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Artificial sweeteners (AS) can elicit the strong sweet sensation with the low or zero

calorie, and are widely used to replace the nutritive sugar in the food and beverage

industry. However, the safety issue of current AS is still controversial. Thus, it is

imperative to develop more safe and potent AS. Due to the costly and laborious

experimental-screening of AS, in-silico sweetener/sweetness prediction could provide

a good avenue to identify the potential sweetener candidates before experiment. In

this work, we curate the largest dataset of 530 sweeteners and 850 non-sweeteners,

and collect the second largest dataset of 352 sweeteners with the relative sweetness

(RS) from the literature. In light of these experimental datasets, we adopt five

machine-learning methods and conformational-independent molecular fingerprints to

derive the classification and regression models for the prediction of sweetener and its RS,

respectively via the consensus strategy. Our best classification model achieves the 95%

confidence intervals for the accuracy (0.91 ± 0.01), precision (0.90 ± 0.01), specificity

(0.94± 0.01), sensitivity (0.86± 0.01), F1-score (0.88± 0.01), and NER (Non-error Rate:

0.90 ± 0.01) on the test set, which outperforms the model (NER = 0.85) of Rojas et al.

in terms of NER, and our best regression model gives the 95% confidence intervals for

the R2(test set) and 1R2 [referring to |R2(test set)- R2(cross-validation)|] of 0.77 ± 0.01

and 0.03 ± 0.01, respectively, which is also better than the other works based on the

conformation-independent 2D descriptors (e.g., 2D Dragon) according to R2(test set)

and 1R2. Our models are obtained by averaging over nineteen data-splitting schemes,

and fully comply with the guidelines of Organization for Economic Cooperation and

Development (OECD), which are not completely followed by the previous relevant works

that are all on the basis of only one random data-splitting scheme for the cross-validation

set and test set. Finally, we develop a user-friendly platform “e-Sweet” for the automatic

prediction of sweetener and its corresponding RS. To our best knowledge, it is a first

and free platform that can enable the experimental food scientists to exploit the current

machine-learning methods to boost the discovery of more AS with the low or zero calorie

content.
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INTRODUCTION

Sweet taste, eliciting a pleasant sensation, provides an instinctive
means to find the energy source such as the carbohydrates, which
usually taste sweet. The taste perception of the sweetness is
a complex mechanism involving the multiple disciplines (e.g.,
chemistry, biology, and physiology), however, it is generally
assumed to be predominantly mediated by the taste receptors

type 1 (Tas1Rs) on the taste buds in the oral cavity (Roper and
Chaudhari, 2017). Interestingly, Tas1Rs are also expressed in

numerous different organs (e.g., gut and pancreas), implicating
that they are intricately participated in various physiological

processes such as intestinal absorption, glucose homeostasis, and
metabolic regulation (Laffitte et al., 2014).

Human sweet taste receptor (hSTR) functions as a
heterodimer of two subunits (hTas1R2 and hTas1R3) belonging
to the class C family of G-protein coupled receptors (GPCRs),
whereas each subunit contains three distinct domains: a large
extracellular venus flytrap domain (VFD), a short cysteine-rich
domain (CRD), and seven-transmembrane domain (TMD)
(Meyers and Brewer, 2008). hSTR harbors at least four different
binding sites revealed by the biochemical characterization
such as the chimeras or site-directed mutagenesis experiment,
and thereby can recognize a variety of sweeteners (Masuda
et al., 2012): sugars (e.g., sucrose and glucose), amino acids
(e.g., D-trypotophan and D-glycine), artificial sweeteners (e.g.,
saccharin and aspartame), and sweet proteins (e.g., monellin and
thaumatin). According to the content of calorie, these chemically
diverse sweeteners can be generally categorized into two types
(Dubois and Prakash, 2012): the nutritive sweeteners with the
high calorie (e.g., sucrose), and the non-nutritive sweeteners
(e.g., saccharin and aspartame) with the low or zero calorie that
mainly refer to the artificial sweeteners in this work.

Nowadays, the non-nutritive sweeteners are broadly used as
the food additives to substitute for the nutritive sweeteners such
as sucrose, since the over-consumption of high-calorie nutritive
sweeteners in the functional food and beverage will lead to the
elevated risks of the metabolic disorders (e.g., type II diabetes)
and cardiovascular diseases (Fernstrom, 2015). Therefore, a
multitude of non-nutritive sweeteners with the low calorie yet
preserving the sweetness have been manually synthesized or
directly extracted from the natural plants to prevent these risks.

Hitherto, none of the currently available non-nutritive
sweeteners (especially the artificial sweeteners) can accurately
replicate the same sweetness profile (e.g., concentration/response
function, temporal profile, and adaption behaviors) of the natural
sucrose (Dubois, 2016), since they usually exhibit the slow
sweetness onset, lingering sweetness aftertaste, apparent off-taste,
or moderate/strong adaption upon the iterative tasting, which
are generally not preferred by most of consumers. Moreover, the
heavy use of the artificial sweeteners, one major class of non-
nutritive sweeteners, are reported to cause some side-effects such
as an increased risk of cancer in human (Mishra et al., 2015).
Therefore, it is still desirable to discover more novel and safe
non-nutritive sweeteners.

As we know, the sweetener discovery using the human taste-
panel or cell-based high-throughput screening is an expensive,

laborious and slow process. Hence in-silico sweetener prediction
could be a good alternative to rapidly identify the most likely
sweetener candidates with the high potency prior to the time-
consuming and arduous experiment. Currently, there are two
main computational methods for the sweetener prediction:
structure-based and ligand-based methods. Structure-based
method is to rationally design the compound based on hSTR.
Nevertheless, the crystal structure of full hSTR is still unraveled,
albeit there are several homology models based on the templates
with the limited sequence identities (Shrivastav and Srivastava,
2013; Jean-Baptiste et al., 2017; Kim et al., 2017; Acevedo et al.,
2018). In addition, a compound that can bind with hSTR could
be also a sweetness inhibitor (e.g., lactisole) (Jiang et al., 2005),
rather than the sweetener of our interest. However, the data-
driven machine-learning method, emerging as a vibrant area
of ligand-based method, can directly predict the sweetener and
its relative sweetness (RS), provided that there is sufficient
experimental dataset to build the predictive model. More
specifically, the sweetener/non-sweetener classification models
based on the machine-learning methods can be employed to
predict the sweetener, and the regression models derived from
the machine-learning methods can be utilized to forecast the RS
of the sweetener.

Rojas et al. comprehensively review the sweet/bitter (Rojas
et al., 2016a; Banerjee and Preissner, 2018), sweet/tasteless (Rojas
et al., 2016a), and sweet/sweetless (Rojas et al., 2017) classification
models, and also provide a systematic overview on the regression
models for the RS prediction of sweetener (Rojas et al., 2016a,b,c).
In our study, only the typical works about the sweet/sweetless
classification model on the relatively large dataset are briefly
summarized here, because the sweet/sweetless pair is more
reasonable and practical for the sweetener prediction due to the
inclusion of bitter and tasteless compounds into the sweetless
dataset. Meanwhile, only the representative works regarding to
the regression model also on the basis of the comparatively
large dataset will be shortly recapitulated in our study, while
the pioneering works of the sweeteners prediction model
based on the congeneric systems or small dataset, contributing
significantly to the subsequent works in this research area, have
been thoroughly summarized in Rojas et al. (2016b) and thereby
will be not reviewed here due to the limited space. It should be
noted that only the works about the classification and regression
models on the basis of the comparatively large dataset will be
shortly reviewed in this study and the relatively large dataset here
refers to the dataset with at least two hundreds samples, since the
relatively large dataset affords the more extended applicability-
domain of model.

As for the classification model, Rojas et al. develop the
sweet/sweetless classification model based on the relatively
large dataset (649 compounds) consisting of 435 sweeteners
and 214 non-sweeteners (133 tasteless and 81 bitterants).
In their work, the partial least squares discriminant analysis
(PLSDA) and K-nearest neighbors (KNN) coupled with the
2D Dragon descriptors (https://chm.kode-solutions.net/) are
used to train the models, respectively, which are combined
to form a consensus model. Their consensus model gives the
sensitivity, specificity and NER (Non-Error Rate, the average
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of sensitivity and specificity in the binary classification) of
0.88, 0.82, and 0.85, respectively on the test set including 108
sweeteners and 53 non-sweeteners that are randomly selected
from the whole dataset (Rojas et al., 2017). However, only 81
bitterants are adopted as the sweetless compounds in their work.
Hence the numerous bitterants curated by BitterDB (Wiener
et al., 2012) could be treated as the sweetless compounds to
further leverage the applicability-domain of the sweeteners/non-
sweeteners classification model.

Regarding to the regression model, Zhong et al. (2013) build
the regression models based on the comparatively large dataset
including the 320 sweeteners (214 for the training set and 106
for the hold-out test set) with RS. The regression models are
trained with the multi-linear regression (MLR) and support
vector machine (SVM), respectively in combination with the
mixed 2D and 3D descriptors from ADRIANA.Code program
(Molecular Networks GmbH, Erlangen, Germany). The MLR
and SVM models give the R2 of 0.77 and 0.78, respectively
on the test set consisting of 106 randomly selected sweeteners.
Moreover, Goel et al. harness the genetic function approximation
(GFA) and artificial neural network (ANN) coupled with the
mixed 2D and 3Dmolecular descriptors (e.g., LUMO eigenvalue)
from Material Studio v6.0 (MS6) (BIOVIA, San Diego, USA) to
establish the regression model on the dataset of 455 sweeteners
(319 for the training set and 136 for the hold-out test set),
which is the largest so far. Both GFA and ANN models offer
the impressive performance with the same R2 of 0.83 on the test
set consisting of 136 randomly selected sweeteners (Goel et al.,
2018). However, the conformation-dependent 3D descriptors are
included in both works from Zhong et al. and Goel et al. and
this will hamper the reproducibility of prediction result due
to the versatile conformations for the same flexible compound,
because most of the sweeteners are quite flexible. Moreover, some
other potential issues introduced by the 3D descriptors have been
discussed in the work of Rojas et al. (2016a).

Therefore, the conformation-independent 2D descriptors are
advocated to be used in the prediction of RS, especially for
the rapid and large-scale screening of potent sweeteners. Rojas
et al. employ MLR and 2D Dragon descriptors to establish the
regression model on the dataset of 233 sweeteners (163 for the
training set and 70 for the hold-out test set). This model provides
R2 of 0.70 on the test set including 70 sweeteners, which are
selected by the K-mean cluster analysis (Rojas et al., 2016c).
Ojha et al. utilize the partial least squares regression analysis
(PLSRA) and 2DDragon/PaDEL descriptors (Wei, 2011) to build
the regression model on the dataset of 299 sweeteners (239 for
the training set and 60 for the hold-out test set). This model
achieves R2 of 0.75 on the test set composed of 60 randomly
selected sweeteners (Ojha and Roy, 2017). Cheron et al. make
full use of random forest (RF) and SVMmethods combined with
the 2D and 3D Dragon descriptors, respectively to construct the
regression model on the dataset of 225 sweeteners (134 for the
training set and 91 for the hold-out test set). The RF-2D, SVM-
2D, RF-3D, and SVM-3D models offer R2 of 0.74, 0.83, 0.76,
and 0.85, respectively on the test set comprising of 91 randomly
chosen sweeteners. Nevertheless, their models may be prone
to the over-fitting or under-fitting, since the respective model

performances on the training set and test set differ significantly,
which can be observed from R2 of 0.96, 0.69, 0.98, and 0.69 for
RF-2D, SVM-2D, RF-3D, and SVM-3D models, respectively on
the training set (Chéron et al., 2017). Thus, the performance
evaluation by only R2(test set) is probably not enough.

In spite of the individual merits and pitfalls in each work,
there are several common concerns in the aforementioned works
about the classification and regression models. Firstly, only one
data-splitting scheme for the training set and hold-out test set is
used in those works, which may lead to the biased performance
of the models. Thus, model would be more robust if it can be
trained on the multiple data-splitting schemes to alleviate the
bias from the single random data-splitting. Secondly, all these
works fail to fully comply with the guidelines of Organization for
Economic Cooperation and Development (OECD), since most
of works are short of either Y-randomization test to evaluate the
robustness of their models, or the clear and pragmatic definition
for the domain-applicability of their models. Thirdly, all the
works do not provide any convenient and practical programs
for the users to predict the sweeteners and their RS, which
will greatly restrict the application of their models. At last, all
these works adopt PLSDA, PLSRA, MLR, KNN, SVM, RF, GFA,
or ANN method, while the current state-of-the-art machine-
learning methods such as Deep Neuron Network (DNN) and
Gradient BoostingMachine (GBM), which often demonstrate the
encouraging performance in the Kaggle competitions, were never
exploited in the prediction of sweetener or RS before. Therefore,
it is highly desirable to overcome these issues and develop a
convenient and comprehensive software for the experimental
food scientists to predict the sweetener and its corresponding RS.

In order to tentatively address the problems as mentioned
above, we plan to build the informative models for the prediction
of sweetener and its RS, which will be systematically derived
with diverse machine-learning methods (KNN, SVM, GBM,
RF, and DNN) and conformation-independent 2D molecular
fingerprints based on themultiple data-splitting schemes and will
be completely in accordance with the guidelines of OECD. For
the convenience of the experimental food scientists, a machine-
learning based platform called “e-Sweet” will be developed
to automate the prediction of sweetener and its RS via the
simple mouse-click on the graphic user interface. The detail
of these functions and their implementation will be elaborated
below.

MATERIALS AND METHODS

Sweetener Prediction Based on the
Multiple Machine Learning Methods
In our previous work about the bitterant prediction (Zheng et al.,
2018), we develop a systematic and general protocol to build
the classification model, which makes full use of the multiple
machine-learning methods (KNN, SVM, GBM, RF, and DNN)
by the consensus voting and adopts the Extended-connectivity
Fingerprint (ECFP) (Rogers and Hahn, 2010) as the molecular
descriptor. In practice, this protocol can be further adapted to
generate the regression model. In this work, we will exploit this
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protocol (Figure 1) to derive the machine-learning based models
for the prediction of sweeteners and its RS.

In our work, 530 sweeteners are curated from SuperSweet
(Ahmed et al., 2011) and SweetenersDB (Chéron et al., 2017)
and additionally gathered from the literature (Rojas et al., 2016a;
Banerjee and Preissner, 2018), while 850 non-sweeteners consist
of 718 bitter compounds downloaded from BitterDB (Wiener
et al., 2012) and 132 tasteless compounds retrieved from the
literature (Rojas et al., 2016a). Four criteria are defined for the
data curation above. (1) Only the larger fragment is kept for the
disconnected structures such as salt. (2) Only the compounds
containing the elements C, H, O, N, S, P, Si, F, Cl, Br, or I
are considered. (3) The same compound with the different taste
modalities is excluded. (4) The duplicated compounds from the
different sources are eliminated. Based on these standards, all the
compounds are finally saved as the Tripos mol2 files, which are
integrated into e-Sweet platform for the public access.

In order to train and test the classification model, the whole
dataset is randomly divided into two parts: the dataset for
the cross-validation (Dataset-CV) and the hold-out test set for
the independent validation (Dataset-test). The detailed data-
splitting scheme is given as follows: 80% of sweeteners (339
compounds) and 80% of non-sweeteners (544 compounds)
randomly selected from the whole dataset are adopted to train the
model with the five-fold cross-validation, while the rest of them
(221 compounds) are used as the hold-out test set. Finally, this
whole data-splitting will be repeated for nineteen or three times
to reduce the bias from the random data-splitting. Concretely,
nineteen data-splitting schemes are performed for KNN, SVM,
GBM, and RF, while three data-splitting schemes are carried out
for deep neuron network (DNN) on account of its much higher
computational burden.

Besides the indispensable dataset and its partition above, the
molecular descriptors are also required for the machine-learning
method. Extended-connectivity Fingerprint (ECFP), which is
extensively used in the quantitative structure-activity relationship
(QSAR) studies (Ekins et al., 2010; Chen et al., 2011; Hu et al.,
2012; Koutsoukas et al., 2016; Braga et al., 2017; Rodríguez-Pérez
et al., 2017), is adopted as the molecular descriptor in this work.
Four ECFPs (1024bit-ECFP4, 2048bit-ECFP4, 1024bit-ECFP6,
and 2048bit-ECFP6) are generated for all the curated compounds
in the aforementioned dataset with our own implementation of
ECFP in e-Bitter program (Zheng et al., 2018), which uniquely
offers the intuitive visualization of each “1” bit of ECFP in
the context of 3D structure and is also integrated into e-Sweet
platform.

Furthermore, feature selection is generally applied in the
machine-learningmethod. In this work, both full-feature without
the feature selection and feature-subset with the feature selection
are considered. Here the feature selection is performed according
to the feature importance (Figure 1), which is derived from the
model-training with the random forest (RF) method that will be
described in the following paragraph about the model-training.
In total, 76 runs of model-training with RF are conducted by
considering the combination of four ECFP fingerprints and
nineteen random data-splitting of the dataset, which will lead to
76 models and the attendant 76 sets of feature importance. Then

the feature importance for all the bits in the ECFP fingerprint
is sorted in the descending order and plotted in Figures S1–S4.
Thus the top 512, 256, and 128 important features (Figures S1–
S4) are selected, respectively as the typical feature subsets for
the followingmodel-training, since the exhaustive and systematic
scan of feature-number ranging from 1 to fingerprint-length is
really time-consuming especially for the training of deep neuron
networks (DNN).

Five machine-learning methods (KNN, SVM, GBM, RF, and
DNN) are utilized to train the model, which are minutely
introduced in our previous work about the bitterant prediction
(Zheng et al., 2018) and briefly summarized as follows. K-
nearest neighbors (KNN) method conducts the classification
and regression based on the closest instances in the training
set. Support vector machine (SVM) performs the classification
and regression via constructing the hyper-planes in the high-
dimensional space. Random forest (RF) and gradient boosting
machine (GBM) belong to the decision-tree based ensemble
method. RF builds a multitude of decision trees by the bootstrap-
sampling of training set and random-selection of feature-subset.
GBM generates a series of decision trees in a step-wise manner,
rather than in a randomway as RF. Deep neuron network (DNN)
is a neural network with more than one hidden layer between
the input and output layers. Nowadays, thousands of neurons in
each layer can be routinely adopted in DNN, which can combine
the advanced regularization technique such as the dropout to
avoid the overfitting. In this work, the deep neuron networks
with two hidden layers (DNN2 in Figure S5) and three hidden
layers (DNN3 in Figure S6) are employed. All the key parameters
for each method are listed in Table S1, which will be fine-tuned
in the five-fold cross-validation (CV) to achieve the optimal
performance.

The performance of models on the training set and test set
are evaluated by the following metrics: the accuracy, precision,
specificity, sensitivity, Matthews correlation coefficient (MCC),
non-error rate (NER) and F1-score (Equations 1–6). It should
be noted that F1-score (Equation 1) is adopted as the criterion
to select the best model, albeit F1-score, MCC, and NER are
commonly used to measure the quality of the classification.

F1-score = 2×TP/(2×TP+ FP+ FN) (1)

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN) (2)

Precision = TP/(TP+ FP) (3)

Specificity = TN/(TN+ FP) (4)

Sensitivity = TP/(TP+ FN) (5)

MCC =
(TP× TN− FP× FN)

√
(TP+ FP) (TP+ FN) (TN+ FP) (TN+ FN)

(6)

1F1-score = |F1-score(cross-validation)
− F1-score(test set)| (7)

NER = (Sensitivity+ Specificity)/2 (8)

TP, TN, FP, and FN are the numbers of true sweeteners,
true non-sweeteners, false sweeteners, and false non-sweeteners,
respectively. NER is short for non-error rate and is the arithmetic
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FIGURE 1 | The protocol to derive the classification and regression model used in this work.

mean of sensitivity and specificity in the binary classification.
1F1-score is calculated to monitor the potential over-fitting or
under-fitting.

Upon completion of the model-training with the five-fold
cross-validation, totally 1312 models including 328 models
without feature selection and 984 models with feature selection
are harvested according to the highest F1-score, and are further
gauged on the respective hold-out test sets with the evaluation
metrics: accuracy, precision, specificity, sensitivity, F1-score,
MCC, and NER, which are listed in Table S2. To reduce the bias
from the random splitting of the whole dataset, 96 averagemodels
(AM) are derived from 1,312 individual models by averaging over
the different data-splitting schemes and are tabulated inTable S3.

Following the guidelines of OECD, Y-randomization test
for our models should be performed and the applicability-
domain of our models should be also defined practically. To
inspect the robustness of all the models, Y-randomization test
is done with the following procedure. Firstly, the experimentally
observed labels for Dataset-CV are randomly shuffled (Table S4).
Subsequently, the five-fold cross-validation on this noisy dataset
is performed with exactly the same molecular descriptors and
the same protocol mentioned in the previous section about the
model-training. The best models are also determined based on
the highest F1-score assessed on the internal validation dataset
during the cross-validation, and further evaluated on the hold-
out test set (Dataset-Test) without any random shuffling. All
the results are collected in Tables S5–S6. Meanwhile, with regard
to the definition of the applicability domain, it is generally
hypothesized that the compound, which is highly dissimilar to all

the compounds used in the model-training, may not be predicted
confidently (Tropsha, 2010). With this assumption in our mind,
the applicability domain of our models is defined on the basis
of the ECFP based Tanimoto-similarity between the compound
of interest and its five closest neighboring compounds in our
training set (Dataset-CV).

Finally, 1,312 individual models (M0001–M1312 in Table S2)
and 96 average models (AM01–AM96 in Table S3) are obtained
after the model training and validation. Based on these models,
four consensus models are proposed according to the criteria
such as the performance, speed and diversity of machine-learning
based models, and are integrated into our e-Sweet platform. All
the constitute models for each consensus model are provided
in Tables S7–S10 and the performances of these four consensus
models are given in Table 1. More specifically, Consensus model
1 (CM01) selects 19 best individual models (Table S7) with
all the methods except DNN purely based on the highest F1-
scores in each data-splitting scheme from the perspective of
performance and speed. Consensus model 2 (CM02) selects 19
best individual models (Table S8) with all the methods including
DNN solely based on the highest F1-scores in each data-splitting
scheme according to the model performance. Consensus model 3
(CM03) considers the top five average models (Table S9) with the
highest F1-scores. Consensus model 4 (CM04) chooses the five
average models (Table S10) considering each machine-learning
methodwith the highest F1-score to balance the performance and
diversity of machine-learning based models. All the evaluation
metrics for each consensus model (Table 1) are obtained by
averaging over all the constituent models.
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Sweetness Prediction Based on Multiple
Machine Learning Methods
In our work, all the sweeteners with RS are gathered from
the literature (Iwamura, 1981; Drew et al., 1998; Kinghorn and
Soejarto, 2002; Vepuri et al., 2007; Yang et al., 2011), and
subjected to the filtering with the following criteria. (1) Only the
larger fragment is saved for the disconnected structures such as
salts. (2) Only the compounds containing the elements C, H, O,
N, S, P, Si, F, Cl, Br, or I are considered. (3) Only one compound
is kept for the duplicated compounds from the different sources.
(4) Only the compound with the experimental RS, which is only
measured relative to the 5% (w/v) sucrose, is taken account. After
the filtering with these conditions, 352 sweeteners are curated for
our subsequent training with the machine learning methods. All
the structures with the Tripos mol2 files, and their corresponding
log10RS (common logarithm of the relative sweetness) used as
the dependent variable (Y) are publicly available in our e-Sweet
platform. To train and validate the model, the whole dataset is
sorted ascendingly according to log10RS. Twenty percent of the
whole dataset (71 compounds) is randomly selected from every
five compounds in the ascending order to form the hold-out test
set (Dataset-Test) with the even distribution of log10RS. The rest
of them (281 compounds) are adopted to train the model with
the five-fold cross-validation (Dataset-CV). Similarly, the whole
data-splitting is repeated for the multiple times as well.

To derive the regression model for RS, nearly the same
protocol (Figure 1) as the sweetener/non-sweetener classification
is adopted. According to this protocol, all the combination of
the molecular fingerprints, feature selection, feature number,
data-splitting schemes, and machine-learning methods is taken
into account in the model-training, and thereby 1,312 best
individual models are also achieved based on the highest R2

(square of the coefficient of determination) after the five-fold
cross-validation, and are further assessed on the respective hold-
out test sets with the evaluation metrics: R2, mean absolute
error (MAE), mean squared error (MSE), and 1R2 (referring
to |R2(test set)–R2(cross-validation)|), which are summarized in
Table S11. Subsequently, 96 average models are also obtained
based on 1,312 individual models by averaging over the
different data-splitting schemes, whose performances are given in
Table S12. Furthermore, Y-randomization test (Tables S13–S15)
and defining the applicability-domain for our models are also
carried out with the similar protocol in the previous section about
the classificationmodel. Finally, three consensus models (CM01–
CM03 in Tables S16–S18) are suggested on the basis of 1,312
individual models and 96 averagesmodels and are embedded into
our e-Sweet platform.

RESULTS AND DISCUSSION

Overview of e-Sweet Platform
e-Sweet is a machine-learning based platform for the automatic
prediction of the sweetener and its RS, which is developed based
on our previous e-Bitter program (Zheng et al., 2018). This e-
Sweet platform can be easily installed via the simple click of
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mouse and can smoothly run both in the modes of graphic user-
interface and command-line, which are well tested on the Win7,
Win8, andWin10. The whole program including the manual and
tutorials can be freely from the link (https://www.dropbox.com/
sh/1fmlv7nf6wofgcp/AADBJzFbbbiNRJUP0806wSyna?dl=0).

In the current version of e-Sweet, there are several major
helpful functions for the food scientists. (1) Visualize and inquiry
our curated datasets for the classification of sweetener/non-
sweetener or the regression of RS. (2) Predict the sweetener and
its RS with the multiple machine-learning methods by evoking
the external scikit-learn (v0.19.1), Keras (v1.1.0), and Theano
(v1.0.1) python libraries fully integrated in the free Anaconda
(v2-5.2.0) that can also be handily installed on the windows in
the simple way. (3) Virtual screening of database to enrich the
possible sweetener candidates. (4) Generate and visualize the
ECFP fingerprint, which is adopted as the molecular descriptor
and is also natively implemented in this platform. (5) View the
fingerprint bit in the context of 3D structure, and synchronously
display the feature importance of fingerprint bit contributing to
the classification of sweetener/non-sweetener or regression of RS.
The detailed usage of all those functions is articulated in the
manual and tutorials, while only the key functions (Figure 2) will
be detailed as follows.

In a nutshell, e-Sweet is the first, free, and convenient
standalone software for the experimental food scientists to
automate the prediction of the sweetener and its corresponding
RS with the machine-learning based classification and regression
models, and also offers several key auxiliary functions relevant to
the prediction.

The Chemical Space of Our Curated
Datasets Embedded in e-Sweet
Our curated datasets for the classification of sweetener/non-
sweetener and the regression of RS are publicly available and
fully integrated into our e-Sweet platform, with which users
can simultaneously visualize the chemical structures and the
corresponding labels (or log10RS) and can conveniently enquiry
our datasets with the compounds of users’ interests by Tanimoto-
similarity based structure search (Figure S7).

Our dataset for the sweetener/non-sweetener classification
consists of 530 sweeteners and 850 non-sweeteners, which is
the largest dataset so far. In the latest sweetener/non-sweetener
classification model from Rojas et al. 435 sweeteners and 214
non-sweeteners are utilized, which is much less than ours.
To examine the difference of chemical spaces between the
sweeteners and non-sweeteners in our dataset, the molecular
weight (MW), logP, and the numbers of hydrogen-bond donor
(NHBD) and hydrogen-bond acceptor (NHBA) are calculated by
OpenBabel v2.4 (Oboyle et al., 2011). The scatter plots of logP
vs. MW (Figure S8) and NHBD vs. NHBA (Figure S9) showcase
that the distributions for the sweeteners are very similar to
the counterpart for the non-sweeteners. Hence the intuitive
discrimination between the sweeteners and non-sweeteners by
the simple descriptors such as logP, MW, NHBD, and NHBA

is not effective. Furthermore, ECFP based similarity-matrix

(Figure S10) illustrates that the overall pairwise Tanimoto-
similarities between the sweeteners and non-sweeteners are
quite low with the average value of 0.08 over the entire
matrix, indicating that ECFP fingerprint may be a promising
molecular descriptor for the classification of sweeteners and
non-sweeteners.

In addition, our dataset for the regression of RS is composed
of 352 sweeteners, and is larger than the datasets utilized in
most of relevant works (Zhong et al., 2013; Rojas et al., 2016c;
Chéron et al., 2017; Ojha and Roy, 2017), but is smaller than the
dataset used in the work of Goel et al. which is made up of 455
sweeteners that is not directly accessible to the other researchers
(Goel et al., 2018). It is worth mentioning that both works glean
the sweeteners with RS from the same source (Iwamura, 1981;
Drew et al., 1998; Kinghorn and Soejarto, 2002; Vepuri et al.,
2007; Yang et al., 2011), thus the different number of sweeteners
used in both works is presumably resulted from the distinct
curation criteria. To check the conformational flexibility of the
sweeteners in this dataset, the numbers of the freely rotatable
bonds (NFRB) for all the sweeteners are computed by OpenBabel
v2.4 and the histogram of NFRB (Figure S11) demonstrates
that most of the sweeteners are quite flexible and have many
conformers, which may bring about the irreproducible result
for the model prediction if the conformation-dependent 3D
molecular descriptors are used to establish the model. Therefore,
ECFP based 2D molecular descriptors are used in this work.

In a word, our dataset for the sweeteners/non-sweeteners
classification is the largest and the dataset for the sweeteners
with RS is the second largest, and both datasets are publicly
available to other researchers. ECFP based similarity-matrix
indicates that ECFP based 2D descriptor could be beneficial to the
classification of sweeteners and non-sweeteners, and the analysis
of conformational flexibility of the sweeteners in this dataset casts
light on the potential weakness of the conformation-dependent
3D molecular descriptors.

Prediction of Sweetener by the
Classification Model in e-Sweet
For the sweetener/non-sweetener classification, 1,312 individual
classificationmodels (M0001–M1312 inTable S2) and 96 average
classification models (AM01–AM96 in Table S3) are harvested.
The scatter-plot of 1F1-score vs. F1-score for all the models is
plotted in Figure 3A, since F1-score is the performance indicator
of the classification model and 1F1-score is used to examine the
possible over-fitting or under-fitting of the classification model.
Figure 3A demonstrates that 1F1-score for most of individual
and average classification models is lower than 0.04, suggesting
that the model performance on the test set and in the cross-
validation is quite similar. Thus, most of our models do not
suffer from the obvious over-fitting or under-fitting from this
perspective. Moreover, the orange dots (Figure 3A) standing for
96 average classification models based on the multiple data-
splitting schemes have much narrower distribution than the blue
dots (Figure 3A) denoting 1,312 individual classification models
on the basis of the single data-splitting scheme, which provides an
important clue that the different random data-splitting schemes
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FIGURE 2 | The main features of e-Sweet platform for the sweetener and sweetness prediction.

have dramatic effects on the model performance. Therefore, it is
a good practice for the machine-learning practitioners to repeat
the data-splitting for the multiple times to gain more objective
models.

To further inspect the robustness of all 1,312 individual and 96
average classification models, Y-randomization test is performed
for all the classification models by the random shuffling of
experimental labels in Dataset-CV (Table S4), and all the results
are tabulated in Tables S5–S6. For the better illustration, the
scatter plot of F1-score(test set) vs. MCC(test set) for all the
models is plotted in Figure S12, which clearly demonstrates
that the model performances after Y-randomization is drastically
decreased relative to the models without Y-randomization.
Accordingly, all our previous models without Y-randomization
are quite robust and not obtained by chance.

However, it is not very efficient to harness all 1,312
individual and 96 average classification models simultaneously
for the pragmatic prediction of sweeteners, consequently four
typical consensus models (CM01–CM04 in Tables S7–S10) are
suggested based on the performance, speed, and diversity of
the models, and are incorporated into our e-Sweet platform.
Observed from Table 1, the overall performances of all these
consensus models on the test set (Table 1) are very promising,
while the best model CM02 with the highest F1-score can achieve
the 95% confidence intervals for the accuracy (0.91 ± 0.01),
precision (0.90± 0.01), specificity (0.94± 0.01), sensitivity (0.86
± 0.01), F1-score (0.88 ± 0.01), MCC (0.81 ± 0.01), and NER

(0.90± 0.01) on the test set by averaging over the 19 data-splitting
schemes.

To demonstrate the advantage of our models, CM01–CM04
in Tables S7–S10 are compared with the model in the work
of Rojas et al. which is the only published work about the
sweetener/non-sweeteners classification based on the relatively
large dataset and affords the NER values of 0.85 and 0.83 on
the test set and in the cross-validation, respectively, whereas the
evaluation metrics such as F1-score and MCC are not reported
in their work. The procedure for the statistical comparison is
given as follows. (1) Bland-Altman analysis (Martin Bland and
Altman, 1986) is firstly conducted to examine whether NER(test
set) and NER (cross-validation) of the models from Rojas et al.
match well within the limits of agreement (LoA) in the Bland-
Altman plots based on our consensus classification models. (2)
If NER(test set) and NER (cross-validation) of the models from
Rojas et al. agree well, it indicates that their model probably
does not suffer from the evident over-fitting or under-fitting.
Subsequently, further comparison will be performed to check
whether their model is within the 95% confidence intervals of
1NER (referring to |NER(test set)–NER(cross-validation)|) and
NER(test set), respectively.

According to this comparison protocol, Figure S14 clearly
illustrates that NER(test set) and NER(cross-validation) of the
model from Rojas et al. agree very well in all the Bland-
Altman plots (Figure S14) based on CM01, CM02, CM03, and
CM04. Subsequently, NER(test set) and 1NER will be used as
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FIGURE 3 | (A) the scatter-plot of 1F1-score vs. F1-score for all the

classification models; (B) The scatter plot of 1R2 vs. R2(test set) for all the

regression models. 1F1-score [referring to |F1-score (test

set)–F1-score(cross-validation)|] and 1R2 [referring to |R2(test

set)–R2(cross-validation)|] are used to monitor the potential overfitting or

underfitting.

the performance indicators for the further comparisons. More
specifically, 1NER of the model from Rojas et al. is 0.02, and is
within the 95% confidence intervals of 1NER from our CM01,
CM02, CM03, and CM04, which are 0.03 ± 0.01, 0.03 ± 0.01,
0.02 ± 0.00, and 0.02 ± 0.00, respectively. Meanwhile, NER(test
set) of the model from Rojas et al. is 0.85, and is consistently
lower than the 95% confidence intervals of NER (test set) from
our CM01, CM02, CM03, and CM04, which are 0.90± 0.01, 0.90
± 0.01, 0.88 ± 0.00, and 0.88 ± 0.01, respectively. Therefore, all
four consensus sweetener/non-sweeteners classification models
are better than the model from Rojas et al.

In short, the robust sweetener/non-sweetener classification
models based on the largest dataset, multiple data-splitting
schemes and manifold machine-learning methods are derived,
and our proposed four consensus models are demonstrated to

outperform the model from Rojas et al. that is based on the single
data-splitting scheme.

Prediction of Relative Sweetness by the
Regression Model in e-Sweet
For the prediction of RS, 1,312 individual regression models
(M0001–M1312 in Table S11) and 96 average regression models
(AM01–AM96 in Table S12) are achieved. The scatter plot of
1R2 [referring to |R2(test set)–R2(cross-validation)|] vs. R2(test
set) for all the models is made for the assessment of overall
performance, because R2(test set) is the performance indicator of
regression model and 1R2 is used to monitor the potential over-
fitting or under-fitting of regression model. From Figure 3B,
it illustrates that 1R2 for most of the individual and average
regression models is <0.10, implying that the models achieve
the consistently similar performance on the hold-out test set and
in the cross-validation, respectively. Thus, most of the models
do not exhibit the noticeable over-fitting or under-fitting from
this point of view. In addition, observed from Figure 3B, the
more compact distribution of the average models relative to the
individual models also emphasizes that the average models based
on the multiple data-splitting schemes are more convergent than
the individual models based on the single data-splitting scheme.

To further ensure the robustness of all the individual
and average regression models, Y-randomization test is also
conducted for all the regression models by the random shuffling
of experimental logRS10 in Dataset-CV (Table S13), and all the
outcomes are given in Tables S14, S15. For the sake of intuitive
description, the scatter plot of R2(test set) vs. MAE(test set) for
all the models before and after Y-randomization in Figure S13

unambiguously illustrates that our regression models without
Y-randomization are reliable.

Nevertheless, it is not realistic to utilize all the 1,312 individual
and 96 average regression models at the same time for the
practical prediction of RS, hence three representative consensus
models (CM01-CM03 in Tables S16–S18) are proposed and
integrated into our e-Sweet platform. Table 2 illustrates that our
consensus models (CM01–CM03) on the basis of the individual
and average models afford R2(test set) ranging from 0.77 to
0.78. CM02 has the highest R2(test set) with the 95% confidence
interval of 0.78± 0.02, while CM03 provides the lowest1R2 with
the 95% confidence interval of 0.03± 0.01.

For the sake of the easier comparison with the other works
about the prediction of RS, R2(test set) and R2(cross-validation)
are generally reported in the respective works and compiled
in Table S19, which are all based on only one data-splitting
scheme to prepare the hold-out test set and training set in
the other works. The statistical comparison between ours and
other models is very similar to the aforementioned comparisons
between the classification models and will be carried out as
follows: (1) Bland-Altman method is firstly adopted to check
whether R2(test set) and R2(cross-validation) of the models from
other works agree well within the limits of agreement in the
Bland-Altman plots based on our consensus regression models.
(2) If R2(test set) and R2(cross-validation) of the models from
other works agree well, the 95% confidence intervals of |R2(test
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set)-R2(cross-validation)| and R2(test set) for our models are
used for the further comparison with the models from other
works. Otherwise, the model may suffer from the over-fitting
or under-fitting due to the distinct difference between R2(test
set) and R2(cross-validation) and thereby will be excluded in the
subsequent comparison.

From Figure S15, all the models from other works exceed
the upper or lower limits of agreement (LoA) and their 95%
confident intervals, which reveals that the model performances
of other models on the test set and in the cross-validation do not
agree well compared to the counterpart of our consensus model
CM03. Thus, CM03 is the best model in term of the agreement
between R2(test set) and R2(cross-validation). However, all the
constituent models in CM03 are derived from DNN method,
which are much slower relative to the models derived from the
other machine-learning methods such as KNN, SVM, GBM, and
RF. Therefore, we proposed two other consensus models (CM01
and CM02). CM02 is constructed on 19 best constituent models
in 19 data-splitting schemes. However, in CM02 there is still
one constituent model that comes from the time-consuming
DNN method. Thus, CM01 is suggested also based on 19 best
constituent models by excluding the model from DNN method.
As a result, CM01 has very similar constituent models relative
to CM02, but is much faster than CM02 and thereby is suitable
for the database screening. Thus, it is understandable that Bland-
Altman plots (Figure S15) of CM01 and CM02 are very similar.

Therefore, the Bland-Altman plot (Figure S15A) based on
CM01 is taken as an instance. Five 3D descriptors based models
are very close to the limits of agreement (LoA), however, those
models can be still assumed that R2(test set) and R2(cross-
validation) of these five models are agreeable according to the
Bland-Altman plot based on CM01 (Figure S15A), while only
one 3D descriptors based model completely locates outside the
upper and lower LoA and their 95% confident intervals. These
five acceptable 3D descriptors based models in Bland-Altman
plot (Figure S15A) areMLRmodel fromZhong et al. SVMmodel
from Zhong et al. GFA model from Goel et al. ANN model from
Goel. et al. and SVMmodel from Cheron et al. which afford 1R2

with the values of 0.04, 0.05, 0.03, 0.06, and 0.16, respectively
(Table S19). According to Table 2, the 95% confidence interval
of 1R2 for our CM01 is 0.07 ± 0.02. Consequently, the 1R2

of SVM model from Cheron et al. is much larger than the
95% confidence interval (0.07 ± 0.02) from CM01. Finally, four
remaining models will be further compared with our model
CM01 based on R2(test set). MLR model with R2(test set) value
of 0.77 and SVM model with R2(test set) value of 0.78 from
Zhong et al. (Table S19) are still within the 95% confidence
interval (0.77 ± 0.02) of R2(test set) for our CM01, while GFA
model with R2(test set) value of 0.83 and ANN model with
R2(test set) value of 0.83 from Goel et al. (Table S19) is higher
than the 95% confidence interval (0.77 ± 0.02) of R2(test set)
for our CM01 (Table 2). Therefore, our CM01 has a similar
performance with the MLR and SVM models from Zhong et al.
and shows the lower performance than theGFA andANNmodels
from Goel et al. It is worth mentioning that this conclusion
also holds for CM02. Nevertheless, Goel et al. employed the
conformation-dependent 3D molecular descriptors such as the
LUMO eigenvalue, which requires the time-consuming quantum

mechanical (QM) calculation particularly for the large molecules.
Moreover, the flexible sweeteners usually possess very diverse
conformations due to a number of freely rotatable bonds, which
may provide the totally different molecular descriptors for the
same compound and thereby may lead to the irreproducible
result in the practical prediction. Actually the work of Rojas
et al. also well addresses this issue and suggests to adopt the 2D
molecular descriptors for the simplicity and the fast speed. Thus,
ECFP based 2D molecular descriptors are adopted in our work.

As such, 2D descriptors based models including ours will be
the main focus for the comparison of model performance. Two
2D descriptors based models from other works are very close
to the limits of agreement (LoA), albeit they are still in the
acceptable region. One model from Rojas et al. is trained with
MLR and 2DDragon descriptors, and gives R2(test set), R2(cross-
validation), and 1R2 of 0.70, 0.78, and 0.08, respectively, while
the other from Cheron et al. is built with SVM and 2D Dragon
descriptors, and offers R2(test set), R2(cross-validation), and1R2

of 0.83, 0.69, and 0.14, respectively. However, the 95% confidence
interval of 1R2 for our CM01 model is 0.07 ± 0.02. Hence
only the model from Rojas et al. is within the 95% confidence
interval (0.07 ± 0.02) of 1R2. Finally, the model comparison
based on R2(test set) illustrates that CM01 is better than the
model from Rojas et al. since R2(test set) with the value of 0.70
from Rojas et al. is much lower than the 95% confidence interval
(0.77± 0.02) of R2(test set) from CM01. It is noteworthy that this
conclusion can also apply to CM02.

In sum, our consensus regressionmodel CM03 is prominently
promising than all the models from other works in term
of agreement between R2(test set) and R2(cross-validation)
based on the Bland-Altman plot of CM03, while CM01/CM02
remarkably outperforms the 2D descriptors based models from
other works according to the full analysis of Bland-Altman plot
and the 95% confident intervals of 1R2 and R2(test set), but is
inferior to the 3D descriptors based models from Goel et al. that
are derived from the single data-splitting scheme. However, the
3D descriptors based models are not pragmatic for the prediction
by other users. Furthermore, it still should be taken with caution
that R2(test set) from the single data-splitting scheme is adopted
to compare the model performance, since different data-splitting
schemes have apparent effects on the model performance.

Automatic Inspection of Applicability
Domain in e-Sweet
To comply the guideline of OECD, the applicability domain of
the models should be defined appropriately. In this work, the
applicability domain of our models is defined on the basis of the
concept “average-similarity.” More Concretely , the automatic
procedure implemented in our e-Sweet is given as follows: (1)
each compound in the test set (Dataset-Test) is compared with
all the compounds in the cross-validation dataset (Dataset-CV)
according to the Tanimoto-similarity based on 2048bit-ECFP6;
(2) five most similar compounds from Dataset-CV are retrieved
and treated as five nearest neighbors for the given compound
in Dataset-Test, and the average of five similarities is defined
as the “average-similarity” between this given compound and
these five nearest neighbors; (3) each compound in Dataset-
Test retrieves five nearest neighbors in Dataset-CV to calculate
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TABLE 2 | The performance of three consensus models (CM01–CM03) for the regression of relative sweetness (RS).

Model R2

(test set)

MSE

(test set)

MAE

(test set)

R2

(CV)

1R2

MEAN(STANDARD DEVIATION)

CM01 0.77 (0.05) 0.27 (0.06) 0.39 (0.03) 0.72 (0.05) 0.07 (0.05)

CM02 0.78 (0.05) 0.28 (0.06) 0.40 (0.03) 0.71 (0.05) 0.07 (0.05)

CM03 0.77 (0.01) 0.58 (0.31) 0.58 (0.17) 0.74 (0.01) 0.03 (0.01)

95% CONFIDENCE INTERVAL: MEAN ± MARGIN OF ERROR

CM01 0.77 ± 0.02 0.27 ± 0.03 0.39 ± 0.01 0.72 ± 0.02 0.07 ± 0.02

CM02 0.78 ± 0.02 0.28 ± 0.03 0.40 ± 0.01 0.71 ± 0.02 0.07 ± 0.02

CM03 0.77 ± 0.01 0.58 ± 0.27 0.58 ± 0.15 0.74 ± 0.01 0.03 ± 0.01

(1) The number in each parenthesis is the standard deviation, which is obtained on the basis of the multiple random data-splitting schemes; (2) 1R2 referring to | R2 (test

set)–R2 (cross-validation) | is employed to monitor the potential over-fitting/under-fitting; (3) “CV” is short for the cross-validation.

the average-similarity. Similarly, each compound in Dataset-
CV also finds five nearest neighbors in Dataset-CV to compute
its corresponding average-similarity; (4) the histograms of the
average-similarity for Dataset-Test and Dataset-CV are given in
Figure 4 to address the applicability domain of our models.

For the classification model, Figure 4A shows that the
average-similarity of 0.1 could be used as the threshold for the
definition of the applicability domain of our classificationmodels.
If the average-similarity of the compound of interest is larger than
this threshold (0.1), it means that this compound is located inside
the applicability domain of our models, the prediction for this
compound is a confident inference. Otherwise, this prediction
may be a bold extrapolation. Similarly, for the regression model,
Figure 4B reveals that the average-similarity of 0.1 can also
serve as the threshold to define the applicability domain of our
regression models. In order to automatically check whether the
compound to be predicted is within the applicability domain of
our classification and regression models, we have implemented
a convenient function via simple clicking of the menu in our
e-Sweet platform.

In brief, our classification and regression models for the
prediction of sweetener and its RS have the pragmatically defined
applicability domain, which is not commonly or explicitly
mentioned in other relevant works and can be automatically
inspected by our e-Sweet.

Model Interpretation for our Classification
and Regression Models in e-Sweet
Model interpretation suggested by OECD, will be considered
based on the feature importance, which underscores the
importance of each ECFP fingerprint bit contributing to the
sweeteners/non-sweeteners classification or the regression of RS.
Our e-Sweet platform can advantageously offer the appealing
function to synchronously visualize the structural feature in the
context of 3D structure and the associated feature importance for
the ECFP fingerprint bit “1.”

In order to visualize the structural features and the
corresponding feature importance for all the bits in ECFP, it
would be better to adopt the model trained with the full features,
since the feature selection will obviously lose some ECFP bits and

hamper us to view the complete bits. Hence the average feature
importance, which is from the average classification (AM22 in
Table S3) and regression model (AM22 in Table S12) trained
with RF and full features (2048bit-ECFP6), is embedded in our
e-Sweet for the fully interactive visualization of ECFP fingerprint-
bit, structural feature, and feature importance of ECFP bit.

For the purpose of concise demonstration, visualization of
the feature importance (FI) contributing to the sweeteners/non-
sweeteners classification is taken as an example and only
the structural feature with the largest feature importance is
considered here. In this case, the bit with the largest feature
importance (FI = 0.019821) is 1138-bit (Figure S16). In our
sweeteners/non-sweeteners dataset, the ECFPs of 228 sweeteners
and 20 non-sweeteners contain the “1” in the 1138-bit. Here only
one sweet molecule containing “1” in 1138-bit is taken as an
instance for the better illustration (Figure S16). The structure
feature for 1138-bit is highlighted with the yellow color in the
3D viewer window, the corresponding feature importance for
1138-bit is shown in the window titled “FI.” Based on the feature
importance, it means that 1138-bit is very important for the
sweeteners/non-sweeteners classification.

Concisely, our e-Sweet platform provide a convenient and
intuitive visualization function for the model interpretation,
which makes our classification and regression models fully
conform to the OECD guidelines.

The Limitation and Prospect of This Work
Admittedly, our work has some shortcomings. (1) Our curated
dataset only considers the organic compounds, ignores the
inorganic compounds and mixtures, and also neglects the effects
of purity, moisture content, and temperature. In addition,
the sweet taste assessment results given by the trained taste
panelists have some inevitable noise, because the taste panelists
possess some subjective factors (e.g., some mixed tastes that
are very difficult to be clearly discriminated in qualitative or
quantitative manner) and objective reasons (e.g., the individual
gene-polymorphism of sweet taste receptor). (2) The consensus
strategy is used to balance the pros and cons of each
machine-learning method. However, it will bring some extra
computational burden, because the final prediction is obtained
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FIGURE 4 | The histograms of average-similarity are utilized to define the

applicability-domain of our classification (A) and regression models (B). Both

average-similarity thresholds of 0.1 are defined and implemented in our

e-Sweet platform to automatically check whether the compound to be

predicted is within the applicability domain of our models.

by averaging over all the prediction results from each constituent
model. (3) Applicability domain of the regression model for the
relative sweetness is still limited, because the size of dataset for
the regression model is relatively small compared to the size
of sweetener/non-sweetener dataset for the classification and
thereby needs further expansion.

In spite of these limitations, our work also possesses
several advantages, which may provide some beneficial
advice for the other researchers to develop more informative
sweetener/sweetness prediction model. (1) Different data-
splitting schemes have dramatic effects on the model training
and model performance, which will be more obvious for the
dataset with the limited size. Hence the multiple data-splitting
schemes are highly recommended. (2) 2D descriptors based
models are preferred over 3D descriptors based models for
the practical prediction, because the sweeteners are usually
very flexible molecules with diverse conformations that will
cause the irreproducible outcome for the 3D descriptors based

models. (3) The model evaluation solely based on R2(test set)
or F1-score(test set) may be not convincing enough. Thus, it
is suggested to consider both R2(test set) and |R2(test set)-
R2(CV)| for the regression models and both F1-score(test set)
and |F1-score(test set)-F1-score(CV)| for the classification
model, since the model probably suffers from the over-fitting or
under-fitting if |R2(test set)-R2(CV)| or |F1-score(test set)-F1-
score(CV)| is large. (4) Deep neural network (DNN) method
affords the consensus regression model CM03 with the best
agreement between R2(test set) and R2(CV) compared to all
the models from other works. Thus, more exhaustive parameter
optimization for DNN may offer a very good venue to further
enhance the model performance, although there are so many
hyper-parameters in DNN. (5) Consensus strategy is suggested
to balance the pros and cons of each machine learning based
model. (6) The full compliance with OECD guideline including
the intuitive model interpretation and defined applicability
domain of the model is strongly recommended. (7) Software
development with the in-depth encapsulation of prediction
model, fingerprint generation, and feature selection in the
automatic manner is also very important for other users to apply
the prediction model to their projects.

In the near future, we envision that the machine-learning
based sweetener/sweetness prediction will become more and
more effective and pragmatic, if it can be seamlessly fused with
the other computational methods and experimental techniques.
In our opinions, the performance of machine learning based
model is heavily reliant on the initial high-quality dataset,
which can be sustainably extended by the experimental high-
throughput screening on the sweet taste receptor. Moreover,
the machine-learning based sweetener/sweetness prediction
belongs to the ligand-based approach and is expected to further
combine with the structure-based sweetener prediction such
as the molecular dynamics simulation, free energy calculation
with the enhanced sampling or molecular docking methods on
the basis of the modeled 3D structure of sweet taste receptor,
although solving the crystal structure of the sweet taste receptor
remains challenging so far. Thus, in the near future, the in-depth
integration of machine-learning based sweetener/sweetness
prediction, structure-based sweetener/sweetness prediction,
and the experimental high-throughput screening
based on the sweet taste receptor will provide a good
paradigm for the discovery and development of novel
sweeteners.

CONCLUSION

In this work, we present a machine-learning based platform “e-
Sweet,” which is developed for the experimental food scientists
to automatically predict the sweetener and its corresponding
RS. This platform provides several advantageous functions. (1)
Users can visualize and inquiry our curated datasets that are all
publicly available; (2) Four consensus sweetener/non-sweetener
classification models in e-Sweet, derived from the largest
dataset (530 sweeteners and 850 non-sweeteners), offer the
best performance with the 95% confidence intervals for the

Frontiers in Chemistry | www.frontiersin.org 12 January 2019 | Volume 7 | Article 35

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zheng et al. e-Sweet Platform for Sweetener/Sweetness Prediction

accuracy (0.91 ± 0.01), precision (0.90 ± 0.01), specificity (0.94
± 0.01), sensitivity (0.86 ± 0.01), F1-score (0.88 ± 0.01), MCC
(0.81 ± 0.01), NER (0.90 ± 0.01), and 1NER (0.03 ± 0.01),
respectively on the test set, and prominently outperforms the
results from the work of Rojas et al. (NER = 0.85); (3) The
RS prediction model is harvested on the basis of the second
largest dataset (352 sweeteners with the RS) and gives the robust
outcome with the 95% confidence intervals for the R2(test set)
and 1R2 of 0.77 ± 0.01 and 0.03 ± 0.01, respectively, which
is also better than other works based on the conformation-
independent 2D molecular descriptors in terms of both R2(test
set) and 1R2. (4) Both the classification and regression models
are trained with the multiple machine-learning methods and
fully comply with the guidelines of OECD. (5) Interactive
visualization of fingerprint bit, 3D structural feature, and
feature importance. Therefore, we hope that this comprehensive
platform can enable the experimental food scientists to
exploit the machine-learning methods to boost the discovery
and development of more novel sweeteners with the high
potency.
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