on the atoms Leu36-Cα, Ile104-Cα and
Leu237-Cα with harmonic constant of 2.38 kcal/mol·Å2 (1,000
kJ/mol·nm2) in each dimension, to prevent drifting of the protein
across the periodic cell. The potential biases were added to the
path CV s dimension and the distance d variables, deposited
every 50 ps, with initial height of 0.60 kcal/mol (2.50 kJ/mol) for
both variables. The Gaussian widths (σ) for s and d1 were set,
respectively, as 0.05 and 0.014 Å for DhaA31/DCP and 0.07 and
0.013 Å for DhaAwt/DCP, and a decay corresponding to a bias
factor of 10. In total 25 independent infrequentMTD simulations
were run until the ligand was released to reach distances d1
> 22 Å from the active site without immediate rebinding.
These times corresponded to the biased release times, tbiased.
The trajectories were visualized using VMD 1.9.1 (Humphrey
et al., 1996) and PyMOL 1.7.4 (The PyMO L Molecular Graphics
System, 2014).

To obtain the unbiased release time tunbiased, the acceleration
factor α was used as describe by Equations 1, 2 (Tiwary and
Parrinello, 2013; Tiwary et al., 2015):

α = 〈e
V(r,t)
kBT 〉 (1)

tunbiased = tbiased × α (2)

where 〈 〉 denotes the running average accumulated through the
course of the simulation at the biased time, t or tbiased,V(r,t) is the
time-dependent metadynamics bias, r the set of CV descriptors,
and kBT is the temperature in energy units, which has the value
of 2.50 kJ·mol−1 at 300K.

Calculation of koff From Metadynamics
The estimation of the unbinding rates koff involves the calculation
of the characteristic transition time τ of a Poisson process,
obtained through a least squares fitting of the empirical
cumulative distribution function (ECDF) obtained with the
metadynamics unbiased times, tunbiased, with the theoretical

expression of a cumulative distribution function (TCDF), which
in the case of a homogeneous Poisson process is given by
Equation (3) (Tiwary et al., 2015):

TCDF = 1− e−
t
τ (3)

The theoretical (TCDF) and empirical (ECDF) distributions are
compared by a Kolmogorov-Smirnoff test, which estimates an
associated p-value, which represents the probability that the
distribution of times extracted from metadynamics is obtained
from the theoretical exponential distribution, and describes the
quality of the data (Salvalaglio et al., 2014; Tiwary et al., 2015).
Acceptable distributions should always present p-value >0.05,
otherwise the set of results is discarded. To perform the fitting of
those distributions, the Kolmogorov-Smirnov test, and calculate
the dissociation transition time τ off, the STPtest.mMatlab script
was used as provided (Salvalaglio et al., 2014). The dissociation
rate koff was then calculated from τ off by the Equation 4:

koff =
1

τoff
(4)

The error associated with the calculated koff value was estimated
by a bootstrap analysis of the data set of unbiased release times
obtained for each system. This was performed by re-analyzing
500 sub-samples extracted randomly from the original ensemble
of release times.

Adaptive Sampling Kinetics
System Preparation
The complexes of DhaA31 and DhaAwt bound with DCP
and chloride products in their active site, hydrated with the
crystallographic waters, were prepared as described for the
metadynamics. Na+ and Cl− ions were added in order to achieve
ionic strength of 0.1M, and a TIP3P (Jorgensen et al., 1983)
cubic box of water molecules with the edges 10 Å distant from
the original system was added. The topology and coordinates of
the hydrated complexes were generated with tLEaP module of
AmberTools 14 (Case et al., 2014), with the protein and ions
described with the ff12SB AMBER force field (Hornak et al.,
2006; Joung and Cheatham, 2008, 2009; Nguyen et al., 2014). For
comparison testing different simulation conditions, the systems
were also prepared with force field ff14SB (Maier et al., 2015) and
OPC3 water model (Izadi and Onufriev, 2016).

System Equilibration
The systems were equilibrated using the Equilibration_v2module
of high-throughput molecular dynamics (HTMD) (Doerr et al.,
2016). The system was first minimized using conjugate-gradient
method for 500 steps. Then the systemwas heated andminimized
as follows: (I) 500 steps (2 ps) of NVT equilibration with the
Berendsen barostat to 298K, with constraints on all heavy atoms
of the protein, (II) 625 000 steps (2.5 ns) of NPT equilibration
with Langevin thermostat with 1 kcal·mol−1·Å−2 constraints
on all heavy atoms of the protein, and (III) 625 000 steps (2.5
ns) of NPT equilibration with the Langevin thermostat without
constraints. During the equilibration simulations, holonomic
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constraints were applied on all hydrogen-heavy atom bond
terms and the mass of the hydrogen atoms was scaled with
factor 4, enabling the simulations to run with 4 fs time steps
(Feenstra et al., 1999; Harvey and De Fabritiis, 2009; Harvey et al.,
2009; Hopkins et al., 2015). The simulations employed periodic
boundary conditions, using the particle mesh Ewald method
for treatment of interactions beyond 9 Å cut-off, electrostatic
interactions suppressed for more than 4 bond terms away from
each other and the smoothing and switching van der Waals and
electrostatic interaction cut-off at 7.5 Å (Harvey and De Fabritiis,
2009).

Adaptive Sampling
The HTMDwas used to perform adaptive sampling of the RMSD
of the Cα atoms. The 20 ns productionmolecular dynamics (MD)
runs were started with the system resulting from the equilibration
cycle and employed the same settings as the last step of the
equilibration. The trajectories were saved every 0.1 ns. Adaptive
sampling was performed using the distance between the central
C-2 atom of DCP and the Cγ atom of the catalytic nucleophile
D106 as the reaction coordinate, and a time-based independent
component analysis (TICA) (Naritomi and Fuchigami, 2011)
in 1 dimension. Unless stated otherwise, 40 epochs of 10 MDs
each were performed for DhaA31 and 30 epochs for DhaAwt,
corresponding to cumulative simulation times of 8 and 6 µs,
respectively.

Markov State Model Construction
The simulations were made into a simulation list using HTMD
method and water was filtered out, and unsuccessful simulations
with length <20 ns were omitted. This resulted in 8 µs of
simulation time (400× 20 ns) for DhaA31 and 6µs of simulation
time (300 × 20 ns) for DhaAwt (Doerr et al., 2016). The DCP
dynamics was studied by the distance between the C-2 atom of
DCP and the Cγ atom of the catalytic nucleophile D106. The data
was clustered using MiniBatchKmeans algorithm to 200 clusters.
15 ns lag time was used in the models to construct 3 Markov
states, and the Chapman-Kolmogorov test was performed to
assess the quality of the constructed states. A bootstrapping
calculation was performed with 80% of the data and repeated 500
times to estimate the errors in the estimated kinetic parameters.

Funnel Metadynamics
The MTD simulations were performed using the GROMACS
5.0.7 (Abraham et al., 2015) patched with the PLUMED plugin
(Tribello et al., 2014), version 2.2.3, modified to include the
funnel metadynamics (funnel-MTD) algorithm and used as
provided by the authors of the method (Limongelli et al.,
2013). The NVT ensemble at 300K was used as previously,
with the further position restraints on the Leu36-Cα, Ile104-Cα,
and Leu237-Cα atoms with a harmonic force constant of 59.8
kcal/mol·Å2 (25,000 kJ/mol·nm2) in each dimension to prevent
the protein from drifting across the periodic cell. These atoms
were chosen for being buried and having some of the lowest B-
factors in the respective crystal structures. The potential biases
were added to the path CV s variable, deposited every 1 ps,
with initial height of 0.60 kcal/mol (2.50 kJ/mol). The Gaussian

width (σ) was 0.05 Å for DhaA31/DCP and 0.07 and 0.013
Å for DhaAwt/DCP, as previously, and a decay corresponding
to a bias factor of 10. A funnel-shaped restraint with 83.6
kcal/mol.A2 (35,000 kJ/mol.nm2) force constant, was defined by
the Z axis passing through the points A—the coordinates of
the D106-Cα atom—and B—the geometric center of the F144-
Cα, F152-Cα, A167-Cα, and K175-Cα atoms –, the α angle of
0.55 rad, Zcc 20.0 Å, and Rcyl 5.0 Å. To prevent the ligand
from crossing the periodic cell, an upper distance restraint
with 12.0 kcal/mol.A2 (5,000 kJ/mol.nm2) force constant was
imposed at 23 Å from point A. The free energy surface (FES)
was computed using the SUM_HILLS module of PLUMED,
from the histogram distribution reweighted from the biases
added by the metadynamics (Bonomi et al., 2009; Tiwary and
Parrinello, 2015). The FES was reanalyzed for the variable d1,
defined above, using the DRIVER module of PLUMED. The
histogram reweighting was performed by taking into account all
the biases from themetadynamics and the restraints. The relevant
states were selected from the FES, and the simulation snapshots
corresponding to d1 values within± 0.01 Å were extracted using
GROMACS 5.0.7 (Abraham et al., 2015), in PDB format, after the
trajectory was aligned by the Cα atoms.

Binding Free Energy
The free energy of binding was calculated by the molecular
mechanics/generalized Born solvent accessible surface area
(MM/GBSA)method to determine the interaction energy of DCP
with the protein residues in each one of the ensembles obtained
from the selected states of the FES. For that, the topology of the
systems in the GROMACS format were converted to the AMBER
format using the ParmEd program (Swails, 2010). The ante-
MMPBSA.py (Miller et al., 2012)module of AmberTools 14 (Case
et al., 2014) was used to remove the solvent and ions from the
resulting topology files and define the Born radii asmbondi2, and
generate the corresponding topologies of the complex, receptor,
and ligand, to be used in the MM/GBSA calculations. The state
ensembles, in PDB format, were manually stripped from any
ions and solvent. The MMPBSA.py.MPI (Miller et al., 2012)
module of AmberTools 14 was used to calculate, in parallel, the
mean free energy of binding considering every snapshot of the
PDB ensemble. The generalized Born method was used (&gb
namelist) with implicit generalized Born solvent model (igb=8)
and 0.1M ionic strength (saltcon=0.1). Decomposition of the
pairwise interactions were generated (&decomp namelist) with
discrimination of all types of energy contributions (idecomp=4)
for the whole residue (dec_verbose=0).

CaverDock Simulations
Tunnel Calculations
CAVER 3.02 (Chovancova et al., 2012) was used to calculate the
tunnels in the protein structure of the DhaA31 and DhaAwt,
as previously prepared and treated prior to the metadynamics.
The tunnels were calculated using a probe radius of 0.7 Å, a
shell radius of 3 Å, and shell depth 4 Å. The starting point for
the tunnel calculation was the same point in the active site as
previously used to calculate the distance d1 (center of mass of the
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atoms Y176-Cβ, F205-Cα, L209-Cα, and H272-Cα for DhaA31,
and C176-Cβ, F205-Cα, L209-Cα, and H272-Cα for DhaAwt).

CaverDock Calculations
CaverDock package (“CaverDock,” 2018; Filipovič et al., 2018)
was used to calculate the trajectories of DCP through the p1
tunnel of DhaA31 and DhaAwt, as calculated by CAVER. The
input files previously prepared for the receptors and ligand,
respectively, in PDB or MOL2 format, were converted to the
AutoDock Vina-compatible PDBQT format using the MGLTools
v1-5-7rc1 (Morris et al., 2009), preserving the previously
calculated partial charges for the ligand. The tunnels were
extended by 6 Å and discretized with 0.3 Å increments. The
ligand started in the active site and it was moved toward
the protein surface. The side chain flexibility was iteratively
introduced using the default settings, with two automatically
chosen tunnel residues made flexible per iteration.

RESULTS

Metadynamics Unbinding Kinetics
The unbinding of the alcohol product has become the rate-
limiting step in the catalytic conversion of TCP by DhaA31, and
that step is expected to be slower than with the wild-type DhaAwt
(Pavlova et al., 2009; Marques et al., 2017). Aiming at verifying
this computationally, we have used a state-of-the-art method for
the calculation of the kinetic rates of ligand unbinding, which is
based on metadynamics (Tiwary et al., 2015).

Themetadynamics (MTD) relies on a set of collective variables
(CVs) to describe the system and the process under study.
Here we have made use of the knowledge acquired from a
previous computational work (Marques et al., 2017) to define the
unbinding path of DCP. In that study, the release of DCP from
the active site was observed with both DhaA31 and DhaAwt,
always through the main tunnel (p1 tunnel; see Figure 1),
and these simulations were used to provide several frames for
describing the path CV for those two systems. A discussion on
the optimization of the CV is presented in Discussion S1 in
Supplementary Material.

Twenty five MTD simulations were performed with each
protein containing DCP in their active site, and run until
DCP was fully released to the bulk solvent (distance d1 > 22
Å from the active site) without immediate rebinding to the
tunnel. The release times obtained from the MTD simulations
were converted to unbiased times, and the results showed a
large dispersion of the release times for each system. But, as
expected, in average DhaAwt released DCP significantly faster
than DhaA31 (Figure 2 and Figure S2). The unbiased release
times were fitted to determine the distribution and probabilities
of the transitions (the ligand unbinding; see Figure S3). These
analyses resulted in p-values above the minimum confidence
threshold of 0.05 (Table S2), and the average dissociation times
(τ off) and kinetic constants (koff) were obtained (Table 1). The
evolution analysis of the τ off with the number of simulation runs
showed that the estimation of the dissociation time was well-
converged even using lower number of simulations (Figure S4).
With transition times in the range of microsecond timescales,

the predicted koff value was 36-fold faster for DhaAwt than for
DhaA31 (Table 1). Such trend is in agreement with the previous
findings that DCP was significantly more prone to be released
from DhaAwt than from DhaA31 (Marques et al., 2017).

Adaptive Sampling Kinetics
At this point we wanted to validate the kinetic rates previously
calculated with the MDT approach by using another advanced
and independent method. Thereby we can compare and assess
the reproducibility of the kinetic predictions using different
methods. So, we decided to perform high-throughput molecular
dynamics (HTMD) using the adaptive sampling technique in
combination with Markov state models (MSMs). This method
allows us to obtain the transition matrix between the states and
thus predict the kinetic rates of unbinding (Doerr et al., 2016).

Initially, the adaptive simulations were performed using the
same force field and water model as theMTD simulations (ff12SB
and TIP3P). We found that the distance between the ligand
and the catalytic nucleophile D106 (defined as described in
the methods) was a good metrics for calculating the Markov
state models for describing the events that we wanted to survey
(the release of DCP from DhaA31 and DhaAwt). We defined
3 Markov states which were satisfying when visually inspected:
one state corresponded to DCP located in the active site, an
intermediate state with DCP in the main access tunnel (p1), and
the unbound state with DCP outside the protein (Figure 3). The
Chapman-Kolmogorov test was performed to assess the quality
of the Markov state models, which revealed satisfying for the
parameters used (Figures S5–S7). The kinetic rates between the
fully bound and fully unbound states were calculated (Table 1).
The default simulation time was 8 µs for DhaA31 and 6 µs for
DhaAwt, which generally proved satisfactory according to the
errors obtained by bootstrapping. The release rates of DCP (koff)
obtained from the current adaptive sampling method (Table 1,
column “ff12SB+TIP3P”) were 1-2 orders of magnitude higher
than the ones previously calculated with the MTD method.
Regarding the relative values of koff values between DhaAwt and
DhaA31, the order is maintained but with smaller difference
between the two enzymes. DCP was released 2.5 times faster
from DhaAwt than from DhaA31, which is only moderately in
agreement with the MTD results (36 times faster for DhaAwt)
and previous computational evidence (Marques et al., 2017).
Regarding the remaining kinetic parameters, DhaA31 seemed to
be more prone for rebinding DCP than DhaAwt, showing higher
kon and lower Kd values than DhaAwt. This is not in agreement
with the experimental data, which showed higher Kd for DhaA31
than for DhaAwt (Table 1). The free energy of the bound state,
compared to the unbound state, was −1.76 ± 0.19 kcal/mol for
DhaA31, and −0.54 ± 0.34 kcal/mol for DhaAwt. This means
that DCP’s bound state in DhaA31 is thermodynamically more
stable than that of DhaAwt by 1.22 kcal/mol. Furthermore, the
proteins remained stable throughout the simulations, as can be
inferred from the RMSD plots (Figure S8).

Due to the dissimilarity between the values and the kinetic
rates’ ratios obtained from MTD and adaptive sampling, we
decided to perform a similar study under different simulation
condition. For that, we varied the force field (ff14SB instead of
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FIGURE 2 | Histogram distribution of the unbiased release times (log t) of DCP from the buried active sites of (A) DhaA31 and (B) DhaAwt. The release times were

obtained from the infrequent metadynamics simulations (25 runs were performed for each system).

TABLE 1 | Experimental and theoretical kinetic parameters obtained from the metadynamics and adaptive sampling simulations of DCP with DhaA31 and DhaAwt for all

the tested force fields and water models.

Parametera Experimental Metadynamics Adaptive sampling

ff12SB+TIP3Pb ff12SB+TIP3Pb ff14SB+TIP3Pb ff14SB+OPC3b

DhaA31 τoff [ns] 3.5 ± 1.4 × 104 188 ± 28 350 ± 49 2.2 ± 1.1 × 103

koff [s
−1] 2.8 ± 1.2 × 104 5.32 ± 0.72 × 106 2.86 ± 0.38 × 106 4.5 ± 1.3 × 105

τon [ns] 1.74 ± 0.45 × 103 5.1 ± 3.9 × 103 5.7 ± 2.6 × 104

kon [M−1s−1] 1.28 ± 0.34 × 108 4.4 ± 1.4 × 107 3.9 ± 1.5 × 106

koff/kon [M] 0.042 ± 0.014 0.065 ± 0.053 0.116 ± 0.073

Kd [M] > 0.020c 0.057 ± 0.017 0.12 ± 0.10 0. 77 ± 0.48

1G0
eq [kcal/mol] −1.76 ± 0.19 −1.33 ± 0.3 −0.16 ± 0.33

DhaAwt τoff [ns] 9.9 ± 5.6 × 102 75 ± 11 73.0 ± 5.3 163 ± 29

koff [s
−1] >>103d 1.01 ± 0.56 × 106 1.33 ± 0.18 × 107 1.37 ± 0.09 × 107 6.2 ± 1.2 × 106

τon [ns] 9.3 ± 7.1 × 103 1.72 ± 0.54 × 103 337 ± 127

kon [M−1s−1] 2.4 ± 1.4 × 107 1.33 ± 0.27 × 108 6.7 ± 2.9 × 108

koff/kon [M] 0.54 ± 0.42 0.103 ± 0.035 9.1 ± 4.0 × 10−3

Kd [M] 0.95 ± 0.34 × 10−3 0.42 ± 0.38 0.132 ± 0.030 8.3 ± 2.5 × 10−3

1G0
eq [kcal/mol] −0.54 ± 0.34 −1.25 ± 0.13 −2.95 ± 0.18

DhaAwt/31 Rel. koff 36 2.5 4.8 14

a
τoff , mean dissociation transition time; koff , dissociation rate; τon, mean association transition time; kon, association rate; Kd , equilibrium dissociation constant; 1G0

eq, free energy

difference between bound and unbound states; rel. koff , DhaAwt/DhaA31 ratio of koff rates;
bforce field and water model used; csolubility concentration; ddetection limit of the instrument.

The variability of the parameters is the SD obtained from a bootstrap analysis.

ff12SB), and the water model (OPC3 instead of TIP3P). The koff
values obtained with ff14SB were lower than with ff12SB for both
systems (Table 1), suggesting that the dynamic properties with
ff14SB are slower than with ff12SB. When the OPC3 water model
was used, slower unbinding rates were observed, as compared
to those obtained with TIP3P. Other kinetic parameters were
also significantly affected by the force field and solvent model, in
some cases differing by orders of magnitude (namely kon,Kd, and

1G0
eq). The Kd values predicted with ff14SB+OPC3 approached

the experimental ones more than the other conditions (8.3 ±

2.5mM prediction vs. 0.95mM experimental for DhaAwt). In
some cases, the dynamic behavior of the systems changed so
significantly that the initial simulation times (8 µs for DhaA31
and 6 µs for DhaAwt) did not provide enough sampling to
produce precise estimations. This occurred for DhaA31 with
ff14SB+OPC3 and for DhaAwt with ff14SB+TIP3P. In these
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FIGURE 3 | Markov state models describing the release of DCP in the

simulations with adaptive sampling. Representative models of DCP with

DhaA31: DCP fully bound in the active site (red), intermediate state with DCP

bound in the access tunnel (gray), and unbound state (blue). The enzyme is

represented as cyan cartoon. The Markov models obtained with DhaAwt were

similar and are not shown here.

cases, the simulations were run twice as long (16 µs for DhaA31
and 12 µs for DhaAwt), although for DhaA31 even a longer
simulation time might be required due to the timescales of the
observed events. Overall, the ff14SB+OPC3 combination seemed
to produce more accurate results, with predicted Kd values closer
to the experimental ones.

Pre-steady State Kinetics
To validate the findings of the present computational study, the
calculated kinetic properties were compared with the previously
reported results from transient kinetic measurements.

The basis for the current work is that the rate-limiting step
in the catalytic conversion of TCP by the DhaA31 mutant is
the product release, i.e., unbinding of DCP from the protein
to the bulk solvent. This conclusion has been made based on
comparison of steady-state kinetic rates with results from the
transient kinetics measurements (Pavlova et al., 2009). In this
study we observed, that after a rapid mixing of DhaA31 with
excess of TCP, there was a burst of both DCP and chloride,
followed by a linear steady-state phase with the rate constant 1.36
± 0.18 s−1 for DCP. This rate is in a very good agreement with the
value from the steady-state kinetics kcat 1.26 ± 0.07 s−1. Further
studies showed that the release of the halide was a fast process,

SCHEME 2 | Kinetic scheme showing the binding of DCP (L) to the enzyme

(E). The transition of E to E’ represents a conformational change in the enzyme.

kobs = k1 +
k−1 · Kd

[L]+ Kd
(5)

which allowed us to conclude that the unbinding of DCP is rate-
limiting for DhaA31, while DhaAwt is limited by the catalytic step
(Marques et al., 2017).

Binding experiments of DCP were also carried out with
DhaA31 and DhaAwt using stopped-flow fluorescence.
Unfortunately, these experiments proved unsuccessful with
DhaA31 due to the very low affinity of this enzyme for DCP,
for which no binding was observed at concentrations near the
solubility limit. This also implies a high dissociation constant,
with value Kd > 20mM. For DhaAwt, the fluorescence curves
revealed a slow kinetics profile upon mixing with DCP that could
be associated with a single exponential. This was an indication
that a slow conformational change of the enzyme preceded
the fast binding of DCP (Scheme 2 and Equation 5). This fact,
together with the time scale limitations of the instruments,
disallowed the calculation of the binding, and unbinding rates of
DCP, kon and koff, but the equilibrium dissociation constant was
obtained as Kd = 0.95 ± 0.34mM. Moreover, the ratio between
the enzyme conformations in equilibrium, E and E’, favor the
nonbinding form (E) by 2:1, with k1 = 3.31 ± 0.27 s−1 and k−1

= 6.16± 0.42 s−1 (Marques et al., 2017).

Free Energy Calculations
The free energy profiles allow a deep understanding of the
thermodynamic and kinetic determinants of individual steps
of the catalytic cycle, since they reveal the energy of the
different states and the energy barriers to the required transitions.
Therefore, their study can be important to asses not only the
differences between the unbinding of DCP from DhaA31 and
DhaAwt, but also to understand how the current bottlenecks can
be overcome in the scope of protein engineering.

The funnel-metadynamics (funnel-MTD) is a method that
allows the efficient calculation of the free energy surface (FES)
of the process of ligand (un)binding (Limongelli et al., 2013).
In this method, a funnel-shaped restraint prevents the ligand
from drifting away and thus allows sampling several forward
and reverse events (unbinding/binding), needed for a correct
estimation of the free energy profile associated with the process.
The funnel restraints used in this study (Figure S9) were defined
iteratively in order to allow the free motion of the ligand within
the active site, main tunnel (p1), and respective tunnel mouth.
The funnel-MTD simulations were performed using the same
path CV as previously used in the MTD unbinding kinetics. The
simulations were run until the free energy achieved convergence.
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In these simulations DCP was released (reaching distances d1
> 15 Å) and rebound to the active site (reaching d1 < 5 Å)
several times with each system, as desirable for the free-energy
calculations (Figure S10). In both cases, the proteins remained
stable throughout most of the simulations, with only a steep
increase in the RMSD of DhaAwt backbone between 100 and 110
ns, which was reversible to levels below 1.2 Å (Figure S11).

The free energy was primarily calculated with respect to
the original CV used in the MTD simulations, and computed
by reweighting the histogram distribution with the biasing
Gaussians added to the system. this resulted in the respective one-
dimensional FES (Bonomi et al., 2009; Tiwary and Parrinello,
2015). To analyze the convergence, the FES was calculated
cumulatively by taking into account an increasing number of
snapshots. Two energy basins were integrated and the difference
between those basins was plotted as a function of the increasing
simulation time (Figure S12). Similarly, the energy barrier
between the same two energy basins was measured and plotted as
a function of the simulation time (Figure S13). Altogether, this
analysis allowed us to conclude that the simulations were well-
converged after the respective running times (500 ns for DhaA31
and 400 ns for DhaAwt).

The FES was projected against the distance of DCP to the
active site (Figure 4A). For simplicity, the global minimum of
each FES was adjusted to 0 kcal/mol. In both systems, the global
minimum corresponded to some region in the middle of the p1
tunnel (d1 ≈ 5–6 Å), and not in the active site. From a previous
study (Marques et al., 2017), we know that the length of p1 tunnel
varies between ≈ 9 and 13 Å (associated with d1), which can
roughly define the limits of the tunnel mouth (Figure 1). This
corresponds well with the local minima at ≈ 12 Å for DhaA31,
and≈ 10 and 13 Å for DhaAwt (Figure 4). Two-dimensional FES
profiles can be projected for any set of parameters, which might
be useful to assess the potential degeneracy of the CV used (e.g.,
path CV and d1, Figure S14). DhaA31 presented one very steep
energy barrier of 4.81 kcal/mol between the global minimum (at
5.94 Å) and a second minimum at the tunnel mouth (12.14 Å),
while DhaAwt seems to have a rather smoother and stepwise
transport process with two lower energy barriers (2.26 and 1.46
kcal/mol) to reach the tunnel mouth. This fact can have a strong
impact on the product release kinetics (koff), since the transitions
between states with lower barriers can occur exponentially faster.
This result is consistent with the kinetic studies described above
that showed slower DCP unbinding rates with DhaA31 than with
DhaAwt.

Structural Analysis of the Free Energy
Landscapes
Here we aimed at understanding structurally the meaning of the
different states if the calculated FES and identifying potential hot-
spots for improving the unbinding rate of DCP from DhaA31.
The FES calculated for the release of DCP through the main
tunnel of DhaA31 and DhaAwt have in common quite similar
locations of the global minima and their shapes for longer
distances. However, they differ significantly in the number of
local minima and the heights of the different energy barriers

along the pathway. Several relevant stages of the FES have
been identified, and the respective simulation frames extracted
(Table S3). The respective ensembles can be considered as
representative structures of the main states of the systems along
the process of DCP unbinding through the main tunnels of
DhaA31 and DhaAwt (Figure 4). One first observation reveals
that DCP was more confined within DhaA31 than DhaAwt,
where it was more especially at the first transition state TS1
(Figure 4). Moreover, the states with d1 ≥ 13 Å contain DCP
outside of the tunnel, where it forms interactions with the
residues at the tunnel mouth, before it can be fully released to
the bulk solvent (last state, for d1 ≥ 20 Å). A closer look at the
enzymes’ structures during the simulations revealed that some
of the tunnel-lining residues were highly flexible and presented
diverse conformations, which allow the ligand transport through
the tunnel. One of such residues is F149, which clearly had two
states, observed in both DhaA31 and DhaAwt: (i) the aromatic
ring either pointed toward the middle of tunnel, or (ii) it pointed
toward the side of the structure under the α4 helix (Figure S15).
Because of these two conformations, F149 may play the role of
gatekeeper to the transport of ligands through the p1 tunnel.

The measurement of the interactions formed by DCP with
each residue may provide a quantitative assessment of what
was discussed before and confirm the pivotal role of some
residues during the unbinding process. Therefore, the free energy
of binding (1Gbind) of DCP was calculated for the structural
ensembles. The average interaction energies were calculated for
the global minimum energy (Figure S16) and for the TS1 clusters
(Figure S17). As expected, at the minimum energy the residues at
the tunnel bottleneck dominated the interactions with DCP. The
high standard deviations (SD) found for several residues reflect
how diverse the structures within the same cluster were. We also
tried to assess which residues contributed the most to prevent the
transition from the global minima to TS1 due to the strength of
their interactions with DCP. For that, we calculated the difference
in binding energy between those two states. For DhaA31, the
residues with the strongest influence (most negative 11Gbind)
were F152 > F168 > F149 > F245 (Figures 5, S18). These are
potential hot-spots for decreasing the energy barrier in DhaA31
and thus improve the unbinding rate of DCP. The residues F144,
T148, and K175 form strong interactions in TS1, and might
also reveal interesting hot-spots for mutagenesis (Figure 5). The
hypothesis here is that the energy barrier may be lowered by
increasing the interactions at TS1.

CaverDock Calculations
Here we wanted to test the ability of a computationally cheap
method for predicting the release of DCP from the buried active
sites of DhaA31 and DhaAwt, and compare the results with
those obtained from the robust methods used above. CaverDock
(CaverDock, 2018; Filipovič et al., 2018) was selected for that task.
This is a computer program developed for the rapid prediction
of the trajectory and energy profile of a ligand being transported
through a molecular tunnel. This tool, based on molecular
docking, can be used for the fast assessment or high-throughput
screening of potential substrates, drugs or metabolites that are
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FIGURE 4 | Free energy surface (FES) and structures of the relevant stages in the release of DCP. The FES projected on the distance of DCP to the active site (d1)

superimposed for DhaA31 and DhaAwt (A), and dissected with the relevant states for DhaA31 (B) and DhaAwt (C). The relevant states are labeled with the

corresponding d1 values (left), and the respective clusters are shown by the superimposed DCP structures (right), represented as lines of the same colors. The protein

is represented as cyan cartoons and the catalytic D106 as ball-and-sticks. Glob. min. global minimum; TS1, transition state 1; TS2, transition state 2.

expected to bind, or be transported through the tunnels of
biomolecules (Pinto et al., 2018; Vávra et al., 2018).

CaverDock was used here to predict the trajectories and
energy profiles of DCP through p1 tunnel of DhaA31 and
DhaAwt, which were compared with the ones obtained from the

robust MTD method. The results showed that the two enzymes
have energy minima with similar binding energy (1Ebind =−4.1
kcal/mol), located at the active site instead of the middle of
the tunnels (Figure 6 and Table S4), which is in contrast with
the FES obtained from the funnel-MTD. When the calculations
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FIGURE 5 | Difference in interaction energies of DCP between the global minimum and the transition state TS1. The binding energy difference (11Gbind = 1Gmin –

1GTS1) decomposed by residues for DhaA31 (A), and the structure showing the residues with greatest differences (B). The highlighted residues represent potential

hot-spots for decreasing the energy barrier in the unbinding of DCP: (i) by decreasing the interactions of DCP at the global energy minimum with respect to TS1 (red

residues), or (ii) by decreasing the energy of TS1 (blue residues). The average interaction differences are represented by the solid bars and the SD by the error bars.

Only residues with 11G or SD values ≥ 0.5 kcal/mol are displayed. The catalytic D106 is also represented (green residue).

were performed with static receptors, DCP showed very high
and repulsive energy barrier (with 1Ebind = +9.9 kcal/mol) for
DhaA31, which was in great contrast with DhaAwt that had lower
barrier (3.1 kcal/mol) and always favorable energies (1Ebind <

0). This was due to the clashes of DCP with the protein residues
passing through the narrower tunnel of DhaA31. The energy
barrier was much higher for DhaA31 than for DhaAwt, which is
qualitatively in agreement with the FES profiles (Table S4).When
the CaverDock calculations were performed with flexibility (a
feature still under development), the energy profiles became
smoother and the energy barriers for the unbinding of DCP
dropped significantly, to 4.3 kcal/mol for DhaA31, and 2.7
kcal/mol for DhaAwt. The residues that are made flexible are
selected by the extent of clashes during the rigid docking. In this
case, they were F149 and Y176 for DhaA31, and F149, and C176
for DhaAwt. These residues are located at the tunnel bottleneck,
and they were shown to form strong interactions with DCP at the
global energy minima identified in the FES, thus confirming their
importance (Figure S16). This result is remarkable, especially
when considering the dramatic difference in the calculation costs
for CaverDock (hours) and the free energy methods (weeks).

DISCUSSION

The calculation of the kinetics and thermodynamics of ligand
(un)binding has recently shown to be pivotal in drug design, but
it can also be important in structural biology and biocatalysis.
This is the case of the mutant enzyme DhaA31, which is currently
the best known HLD for hydrolyzing the genotoxic compound

TCP, but whose catalytic turnover number is limited by the
release of the DCP product. For this system, the assessment of
the kinetic and thermodynamics bottlenecks in the unbinding of
DCP may pave the way to the design of improved biocatalysts.

In this study we have calculated the unbinding kinetic rates
(koff) of DCP from the active sites of two enzymes, DhaA31, and
DhaAwt, using two different methods—metadynamics (MTD)
and adaptive sampling. Both methods predicted faster unbinding
rates from DhaAwt than from DhaA31 (Table 1), which is in
good agreement with previous evidence (Marques et al., 2017).
However, there were considerable differences in the results from
those two methods. For each system, the koff values differed by
1-2 orders of magnitude, being slower with the MTD method
than with the adaptive sampling. Regarding the relative values
of the koff rates, we obtained DhaAwt/DhaA31 ratio of 36 with
MTD and only 2.5 with adaptive sampling, meaning that the
latter method predicted faster rates for the two systems, but also
closer values for those enzymes. On the other hand, the precision
of the koff values obtained with adaptive sampling was higher
(the relative errors were lower) than with the MTD method.
Previous studies have attributed the differences between the
predicted and experimental koff values to the errors in the force
fields, the lack of polarizability, or the existence of tautomers,
among other factors (Tiwary et al., 2015; Ferruz and De Fabritiis,
2016; Bruce et al., 2018). The simulations were performed
under the same force field and water model (ff12SB and TIP3P,
respectively), and therefore these differences are probably due
to the intrinsic differences in the two methods. Since both
methods have different types of biases—the MTD relies on a
bias of repulsive potential energy deposited based on the CV
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FIGURE 6 | Results from CaverDock calculations on the transport of DCP through the main tunnel of DhaA31 (A) and DhaAwt (B). On the left are shown the binding

energy (1Ebind) profiles for the rigid and flexible receptor calculations, and the tunnel radius; the trajectory is directed from the active site to the surface. On the right

are the respective enzyme structures (gray cartoon), with the p1 tunnel (blue surface), the residues made flexible (green sticks) and the catalytic nucleophile (red sticks).

defined by the user, while the adaptive sampling uses Markov
state models, calculated on-the-fly upon a user-definedmetrics to
start new epochs of MDs—and there are no experimental values
available, it is difficult to assess which results are more accurate.
Moreover, it is known that MDs performed with the same force
fields but using different software packagesmay produce different
conformational ensembles, and consequently different results
(Childers and Daggett, 2018). The effects of the force field and
solvent on the predicted kinetic rates were tested by additional
adaptive sampling simulations performed with the ff14SB force
field and OPC3 water model (Table 1). When compared to the
available experimental data, the Kd value predicted for DhaAwt
using the combination ff14SB+OPC3 (8.3 ± 2.5mM) was the
closest to the experimental value (Kd = 0.95 ± 0.34mM). This
seems to suggest that these conditions can better represent the
physical properties of that system. A deeper discussion on this
topic is presented in Discussion S2 in Supplementary Material.
We have demonstrated that the choice of the method, force
field and water model can have a high impact on the prediction
of kinetic properties. However, important conclusions could
consistently be inferred from the comparative study of the two

systems, namely the higher propensity of DhaAwt to release DCP
as compared to DhaA31. This strongly supports the value of
comparative studies with similar systems, namely for the design
of new enzyme variants in protein engineering.

The funnel-MTD simulations provided the free energy
profiles for the unbinding of DCP from DhaA31 and DhaAwt,
which allowed us to derive some conclusions about the respective
energetic barriers and bottlenecks. The global energy minima in
both enzymes were found in the middle of the tunnel (for d1

≈ 5-6 Å). After the global minimum, DhaA31 presented one
steep energy barrier of 4.81 kcal/mol before DCP could reach the
tunnel mouth, while DhaAwt had two steps with considerably
reduced barriers (with 2.26 and 1.46 kcal/mol, respectively).
This implies faster unbinding kinetic rates for DhaAwt, which
is in good agreement with the kinetic calculations. The first
transition state intermediate (TS1) in DhaA31 also corresponds
to the geometric bottleneck and presents much higher steric
constraints than the one observed in DhaAwt (Figure 4). The
structural clusters, corresponding to the significant state along
the FES, allowed the assessment of the respective binding energy
of DCP with the protein’s residues. From this analysis it was
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possible to identify the residues that interact with DCP at the
energy minima and transition states, and thus contribute to the
stabilization of these states. We hypothesize that the difference
in binding energy between the global energy minimum and the
transition states may help identify the residues that contribute the
most to retain DCP in that minimum and prevent the enzyme-
product complex to proceed further to the full unbinding.
Therefore, the residues with more negative 11Gbind are the
most likely hot-spots for improving the unbinding rates. In
DhaA31, there residues correspond to F152, F168, F149, and
F245 (Figure 5). It is known, however, that residues F149 and
F245 are important to stabilize and orient TCP toward the SN2
step (Marques et al., 2017), and therefore they should not be
mutated to avoid undesirable disruption of the chemical steps.
Previous studies performed with this system have identified
several of these bottleneck residues as highly interacting with
DCP, e.g., F149, F152, and F168 (Marques et al., 2017). However,
their role was not so clear, and the current analysis came to
confirm their pivotal importance in preventing the transition
from the energy minimum toward the release. The residues
with strongest interactions at the transition state, F144, T148,
and K175, also represent interesting hot-spots to decrease the
energy of TS1 and promote the transition of DCP along the
unbinding process. However, the results from this approach are
more unpredictable since the entropy can also be highly affected.
CaverDock provided very interesting insights into the transport
of DCP through the tunnels, especially considering that it is
fast and has very low hardware requirements. With these simple
calculations it could be concluded that DhaA31 has higher energy
barrier to the unbinding of DCP as compared with DhaAwt, and
we identified some of the residues that may hinder the transport
the most.

Overall, we have shown that the computation of the kinetics
and thermodynamics of protein-ligand unbinding can be a
powerful tool for protein engineering when the goal is to improve
the unbinding rates of a ligand from a biomolecule. Similar
methods used can also be applied when the aim is to improve
the ligand (substrate) binding. We illustrated that even highly
sophisticated methods cannot precisely estimate kinetic values
due to the computational limitation, and the results may highly
depend on the selected parameters. However, they can be very
useful for comparative purposes, which are typically needed
in protein engineering projects. The free energy computation
with funnel-MTD, or other enhanced-sampling free energy
methods, can provide a deep insight into the binding/unbinding
process, allow identification of the critical stages energetic and
disclose the key residues for the unbinding. On the other hand,
CaverDock is very fast and user-friendly, yet it may provide
significant information about the ligand transport and enable the
identification of key residues to improve the ligand transport.
Different strategies can be followed for engineering new enzymes
with improved ligand unbinding kinetic rates. The potential
hot-spots for mutagenesis can be selected based on: (i) the
residues showing the highest interaction differences between the
energy minimum and transition state—aiming to decrease the
energy barrier; (ii) residues interacting at the transition state—
aiming to decrease the transition state energy; (iii) tunnel-lining

residues—aiming to change the shape and geometric bottleneck
of the tunnel; and (iv) residues in contact with the tunnel-
lining residues—aiming to change the flexibility and dynamic
properties of the tunnel residues. The selected hot-spot residues
can be targeted by site-directed mutagenesis, smart libraries or
saturation mutagenesis. The effects of particular mutations on
the unbinding rates can be anticipated with in silico calculations,
either with the thorough but costly approaches (MTD or
adaptive sampling), or using the cheaper CaverDock for a faster
screening.

CONCLUSIONS

Here we reported the application of metadynamics and adaptive
sampling for computationally estimating the unbinding rates of
the DCP product from two enzymes, DhaA31 and DhaAwt, and
for aiding the design of improved biocatalysts. The unbinding
of DCP is the rate-limiting step in the catalytic conversion
of the toxic TCP with DhaA31, and improving this rate has
biotechnological importance. Free energy calculation confirmed
the different energetic profiles in the release of DCP by the two
enzymes, and provided insights into the energetic bottlenecks
in the unbinding process. By analyzing the interactions of
DCP with DhaA31 at the critical stages we have identified
several hot-spot residues that can be targeted by mutagenesis.
Strikingly, some of these hot-spots were identified by the far
less demanding CaverDock tool based on molecular docking.
Site-directed mutagenesis or directed evolution applied on those
hot-spots may result in new enzyme variants with the ability to
release the DCP product at faster rates and thus present enhanced
catalytic properties.
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Pinto, G., Vávra, O., Filipovi,č, J., Bednar, D., and Damborsky, J. (2018). Fast
Screening of Binding and Unbinding of Inhibitors Using Novel Software Tool

CaverDock. Under Publication, September.
Reuveni, S., Urbakh, M., and Klafter, J. (2014). Role of substrate unbinding

in michaelis–menten enzymatic reactions. Proc. Natl. Acad. Sci.U.S.A. 111,
4391–4396. doi: 10.1073/pnas.1318122111

Rydzewski, J., and Nowak, W. (2017). Ligand diffusion in proteins via
enhanced sampling in molecular dynamics. Physics Life Rev. 22–23, 58–74.
doi: 10.1016/j.plrev.2017.03.003

Salvalaglio, M., Tiwary, P., and Parrinello, M. (2014). Assessing the reliability of
the dynamics reconstructed from metadynamics. J. Chem. Theory Comput. 10,
1420–1425. doi: 10.1021/ct500040r

Samin, G., and Janssen, D. B. (2012). Transformation and Biodegradation of
1,2,3-Trichloropropane (TCP). Environ. Sci. Pollut. Res. Int. 19, 3067–3078.
doi: 10.1007/s11356-012-0859-3

Sousa da Silva, A. W., and Vranken, W. F. (2012). ACPYPE - antechamber
python parser interfacE. BMC Res. 5:367. doi: 10.1186/1756-0500-
5-367

Swails, J. (2010). ParmEd. Available online at: https://github.com/ParmEd/
ParmEd.

The PyMO LMolecular Graphics System (2014). (version 1.7.4). Schrödinger, LLC.
Tiwary, P., Limongelli, V., Salvalaglio, M., and Parrinello, M. (2015). Kinetics

of protein-ligand unbinding: predicting pathways, rates, and rate-limiting
steps. Proc. Natl. Acad. Sci. U.S.A. 112, E386–E391. doi: 10.1073/pnas.14244
61112

Tiwary, P., and Parrinello, M. (2013). Frommetadynamics to dynamics. Phys. Rev.
Lett. 111:230602. doi: 10.1103/PhysRevLett.111.230602

Tiwary, P., and Parrinello, M. (2015). A time-independent free energy estimator
for metadynamics. J. Phys. Chem. B 119, 736–742. doi: 10.1021/jp50
4920s

Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., and Bussi, D. (2014).
PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185,
604–613. doi: 10.1016/j.cpc.2013.09.018
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