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Current research has demonstrated that small cationic amphipathic peptides have strong

potential not only as antimicrobials, but also as antibiofilm agents, immune modulators,

and anti-inflammatories. Although traditionally termed antimicrobial peptides (AMPs)

these additional roles have prompted a shift in terminology to use the broader term host

defense peptides (HDPs) to capture the multi-functional nature of these molecules. In

this review, we critically examined the role of AMPs and HDPs in infectious diseases and

inflammation. It is generally accepted that HDPs are multi-faceted mediators of a wide

range of biological processes, with individual activities dependent on their polypeptide

sequence. In this context, we explore the concept of chemical space as it applies to HDPs

and hypothesize that the various functions and activities of this class of molecule exist

on independent but overlapping activity landscapes. Finally, we outline several emerging

functions and roles of HDPs and highlight how an improved understanding of these

processes can potentially be leveraged to more fully realize the therapeutic promise of

HDPs.
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INTRODUCTION

Driven by the emergence of antibiotic resistance throughout the world and a dearth of
antimicrobials in the drug development pipeline, we are on the precipice of returning to a pre-
antibiotic age (Martens and Demain, 2017). Since their discovery in the 1980s, antimicrobial
peptides (AMPs), naturally occurring polypeptide sequences (∼12–50 residues) comprised of
cationic and hydrophobic amino acids with direct antibacterial activity (Hancock and Sahl,
2006; Nguyen et al., 2011; Fjell et al., 2012), have long been touted as one solution to this
impending medical crisis. Statements such as “promising alternative to antibiotics,” “potential to
address to growing problem of antibiotic resistance” and “hold promise to be developed as novel
antibiotics” appear in almost every research article describing novel AMP sequences. In fact, the
vast majority of studies related to AMPs have sought to identify and characterize peptides with
potent and broad spectrum antimicrobial properties. Common strategies involve searching for
novel peptides from natural sources either through the analysis of increasingly-exotic biological
organisms and tissue extracts (Kim et al., 2018), identifying potential AMP sequences from genomic
sequence information (Rodríguez-Decuadro et al., 2018; Yang et al., 2018), or excising predicted
antimicrobial sequences from larger proteins (Pane et al., 2016; Abdillahi et al., 2018). Furthermore,
a large portion of the relevant scientific literature is devoted to studies aimed at selectively
enhancing the antibacterial potency of synthetic peptides either by systematically altering the
amino acid composition of natural AMPs (Akbari et al., 2018; Chen et al., 2018) or designing
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novel sequences based on the structural and biophysical
properties of known AMPs (Haney and Hancock, 2013; Kumar
et al., 2018). Indeed, the prospect of finding a peptide with
broad spectrum antimicrobial activity toward antibiotic resistant
pathogens that plague human populations is a worthy endeavor
that has captured the imagination and resources of many
scientific research groups worldwide.

In spite of their tremendous promise, no peptide-based
antibiotic has to-date realized regulatory approval (although
several are in advanced clinical trials). There are many potential
reasons for this apparent lack of success in developing this class of
molecules as medicines, including low stability, toxicity, and high
cost-of-goods (Haney and Hancock, 2013). However, it may be
that we have already achieved the limits of antimicrobial potency
for AMPs, through either natural selection by evolutionary
processes or rational design, and that AMPs may never be
able to achieve the same clinical outcomes as conventional
antibiotics. Even more troubling is the possibility that the direct
antibacterial effects of AMPs may not represent the primary
biological functions of these molecules in nature and that
researchers could be spending considerable effort searching for
an elusive “optimal” AMP sequence that may not exist. For
instance, it is well-established that the direct antibacterial activity
of most AMPs is dramatically reduced under physiological
conditions that would be encountered in vivo (Goldman et al.,
1997; Bowdish et al., 2005; Starr et al., 2016). Consequently,
it may be that the in vitro screening procedures employed
to date do not effectively capture the true potential of this
class of molecule since a growing amount of in vivo data has
demonstrated the efficacy of AMPs in various animal models
related to infection and inflammation, further underscoring their
tremendous clinical potential. Indeed, over that past decade or
so, we have begun to appreciate the other biological functions
that can be inherent to amphipathic cationic peptides. These
include such activities as immune modulation, including anti-
infective (e.g., immune cell recruitment), anti-inflammatory, and
wound healing properties, as well as antibiofilm activity. To
emphasize the multifaceted nature of these cationic polypeptides,
the term “Host Defense Peptide” (HDP) (Nijnik and Hancock,
2009; Takahashi et al., 2010) is now more commonly used to
encompass the breadth of biological processes that are influenced
by these versatile biomolecules, although the terms AMP and
antibiofilm peptides are still accurate when considering only
activities against planktonic and biofilm cells, respectively.

Our goal in this review is to question some of the most
tightly held beliefs regarding the natural roles and functional
potentials of AMPs and HDPs. We begin by critically examining
the purported mechanism of action of AMPs as directly targeting
the membrane of bacterial cells and highlight some of the
advances that have helped many push beyond simplified models
of antimicrobial activity. We then argue the need to shift the
paradigm from appreciating these molecules as direct acting
antibacterial compounds toward multi-faceted mediators of a
wide range of biological processes. In particular, we explore the
concept of chemical space (all possible polypeptide sequences of
a given length) in the context of HDPs and postulate that the
activity landscapes related to each biological function of HDPs

are distinct, but overlapping. Finally, we outline several emerging
roles of HDPs in relation to health and disease and highlight
some of the new and exciting work being done to fully realize
the therapeutic promise of HDPs.

MECHANISM OF AMPs ACTIVITY—A
COMPLEX QUESTION

For many years now, AMPs have largely been investigated in the
context of their ability to kill bacteria by disrupting membranes
ultimately leading to cell lysis and death (Hancock and Sahl, 2006;
Zasloff, 2009; Kumar et al., 2018; Lázár et al., 2018). Experts
in the field have often discussed at length the exact nature
of the membrane perturbation, i.e., whether the peptides kill
bacteria through transmembrane pore (Rapaport and Shai, 1991;
Matsuzaki et al., 1998) or non-pore (Shai, 2002; Yeaman and
Yount, 2003; Lee et al., 2016) mechanisms. Alternatively, the
effect of bilayer integrity may be compromised upon reaching a
certain threshold peptide concentration at the membrane surface
(Andersson et al., 2016; Epand et al., 2016). The main models
presented include the barrel-stave, carpet, detergent, toroidal
pore, aggregate (Hale and Hancock, 2007), and electroporation
(Lee et al., 2016) models, or combinations thereof (Kumar et al.,
2018), and these have been extensively discussed in other reviews.
Many detailed studies have relied on the use of a handful of
biophysical methods to determine how these peptides perturb
membranes (Okada and Natori, 1983; Zasloff, 1987; Lehrer et al.,
1989; Arias et al., 2018; Marquette and Bechinger, 2018). Aspects
considered in these studies include the structure of the peptide
in the membrane, the insertion and interaction of the peptide
into model lipid bilayers, lipid selectivity and/or ability to cause
leakage. While all of these observations are valid within the
context of the experimental setup, in the following section, we
will examine how these findings may not be relevant to how
HDPs actually kill bacteria outside of a culture tube. This is
particularly relevant for AMPs that lack membranolytic activity.
Specifically, we critically examine several mechanistic principles
that are often generalized for AMPs and discuss how researchers
have begun to unravel varied and complex mechanisms of action
for this class of peptides.

Does the Electrostatic Attraction Between
AMPs and Membranes Dictate Activity?
Most antimicrobial peptides are cationic and amphipathic with
a net charge ranging from +2 to +9, due to an abundance of
Arg and Lys residues within their sequence (Haney and Hancock,
2013). Given that the bacterial cytoplasmic membrane contains
a high proportion of phospholipids with negatively charged
headgroups [e.g., phosphatidylglycerol (PG) and cardiolipin
(CL)], the initial interaction between a peptide and a bacterial
cell is generally considered to be electrostatic in nature followed
by an association of the hydrophobic domains of AMPs with the
hydrophobic core of membranes. In reality, the path between
a cationic peptide and the anionic cytoplasmic membrane is
fraught with potential peptide binding targets and littered with

Frontiers in Chemistry | www.frontiersin.org 2 February 2019 | Volume 7 | Article 43

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Haney et al. Activity Landscape of HDPs

bacterial cell surface components that necessitate this process
should be more than a simple electrostatic interaction.

For instance, Gram-negative bacteria possess an outer
membrane which acts as a selective barrier and protects
the cell from the action of various antibiotics. Furthermore,
lipopolysaccharides (LPS) are present in high abundance on
the surface of the outer membrane of Gram-negative bacteria.
LPS molecules bear multiple negative charges that are typically
neutralized by the presence of divalent cations (e.g., Mg2+ and
Ca2+) which in turn stabilize the outer membrane (Vaara, 1992).
LPS offers an electrostatic and hydrophobic binding partner
for approaching cationic amphipathic peptides (which have a
higher affinity for LPS than the native divalent cations) and
upon membrane binding, the peptides competitively displace
the divalent cations which subsequently interferes with lipid
packing and leads to increased permeability of the outer
membrane thereby mediating their so-called self-promoted
uptake (Hancock, 2001). Beyond this, it is unclear what
the driving force is that allows peptides to transition from
the Gram-negative outer membrane to the surface of the
cytoplasmic membrane and beyond. Conceivably, this could
involve some combination of peptide concentration gradients,
Donnan potentials (created by the presence of polyanionic
membrane-derived oligosaccharides in the bacterial periplasm)
or the electrical potential gradient across the cytoplasmic
membrane (Nikaido, 2003).

In Gram-positive bacteria, a thick layer of peptidoglycan
surrounds the bacterial cell and provides structural support. An
AMP should transit quite freely through the netlike structure
of a Gram-positive cell wall to interact with the cytoplasmic
membrane (Vollmer and Bertsche, 2008). However, while
peptidoglycan itself lacks an explicit negative charge, teichoic
acid, and lipoteichoic acids can be found interspersed throughout
the peptidoglycan structure and confer a surface negative charge.
These anionic molecules also provide binding sites for HDPs
(Scott et al., 1999a), and these would presumably need to be
circumvented to reach the cytoplasmic membrane.

Since the electrostatic attraction between a cationic AMP and
the anionic bacterial cell surface is considered essential to the
overall mechanism of action, several studies have examined how
charge relates to activity (Dathe et al., 2001; Mihajlovic and
Lazaridis, 2012) and whether this property could be manipulated
to improve antibacterial potency and selectivity for bacterial
cells. Results from these studies suggest that there is an optimal
charge/hydrophobicity balance needed to ensure equilibrium
between activity and toxicity. For example, increasing the charge
of magainin 2 from +3 to +5 improved the antibacterial activity
against both Gram-positive and Gram-negative bacteria, but
an increase to +6 or +7 led to increased hemolytic activity
and loss of antimicrobial potency (Dathe et al., 2001). It has
been suggested that the loss of activity in highly cationic
peptides may be due to the fact that this would result in an
extremely strong interaction between the peptide and the anionic
phospholipid headgroups that would prevent translocation of
the peptide into the inner leaflet of the membrane (Yeaman
and Yount, 2003). Alternatively, the increased charge may
perturb the kinetic network, i.e., the careful balance between

peptide-bacteria interactions vs. peptide-host cell interactions
(Starr et al., 2016).

In addition to overall charge on a peptide surface, the
specific location of the charged residues (and by extension
the hydrophobic residues) along the length of a peptide has
a significant influence on antibacterial potency and toxicity
(Hilpert et al., 2006; Leptihn et al., 2010; Archer et al., 2011;
Yin et al., 2012; Hollmann et al., 2016). The fact that even
a single amino acid change within an AMP sequence can
dramatically alter the antibacterial and/or toxicity profile of
a peptide would suggest that the influence of biophysical
parameters such as charge and hydrophobicity are important
within the context of the AMP sequence in question. Therefore,
sequence manipulations aimed at improving potency may be
difficult to apply broadly to all AMPs in general.

Finally, another indication that positive charge may not play
the defining role in determining AMP potency is the fact that
several anionic antimicrobial peptides have also been reported
in the literature (Harris et al., 2009) and many of these adopt
amphipathic structures and can interact with membranes, akin
to the interactions that have been observed for cationic AMPs.

Do All Antimicrobial Peptides Act to
Destroy Bacterial Membranes?
Since AMPs are known to interact with phospholipid bilayers, it
was originally claimed that all AMPs act as membrane disrupters
in keeping with early studies that demonstrated that AMPs
permeabilized membranes, e.g., of vesicles. However, most of
those studies relied on data obtained at concentrations far
above the minimal inhibitory concentration (MIC), or under
artificial assay conditions using model membranes and very high
peptide:lipid ratios relative to the conditions that would occur
during killing of bacterial cells (Wu et al., 1999; Wimley, 2010).

While it is true that AMPs must interact with bacterial
membranes as part of their overall mechanism of action, this
dogma of membrane targeting leading to lysis or cytoplasmic
leakage has now been effectively refuted as summarized
previously (Hancock and Sahl, 2006; Fjell et al., 2012). Indeed it is
now well-understood that in addition to membrane interactions,
many AMPs act on membrane-associated targets (e.g., cell wall
biosynthesis, cell division, etc.) or on cytoplasmic targets (e.g.,
macromolecular synthesis in cells, heat shock proteins, etc.;
Otvos, 2005; Hale and Hancock, 2007; Fjell et al., 2012). One
of the earliest examples of this phenomenon was buforin II,
a histone derived AMP from Asian toads (Park et al., 1998).
Interestingly, E.coli cells treated with buforin II were not lysed,
even at 5X the MIC, and this peptide did not perturb model
membranes, clearly demonstrating that membrane perturbation
does not contribute to the bactericidal effect. Instead, it was
demonstrated that this peptide translocated into the bacterial
cytoplasm where it readily bound DNA and RNA, implicating
this interaction in the mechanism of action (Park et al., 1998).
Subsequently, Wu et al. described a broad range of peptides that
did not completely depolarize bacterial cells at their MIC (Wu
et al., 1999). Alternatively, human α-defensin 5 has been shown
to translocate into the cytoplasm of E. coliwhere it accumulates at
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the cell division plate and at opposite poles of the cell, suggesting
that part of the antibacterial mechanism of this AMP is due
to interference with cellular division processes (Chileveru et al.,
2015). Cell division targeting through QueE was also recently
shown for peptide C18G, a synthetic AMP derived from platelet
factor IV (Yadavalli et al., 2016). Other peptides interfere with
membrane associated processes, such as binding to lipid II which
is involved in cell wall and teichoic acid biosynthesis, thereby
inhibiting cell wall biogenesis (Wiedemann et al., 2001; Sass et al.,
2010; Schneider et al., 2010). Several more examples of AMPs that
target intracellular bacterial components exist, including: PR-39
(Boman et al., 1993), indolicidin (Subbalakshmi and Sitaram,
1998), pyrrhocoricin (Kragol et al., 2001; Taniguchi et al., 2016),
human β-defensin 4 (Sharma and Nagaraj, 2015), proline-rich
AMPs (Scocchi et al., 2011; Li et al., 2014; Florin et al., 2017), and
many others (Hale and Hancock, 2007; Shah et al., 2016).

Indeed it has been proposed that AMPs are likely to have
multiple modes of action, a feature that has earned them the
moniker of “dirty drugs” (Friedrich et al., 2001; Hancock and
Sahl, 2006). Adding to this complexity, it has been proposed that
individual AMPs elicit a unique bacterial response which was
demonstrated by challenging E. coliwith four physico-chemically
related peptides: magainin 2, pleurocidin, buforin II, and a
synthetic D-amino acid peptide D-LAK120-AP13 (Kozlowska
et al., 2014). In this case, treatment of E. coli with sub-lethal
concentrations of each peptide caused both metabolic and gene
expression changes that were unique to each peptide, suggesting
that every AMP employs a unique mechanism of action to
exert their antibacterial effects. Several other studies have
demonstrated that AMP treatment causes substantial changes to
overall gene expression profiles (Bader et al., 2003; Tomasinsig
et al., 2004; Overhage et al., 2008; Majchrzykiewicz et al., 2010;
Le et al., 2016; Nagarajan et al., 2018), further demonstrating
the complexity of the bacterial response to natural and synthetic
AMPs.

As stated above, interactions between AMPs and biological
membranes occur and these interactions play a key role in
the overall mechanism of action for this class of molecules.
It seems possible that some AMPs, like magainin (Matsuzaki,
1998) and/or melittin (van den Bogaart et al., 2008), exert
their primary antibacterial (and/or cytotoxic) effects through a
lytic mechanism of action. However, applying the concept of
membrane disruption to all AMPs is likely an oversimplification
of a complex and dynamic process. As work continues in the
field of AMP research it will be necessary to press beyond
these simplified models that are often invoked to explain the
mechanistic details underpinning the biological functions of
AMPs.

Do AMPs Adopt a Specific “Active”
Conformation?
Another frequently-characterized feature of AMPs is their
ability to fold into a variety of secondary structures including
α-helices, β-structures, turns, extended structures and other
permutations (Nguyen et al., 2011). It is generally accepted
that most linear AMPs are unstructured in aqueous solutions

and undergo a conformational change to a folded state as
they bind and insert into biological membranes. Since this
membrane interaction is required for the antibacterial effects
of AMPs (even if the target is intracellular, the peptide must
cross bacterial membranes), in the past it was considered
that this membrane bound structure represented the “active”
conformation. Much has been written about peptide interactions
with membranes, with some authors suggesting formal channels
(barrel-stave, toroidal pore models) while others have suggested
more casual interactions (carpet, detergent, and aggregate model;
Lee et al., 2016). However, considering the above-described
diversity of mechanisms, ultimately the most satisfying models
would describe how some peptides are able to translocate
across membranes without lethally permeabilizing them. This
is a known feature of immunomodulatory HDPs that must
translocate into cells to mediate their activities (Lau et al., 2005;
Mookherjee et al., 2009) and such peptides fall into the general
class of cell penetrating peptides (Sandgren et al., 2004; Zorko
and Langel, 2005; Guidotti et al., 2017). That AMPs do the same is
suggested by demonstrations that some peptides can accumulate
in the cytoplasm of bacteria (Park et al., 1998; Powers et al., 2006)
or are readily taken up by eukaryotic cells (Tomasinsig et al.,
2006).

Moreover, several studies have examined how AMP sequences
correlate to peptide structure and how this may be related to
antibacterial potency. For instance, aurein 2.2 and 2.3 are natural
cationic AMPs from the frog Litoria aurea (Rozek et al., 2000).
They are both 16 amino acid residues in length, have a net
+2 charge, and an amidated C-terminus. Circular dichroism
and NMR studies have shown that both peptides adopt a
continuous α-helical structure in a membrane or membrane-
mimetic environment (Pan et al., 2007; Cheng et al., 2009,
2010, 2011). This structure is only present when the peptides
interact with the membrane, hence it could be assumed to be
important for function. However, an analog of aurein 2.3 with
a carboxylated C-terminus also adopts the same structure as the
natural form, but does not have any antimicrobial activity (Pan
et al., 2007).

The example cited above suggests that AMPs do not
necessarily adopt a specific “active” conformation, i.e., there is
no direct correlation between the amount or type of secondary
structure and any quantifiable biological activity such as MIC.
Indeed, short polypeptides are notorious for their conformational
flexibility and several examples of natural and synthetic AMPs
with a high degree of structural plasticity have been reported in
the literature including: 1018 (Wieczorek et al., 2010), indolicidin
(Nagpal et al., 2009), HHC-36 (Nichols et al., 2013), Gad-
2 (McDonald et al., 2015) etc. It is this structural plasticity
that makes peptides natural biological messengers (Henninot
et al., 2018) and this flexibility in structure likely ensures that
interactions between AMPs and their targets are malleable,
enabling them to interact with a variety of binding targets
including not only membranes, but also DNA, RNA, and certain
proteins. These interactions, in turn, ensure that AMPs and
HDPs are active against a broad range of microorganisms
(including their biofilm growth states) while also being capable
of causing pleiotropic effects in the host, all of which are essential
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to innate host defense processes (Hancock and Sahl, 2006,
2013).

Are Bacteria Able to Develop Resistance to
AMPs?
As natural molecules involved in host defense, HDPs have
co-evolved for millions of years alongside bacteria and it has
been frequently argued that bacteria are virtually incapable of
developing resistance to AMPs. This is often touted as one of the
attractive features of developing synthetic AMPs as alternatives
to antibiotics. Unfortunately, bacteria are quite resourceful
and indeed several resistance mechanisms to AMPs have been
reported (Nizet, 2006; Bechinger and Gorr, 2017). Examples
include remodeling of the membrane to reduce the overall
negative charge, blocking the anionic groups in LPS by attaching
an aminoarabinose group or decorating TA polymers with D-
alanine moieties to counteract the negative charge arising from
the phosphate groups in the TA monomers. Furthermore, AMPs
may be degraded by the action of bacterial proteases (Sieprawska-
Lupa et al., 2004; Lai et al., 2007) or they may simply be expelled
from the cell following upregulation of bacterial efflux systems
(Joo et al., 2016). Alternatively, the ability of peptides to induce
resistance regulons in Pseudomonas to some extent dictated their
activity against this bacterium (McPhee et al., 2003; Fernández
et al., 2012). Regardless of which resistancemechanism is invoked
by a particular bacterial species, it is important to consider these
resistance mechanisms as we continue the search for novel AMP
sequences with ever increasing antibacterial potency. At best, the
various resistance mechanisms described for AMPs indicate that
any new peptide-based antibiotic, once introduced in the clinic,
would be prone to similar patterns of resistance as those observed
for conventional antibiotics (Blair et al., 2015). In this scenario,
AMPs could be viewed as merely stemming the rising tide of
antibiotic resistance rather than acting as a miracle drug that will
solve all our problems.

Are Antibiofilm Peptides Distinct From
AMPs?
The development of antibiofilm peptides and their potential
to address the issues of biofilm-associated infections has been
reviewed elsewhere (Batoni et al., 2016; de la Fuente-Núñez
et al., 2016; Pletzer and Hancock, 2016) and hence, we will
only briefly discuss some of their properties here. This class
of peptide acts against biofilms formed by multiple species
of bacteria, including the most resistant organisms in our
society termed the ESKAPE pathogens (Enterococcus faecium,
S. aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, Enterobacter cloacae) and other
clinically relevant bacteria (de la Fuente-Núñez et al., 2014b).
As mentioned above, structure activity relationship studies
showed no direct overlap between antibiofilm and antimicrobial
(vs. planktonic bacteria) activities. Thus peptides are able to
inhibit biofilms formed by Burkholderia cenocepacia which
is normally resistant to the effects of AMPs (Loutet and
Valvano, 2011) and it is also possible to isolate peptides with
excellent antibiofilm activity but poor activity against planktonic
bacteria and vice versa (de la Fuente-Núñez et al., 2012).
This suggests that the mechanism of action employed by

antibiofilm peptides must be distinct from those employed by
AMPs.

Recent work by our group has implicated the widespread
bacterial stringent response as a common target for the
antibiofilm activity of HDPs.When bacteria are subject to amino-
acid starvation, fatty acid limitation, iron limitation, heat shock
and other stressors (Crosse et al., 2000; Potrykus and Cashel,
2008), a stringent response is triggered through up-regulation
of the two signaling nucleotides: guanosine tetraphosphate
(ppGpp) and pentaphosphate (pppGpp) [collectively known as
(p)ppGpp]. These signals cause the bacteria to divert nutrients
from growth and division processes in order to promote
survival, ultimately resulting in biofilm formation (Potrykus and
Cashel, 2008; Wolz et al., 2010). In many bacterial species,
ppGpp is required for biofilm growth and mutants lacking the
enzymes responsible for generating (p)ppGpp are unable to
elicit a stringent response and therefore do not form biofilms
(Åberg et al., 2006; He et al., 2012; de la Fuente-Núñez et al.,
2014b).

In this regard, the synthetic HDP (also termed Innate Defense
Regulator or IDR) peptide IDR-1018 (de la Fuente-Núñez et al.,
2014b), and several D-enantiomeric peptides, including DJK-
5 (de la Fuente-Núñez et al., 2015), have been shown deplete
(p)ppGpp from cells in vivo, as well as to directly interact with
(p)ppGpp in vitro, by preferentially binding to it as compared
to other nucleotides (e.g., GTP). In an in vivo mouse abscess
model for which pathology (cutaneous lesion formation) is
dependent on the stringent response, both peptides suppressed
lesion formation by either Staphylococcus aureus or Pseudomonas
aeruginosa (Mansour et al., 2016), and for the latter a specific
role of the stringent response and suppression of the expression
of the bifunctional (p)ppGpp metabolizing enzyme, SpoT, was
indicated (Pletzer et al., 2017). A study showed that an analog
of 1018, with its amino acid sequence reversed (Andresen
et al., 2016), was equally able to co-precipitate ppGpp in a
test tube and still exhibited inhibitory effects on P. aeruginosa
biofilms. Similarly, the D-analog of this reversed sequence also
depleted (p)ppGpp from cells (de la Fuente-Núñez et al., 2015).
It is worth mentioning that Andresen et al. argued that since
the reversed 1018 peptide sequence exhibited similar ppGpp
and antibiofilm activities compared to the native 1018 peptide,
that this could not explain the specificity of the mechanism
of action or the involvement of the stringent response. We
have recently addressed this critique in some detail (Pletzer
et al., 2017) and we contend that binding of phosphorylated
nucleotides may be a common feature of many cationic HDPs
and represents a molecular interaction that could be exploited
if we could better understand the specific peptide requirements
for (p)ppGpp binding. Nevertheless, the implication of this
molecular mechanism for antibiofilm peptides is that they must
be able to translocate across the membrane into bacteria in order
to act on this intracellular nucleotide.

Since the effect of antibiofilm peptide activity in mice is to
inhibit the formation of necrotic lesions, it is worth mentioning
that DJK-5 strongly suppressed the production of alpha-type
phenol soluble modulins (Mansour et al., 2016), which are
stringently regulated cytotoxins that are also involved in biofilm
structuring (Periasamy et al., 2012). Evidently, HDPs that exhibit
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antibiofilm activities can mediate a range of biological functions
and exert their activities through a variety of mechanisms; indeed
peptide 1018 also possesses potent immunomodulatory functions
and works in a wide range of in vivo animal models of infection
and inflammation (Mansour et al., 2015).

To this point, we have examined several of the commonly
held beliefs regarding the antibacterial functions of AMPs and
have discussed how the prevailing view of these molecules has
shifted from being simple membrane destroyers to biomolecules
that exert their antimicrobial effects by targeting a plethora of
bacterial components using a variety of mechanisms. Indeed,
several features of AMPs have emerged over the years as
contributing factors to the observed antibacterial potency
including charge, hydrophobicity, and structure. However, we
should be cautious about extrapolating the observed effects of a
single peptide to all AMPs in general as this oversimplifies many
of these processes and fails to appreciate that each individual
peptide sequence mediates a variety of functions independently.
This multifaceted nature of AMPs and HDPs is reflected in the
fact that these molecules have biological functions that extend
beyond bacterial cells. In the following sections, we will examine
some of the other activities that have been observed for HDPs in
vitro and in vivo and we will further examine how an appreciation
of these additional functions is shaping the future clinical and
therapeutic applications of these biomolecules.

ACTIVITY LANDSCAPES OF HOST
DEFENSE PEPTIDES

Beyond questioning tightly-held beliefs about the bacteriostatic
and bactericidal nature of AMPs, one has to consider that
many HDPs influence a wide range of biological functions in
vivo. Other types of activities, in addition to various forms
of immune modulation (Hancock et al., 2016) and antibiofilm
activity (Pletzer and Hancock, 2016) are increasingly being
appreciated for HDPs and include (but are not limited to):
antiviral (Gwyer Findlay et al., 2013), antifungal (Weerden et al.,
2013) antiparasitic (Mor, 2009), anticancer (Gaspar et al., 2013),
wound healing (Mangoni et al., 2016), adjuvanticity for vaccines
(Nicholls et al., 2010), andmore recently they have been proposed
as biomarkers for certain diseases (Silva et al., 2018). Each of these
have been extensively reviewed elsewhere (see review articles
referenced above) and these “alternative” activities of HDPs
are rapidly gaining prominence as more investigators examine
these diverse biological effects. These broad activity classes also
present tremendous opportunities for researchers to identify and
optimize natural and synthetic peptide sequences that are tailored
for a specific biological function. However, the question remains,
what represents an “optimal” HDP sequence?

Since their discovery in insects (Steiner et al., 1981), mammals
(Ganz et al., 1985; Selsted et al., 1985a,b) and frogs (Zasloff, 1987),
the majority of research endeavors in the HDP field have been
focused on identifying, characterizing and optimizing peptide
sequences for their direct antibacterial activity while limiting
toxicity toward eukaryotic cells (often assessed as hemolysis
of red blood cells). Indeed, up until the last decade or so,

the holy grail of AMP research was a peptide with potent
activity against a wide assortment of bacterial pathogens in vitro,
while exhibiting no toxicity toward the cells of the host. In
general, the scientific community has had remarkable success in
searching for antimicrobial HDP sequences from natural sources,
as evidenced by the current tally of nearly 3,000 sequences
deposited in the Antimicrobial Peptide Database (APD, http://
aps.unmc.edu/AP/main.php) (Wang et al., 2015a). Many more
studies have sought to manipulate the biophysical characteristics
of these natural HDP sequences to optimize synthetic peptides
for their antibacterial effects (reviewed in Fjell et al., 2012).
Optimization strategies such as these typically manipulate a few
biophysical traits of a given peptide and evaluate the effects
of substituting specific amino acids at various points within
the parent sequence. Normally, these parameters involve some
combination of cationic charge and hydrophobicity and a small
library of∼5–10 peptides is generated based on a starting peptide
scaffold. In most published examples, some derivatives exhibit
moderately enhanced antimicrobial potency relative to the parent
sequence, or perhaps reduced toxicity, and this is then used to
justify the design approach. It is difficult to estimate how many
synthetic peptides have been evaluated in studies such as these,
although manually-curated databases of published HDPs count
between 11,000 and 17,000 entries (Fan et al., 2016; Pirtskhalava
et al., 2016). Based on our own experience (and the number of
synthetic peptides in our laboratory freezers), as well as the fact
that the search term “Antimicrobial Peptide” yields more than
300,000 hits in PubMed, we would venture to guess that the actual
number of peptides that have been created and tested in labs is
substantially higher.

In principle, the possible chemical space of HDPs can
be represented mathematically by the equation 20n, which
encompasses all possible permutations and combinations of the
20 naturally occurring amino acids for a peptide of length
n (the problem becomes exceedingly complex if we start to
consider the 700 or so non-natural amino acids, enantiomers,
and peptidomimetic backbones). Since the primary structure of
a peptide and how these fold in three-dimensions dictates the
biological activity of any given peptide (Fjell et al., 2012), if the
activities of all the peptides within this chemical space could
be evaluated, it would be possible to unequivocally identify the
best HDP for any given type of activity. Unfortunately, this
scenario is virtually impossible as this chemical space becomes
overwhelmingly large rather quickly as even a chemical space
limited to peptides of 10 residues in length would include
over 10 trillion sequences (Table 1). It may be possible to limit
the chemical space of HDPs by focusing on specific amino
acids generally considered important for HDP function such
as cationic (Arg and Lys) and hydrophobic (Gly, Ala, Val, Ile,
Leu, Phe, Tyr, and Trp) residues (Table 1). However, it should
be noted that all 20 amino acids are represented within HDP
sequences deposited in the APD (Wang et al., 2015a) and such
a strategy might remove potentially active sequences from the
overall chemical space.

With such large numbers encompassing the possible chemical
space of HDPs, it seems likely that the activities of individual
peptides from within this chemical space would also be quite
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TABLE 1 | Number of possible peptide sequences encompassing the chemical

space of peptides of a given length (n).

Peptide

length (n)

Number of peptides

in the chemical

space (20n)

Chemical space limited to

cationic (2) and hydrophobic (8)

residues ((2+8)n)

2 400 100

3 8,000 1,000

4 160,000 10,000

5 3,200,000 100,000

6 64,000,000 1,000,000

7 1,280,000,000 10,000,000

8 25,600,000,000 100,000,000

9 512,000,000,000 1,000,000,000

10 10,240,000,000,000 10,000,000,000

20 1.05 × 1026 1 × 1020

30 1.07 × 1039 1 × 1030

varied. An analogy that could be used to describe the activity
landscape of this chemical space would be to envision this as a
mountain range filled with peaks and valleys (Figure 1). Some
peptides within the chemical space will have high activity (the
peaks) while others will have low activity (the valleys). As we
move around this chemical space by manipulating the primary
amino acid sequence of a peptide and record the biological
activities, this vast chemical space can be mapped with the
ultimate goal of identifying the highest peak that represents a
truly “optimal” sequence (e.g., left panel, Figure 1).

Such an approach might be more feasible if the activity
landscape for each individual type of HDP activity were identical.
However, there is ample evidence that these activity landscapes
are independently defined for each biological function of HDPs.
For instance, LL-37 possesses relatively weak direct antibacterial
activity but inhibits P. aeruginosa biofilms at sub-inhibitory
concentrations (Overhage et al., 2008). Selective antibiofilm
activity by LL-37 has also been observed against Aggregatibacter
actinomycetemcomitans which causes oral biofilms and can
contribute to periodontal disease (Sol et al., 2013). In addition,
several synthetic peptides have been identified with sub-
inhibitory effects on bacterial biofilms including truncated
variants of LL-37 (Luo et al., 2017) or the synthetic peptide
WLBU2 (Lin et al., 2018). With respect to immunomodulatory
activity, a synthetic HDP, IDR-1, offered protection in murine
infection models against both Gram-positive or Gram-negative
pathogens, despite the fact that IDR-1 exhibited no direct
antibacterial effects in vitro (Scott et al., 2007). The selective
modulation of the immune response by IDR-1 was found to
be responsible for the protective effects, indicating that the
antibacterial and immunomodulatory properties of HDPs were
independently defined.

More recently, we sought to define the sequence requirements
of two synthetic HDPs, IDR-1002 and IDR-HH2, to
understand which residues contributed to the antibiofilm
and immunomodulatory properties of these peptides (Haney
et al., 2015). Using SPOT-synthesized peptide arrays, peptide

libraries consisting of single amino acid substitution variants of
the parent sequence were generated by replacing each residue
with one of nine amino acids (R, K, D, G, A, I, L, V, or W).
The antibiofilm and immunomodulatory (chemokine induction
and anti-inflammatory) properties of each peptide variant
were measured in vitro and plotted as substitution matrices to
identify which residues contributed to each individual activity
type. Interestingly, substantial overlap was observed between
the activity profiles of the two peptides but there were also
distinct residues that, when positionally substituted, appeared to
preferentially improve one activity over another. These results
imply that the activity landscapes for each biological function
of HDPs within the chemical space are overlapping but distinct
from each other (Figure 1). If these activity landscapes could be
adequately defined for each activity type, it would, in principle,
be possible to simultaneously optimize synthetic peptides for
multiple activities, while avoiding potentially harmful sequences
that are toxic or exert undesired effects. Therein lies the challenge
for researchers working in the HDP field: how can we adequately
define the activity landscape of the HDP chemical space?

Several approaches have been used to try and sample the
chemical space of HDPs and get a glimpse into these activity
landscapes, particularly for the antibacterial properties of HDPs.
Early approaches involved screening of combinatorial peptide
libraries to identify novel sequences with antibacterial activity
(Blondelle and Houghten, 1996; Blondelle and Lohner, 2000) but
these were effectively limited by the cost of such methods and
the extreme numbers of variants such that only 6-mer sequences
were considered.

Computational approaches have also been employed to
design and optimize novel peptide sequences with enhanced
antibacterial potency. Early attempts involved modeling AMPs
as a language and using natural AMPs sequences to define a
set of “grammars” that described the language (Loose et al.,
2006) and the implementation of similar grammatical approaches
continues to identify novel AMP sequences (Nagarajan et al.,
2018; Porto et al., 2018). Other computational approaches have
sought to establish quantitative structure activity relationships
(QSAR) that model the activity of test peptides based on the
chemical properties of AMPs using hundreds or thousands
of so-called “descriptors” based on the primary structure and
the physicochemical interrelationships of individual amino
acids along the peptide chain. Artificial intelligence strategies
(neural networks) were used to create models that quite
accurately predicted the antibacterial activity of virtual peptides
and ultimately identified novel 9-mer AMPs with enhanced
antibacterial potency in vitro that were also effective in an
in vivo model (Cherkasov et al., 2009). The emergence of
machine learning methods to predict novel AMP sequences
has proven quite popular and has made great strides in
identifying many unexplored AMP sequences (Torrent et al.,
2011; Maccari et al., 2013; Lee et al., 2017; Yoshida et al.,
2018). Moving forward, an improved understanding of the
mechanistic details of AMP activity coupled with the application
of increasingly sophisticated computational algorithms will
surely lead to more exciting outcomes from this line of
inquiry.
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FIGURE 1 | The activity landscapes for HDPs are complex (represented as topographical maps) and encompass a variety of biophysical characteristics such as

charge, hydrophobicity, amphipathicity, folding propensity, etc. When optimizing synthetic peptides by moving around the chemical space of an activity of interest

(represented by the dashed line), it is necessary to consider how this sequence alteration may impact other peptide properties and/or activities. This could result in a

convergence of activities within an HDP sequence (e.g., antimicrobial and immunomodulatory activities above) or a reduction in one activity type (e.g., cytotoxicity

landscape above). Topographical maps were generated by Contour Map Creator (http://contourmapcreator.urgr8.ch/), and the maps shown are only illustrative and

actually correspond to various locations near Vancouver, Canada.

Directed evolution methods have also been adapted to allow
a specific biological interaction or biological activity to guide
the discovery of novel peptide sequences. For instance, a phage
display approach was used to identify peptides capable of binding
to the cell surface of E. coli resulting in a novel antibacterial
peptide sequence with activity against both E. coli and P.
aeruginosa, although the resultant peptide was unfortunately
only moderately active and did not inhibit other tested bacteria
(Rao et al., 2013). A similar strategy was employed to identify
AMPs with selective activity against Listeria monocytogenes
(Flachbartova et al., 2016). Furthermore, phage display has
successfully identified peptides with antiviral (Ojeda et al., 2016)
and antifungal activity (de Oliveira et al., 2016) demonstrating
the utility of such a technique to explore other activity landscapes
within the chemical space of HDPs.

Recently, an elegant high-throughput synthetic biology
approach was described wherein ∼800,000 random 20mer
peptide sequences were displayed on the surface of a bacterial
cell as part of a fusion protein coupled to the outer membrane
protein OmpA (Tucker et al., 2018). Pools of transformed
bacterial cells before and after induction of the OmpA-peptide
fusion constructs were sequenced and nearly 8,000 peptide
sequences were identified as “hits” with potential antimicrobial
activity. Of the 22 peptide sequences that were synthesized
to validate the methodology, only two exhibited antibacterial
activity when evaluated in the standardMIC assay usingMueller-
Hinton broth but 18 (∼80%) exhibited bactericidal activity when
cells were treated in a simple tris-based buffer (10mM Tris,
25mM NaCl). It should be mentioned that the majority of these
validation sequences were chosen based on opposite physico-
chemical characteristics compared to classical AMPs (i.e., low
hydrophobicity and neutral to negative charge) in an effort to
sample unexplored regions of the peptide chemical space, while

the two that exhibited the most potent activity conformed to
properties of known AMPs. In fact, no particular bias toward
hydrophobicity, charge, or enrichment of specific amino acids
was observed for the∼8,000 “hit” sequences (Tucker et al., 2018),
suggesting that the chemical composition of active antibacterial
HDPs is likely more diverse than originally thought.

The examples described above primarily focused on sampling
the activity landscape that defines the antibacterial properties of
HDPs. However, the multifaceted nature of HDPs and their wide
range of biological activities suggest that independent activity
landscapes could be defined for every biological function of
HDPs. In the following section, we examine some of these
emerging roles of HDPs, beyond their direct antibacterial effects,
that represent the next wave of research that could propel these
molecules to clinical significance.

HDPs IN HEALTH AND DISEASE

HDPs as Modulators of Microbial
Communities
The drive to target pathogenic bacteria in the face of rising
antibiotic resistance has spurred the lion’s share of research into
natural and synthetic HDPs. However, the interactions between
bacterial cells and HDPs, involving the polycationic amphipathic
peptides associating with polyanionic and hydrophobic surfaces,
would not be limited to pathogenic bacteria, so it seems likely that
an AMP would have similar antibacterial effects on commensal
bacteria when present at sufficiently high concentrations.
Inevitably, the disruption of the natural microbiota could lead
to the expansion of opportunistic pathogens, such as Clostridium
difficile infections that often follow antibiotic therapy (Kelly and
LaMont, 2008). Fortunately, natural HDPs are rarely found at
concentrations high enough to sterilize the environment in their
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immediate vicinity (Hancock et al., 2016), but this raises the
question as to the functions of HDPs within the body. Several
pieces of evidence have emerged that natural HDPs may in
fact help to shape microbial communities within the host to
promote a healthy microbiota, rather than specifically removing
pathogenic bacterial species.

Compelling evidence for this idea came from analysis of
the microbial communities of cnidarians. Using seven different
species of Hydra that had been cultivated in the lab under
identical conditions for more than three decades, sequencing
of the associated microbial community revealed that each
species had a distinct microbial community associated with
them (Franzenburg et al., 2013). Furthermore, even when co-
cultured with another Hydra species, the microbial community
differences betweenHydra species did not change, demonstrating
that some host-derived factor was dictating the associated
bacterial community composition. Arminins are the most highly
expressed HDPs in Hydra (Augustin et al., 2009) and are only
found within the Hydra genus. Intriguingly, several orthologs
of arminin peptides were found amongst the various Hydra
species studied and their expression patterns varied depending
on the species being evaluated (Franzenburg et al., 2013).
Recolonization of germ-free arminin-deficient Hydra (with
∼50% reduced arminin levels) by donor polyps from otherHydra
species, revealed that the arminin-deficientHydra were unable to
reshape their microbial community into one that resembled their
native microbiota, resulting in a distinct microbial community
composition. Indeed, the diversity of natural HDP sequences
and structures observed for most animals, and even in different
body compartments (Nguyen et al., 2011; Mylonakis et al., 2016),
might result from species-specific HDPs that have co-evolved to
select specific microbial communities beneficial to that specific
host, while possibly limiting other species.

The spatial expression pattern of HDPs throughout the body
is also known to be tissue and cell type specific and this
could well play a role in defining variations in local microbial
communities within the same organism. For instance, analysis
of HDP expression patterns in the bovine udder revealed
differential expression levels of various peptides including the
lingual antimicrobial peptide, tracheal antimicrobial peptide, and
bovine neutrophil β-defensins 4 and 10 (Tetens et al., 2010).
Expression ofmost of these was confined to the lymph node while
DEFB1 (the β-defensin-1 gene) expression occurred primarily
at distal regions of the mammary gland. Furthermore, bovine
psoriasin (also known as S100A7) expression was found to be
strongly expressed in the streak canal (udder entrance) and the
authors suggest that this peptide may prevent the development of
coliform mastitis because of its strong antibacterial potency and
proximity to the region of the udder that would be exposed to the
most pathogens (Tetens et al., 2010). Alternatively, or perhaps in
addition, since psoriasin is anti-inflammatory it might serve to
prevent inflammation in this environmentally exposed tissue.

In mammals, the role of natural HDPs in maintaining
homeostasis within the gut is becoming increasingly appreciated
(Bevins and Salzman, 2011; Muniz et al., 2012; Ostaff et al., 2013).
For instance, the role of natural HDPs on the host microbiome
was evaluated in mice genetically engineered to express human

defensin 5 (DEFA5) or lacking the matrix metalloprotease 7
enzyme (MMP7) required to activate the endogenous mouse α-
defensins. In both cases, a distinct shift in the composition of the
bacterial community was observed, indicating that α-defensins
play an important role in shaping the microbiota of the small
intestine (Salzman et al., 2010). Specifically,MMP7 deficientmice
had low proportions and abundance of Bacteroides and mouse
intestinal Bacteroides (MIB) groups while DEFA5-transgenic
mice lacked segmented filamentous bacteria which directly
contact the epithelium in small intestines of several animals.
In diabetes-prone rats, cathelin-related antimicrobial peptide
(CRAMP) expression from β-cells was decreased, suggesting a
potential role of this peptide in type 1 diabetes (Pound et al.,
2015). At the same time, administration of the human CRAMP
homolog, LL-37, to diabetes-prone rats shifted the microbiota
toward a composition seen in diabetes-resistant mice (Pound
et al., 2015), suggesting that this HDP also plays a role in
maintaining gut homeostasis.

As the role of natural HDPs in maintaining homeostasis has
become appreciated, their potential to treat microbial dysbiosis
has also been considered. HIF-1α is a transcription factor that
has been shown to influence the expression of CRAMP in
murine myeloid cells (Peyssonnaux et al., 2005). The commensal
bacterium Bacteroides thetaiotamicron has been shown to activate
HIF-1α and promote cathelicidin production in the gut of
mice previously exposed to antibiotics which in turn prevented
invasive colonization by Candida albicans (Fan et al., 2015).
This demonstrated that modulation of the mucosal immune
effectors might represent a viable therapeutic approach for
preventing fungal infections following a course of antibiotic
treatment. In this regard, protection against murine Candida
albicans infections has also been demonstrated using a synthetic
immunomodulatory peptide, IDR-1018 (Freitas et al., 2017).

Several HDPs are also produced by epithelial cells within
the oral mucosa and the ease of accessibility to this ecological
niche within the body has prompted several studies aimed at
understanding the relationship of HDPs to oral health. Salivary
levels of various HDPs are known to be highly variable within the
human population (Tao et al., 2005) and this may be reflective
of the diverse oral microbiome composition amongst different
individuals (Kilian et al., 2016). Interestingly, low salivary levels
of α-defensins (Dale et al., 2006), HNPs 1-3 (Tao et al., 2005),
and LL-37 (Davidopoulou et al., 2012) have each been associated
with increased levels of caries in children. Patients with morbus
Kostmann syndrome, a severe congenital neutropenic disease,
also exhibit low LL-37 expression from neutrophils and none
of this HDP can be detected in their plasma or saliva (Pütsep
et al., 2002). Of note, all patients with morbus Kostmann
experience severe periodontal disease, which is consistent with
the suggestion that low LL-37 levels in the saliva could contribute
to this disease phenotype (Pütsep et al., 2002).

A synthetic peptide C16G2 was developed that was able to
specifically target and kill a cariogenic pathogen, Steptococcus
mutans, within an oral microbial community (Guo et al., 2015).
Not surprisingly, when treated with C16G2, the overall microbial
community exhibited a dramatic shift possibly due to killing of
certain microflora organisms by the peptide or to a reduction
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in bacterial species that were dependent on S. mutans for
their maintenance. Importantly, this study demonstrates the
possibility of using synthetic peptides to shape and modulate
natural microbial communities. Alternatively, synthetic HDPs
may prove useful for preventing infections associated with
microbes present in complex dental plaque biofilms, such as
peptide 1018 that significantly inhibited mixed biofilms formed
by natural salivary microflora (Wang et al., 2015b).

The mechanisms by which HDPs maintain this microbial
balance within the host are not completely understood, although
it is likely that thesemechanisms will be dependent on the specific
HDP that is expressed at (or delivered to) a given epithelial
surface, as well as the type of effector cells in the immediate
vicinity that can be influenced by the pleiotropic effects of these
molecules. Indeed, it is tempting to speculate that an activity
landscape defining the homeostatic activity of HDPs could be
exploited to develop prophylactic options to maintain a healthy
microbial balance. As our understanding of these processes
improves, opportunities to use HDPs as promoters of healthy
microflora will surely emerge.

Diseases Associated With Altered HDP
Expression or Activity
Due to their significant role in innate immunity and various
inflammatory processes, it is perhaps unsurprising that many
diseases and chronic inflammatory conditions have been
associated with a dysregulation of the natural HDP response,
particularly at epithelial surfaces where natural peptides are
present in high abundance or can be induced in response
to various environmental stimuli. These include conditions
associated with the skin, gut, lungs and several autoimmune
disorders (Hancock et al., 2016). Furthermore, there is increasing
evidence that natural HDPs can influence tumorigenesis, either
positively or negatively depending on the peptide in question
and the tissue affected. Many of these topics have been reviewed
in detail by others and we will only briefly highlight some of
the work that has been described pertaining to several of these
conditions.

Skin Disorders
The skin is the largest organ in the human body. It is comprised
of several different cell types that are organized into a complex
architecture that allows skin to perform a wide range of biological
functions. Since skin is constantly exposed to bacteria within the
environment, one of the main functions of skin is to protect
against invading pathogens while maintaining a healthy skin-
associatedmicrobiota. Several HDPs have been implicated in skin
health and it is not surprising that a dysregulation in these HDP
levels can contribute to a variety of skin disorders (Schauber and
Gallo, 2008; Marcinkiewicz and Majewski, 2016).

Psoriasis is a relatively common autoimmune disorder
characterized by inflamed skin resulting in abnormal skin patches
that are itchy, scaly and inflamed. Psoriatic skin is characterized
by overexpression of several HDPs and antimicrobial proteins
and it is generally thought that the presence of HDPs exacerbates
psoriatic lesions (Morizane and Gallo, 2012). Indeed, high β-
defensin gene copy number has been associated with increased

risk for psoriasis (Hollox et al., 2008) and the human cathelicidin
LL-37 is also overexpressed in psoriatic skin (Lande et al., 2007,
2014). Intriguingly, activation of both the innate and adaptive
immune response has been implicated in the pathogenesis
of psoriasis. For instance, LL-37 has been shown to activate
plasmacytoid dendritic cells by breaking tolerance to self-DNA
(Lande et al., 2007), while it was demonstrated that LL-37 could
also serve as an autoantigen for T-cells (Lande et al., 2014).
However, offsetting this is the potent anti-inflammatory activity
of LL-37 (Bowdish et al., 2005) which has been clinically tested as
a method for counteracting ulcerative lesions (Grönberg et al.,
2014). Patients with cutaneous lupus erythematosus also have
increased expression of several HDPs which has been proposed to
explain why they seldom develop skin infections (Kreuter et al.,
2011), although it is unclear how HDP expression contributes to
the pathogenesis of this disease in general.

Atopic dermatitis (AD, known colloquially as eczema) is
another common inflammatory condition characterized by dry,
red and itchy skin. In contrast to psoriasis, however, AD is
associated with reducedHDP levels and it has been suggested that
impairment of HDP production in AD skin contributes to higher
incidence of skin infections, particularly S. aureus infections
(Marcinkiewicz and Majewski, 2016).

In addition to these inflammatory disorders, a dysregulation
of HDP production in chronic wounds has been implicated
in a failure of these lesions to heal properly (Haney et al.,
2018b). Compounding this issue is that chronic wounds are often
colonized by bacteria growing in biofilms (James et al., 2008)
that are intrinsically resistant to conventional antibiotics (Lopez
et al., 2010) and whose presence may exacerbate inflammation
in the wound bed (Zhao et al., 2013). The therapeutic use of
natural and synthetic HDPs to promote wound closure while also
targeting the bacteria in the biofilm growth state may therefore
represent an underexplored strategy to treat chronic wounds
(Haney et al., 2018b), and proof of principle has indeed been
achieved for venous leg ulcers (Grönberg et al., 2014). Similarly,
synthetic peptides have shown efficacy in murine cutaneous
abscess infections (Mansour et al., 2016; Pletzer et al., 2017) and
sterile skin inflammation mouse models (Wu et al., 2017a).

Inflammatory Bowel Diseases
The gastrointestinal tract in humans is home to a large and
diverse community of bacteria and other microbes. The ability
of the epithelial cells lining the intestinal tract to contain these
bacteria is due to the presence of a complex layer of mucus and
proteins, including a wide assortment of HDPs (Wehkamp et al.,
2007). The term inflammatory bowel disease (IBD) encompasses
a range of inflammatory conditions of the intestinal tract. The
two most common IBDs are ulcerative colitis, which largely
affects the colon, and Crohn’s disease, which can affect the entire
gastrointestinal tract (Geboes et al., 2018). The exact causes of
these conditions are currently unknown but they are likely to
involve a combination of genetic, immune and environmental
factors. Various HDPs have been implicated in these diseases
(Holani et al., 2018), consistent with the potentially important
role that these molecules play in regulating overall gut health.
For instance, expression of many HDPs is high during colitis,
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particularly HBD2 and HBD3, and some of these may serve
as biomarkers of disease (Wehkamp et al., 2007; Ho et al.,
2013). Interestingly, the opposite phenomenon occurs in Crohn’s
disease, as the levels of several HDPs, including β-defensins
and LL-37, are substantially diminished (Wehkamp et al., 2007),
which may lead to disruption of the barrier function of the gut
and allow bacteria to reach the epithelial cell surface where they
elicit an inflammatory response.

Lung Disorders
As with other airway epithelial surfaces, the lungs are constantly
exposed to bacteria and other molecules that are carried
into the lungs with each inhaled breath. Fortunately, our
lungs are well-adapted to withstand this constant exposure
to potential pathogens and respiratory infections are kept
at bay through phagocytes and the mucociliary response.
Unfortunately, respiratory infections are relatively common
(Vos et al., 2015) and there is evidence that dysregulation
of natural HDPs within the lungs can contribute to an
increased susceptibility to respiratory infections (Hiemstra
et al., 2016). Lung tissue is known to express several
HDPs including α-defensins, β-defensins, and LL-37 (Hiemstra
et al., 2016), and their expression is often upregulated in
response to pathogen exposure, e.g., β-defensin 2 induction
in lung cells exposed to P. aeruginosa (Harder et al., 2000).
Furthermore, CRAMP-deficient mice have been shown to
have increased susceptibility to lung infections caused by
Klebsiella pneumonia (Kovach et al., 2012) implicating a
key role for natural HDPs in maintaining healthy lung
function.

In addition to preventing respiratory infections, several other
inflammatory conditions of the lungs have been associated with
a dysregulation of HDP function including: cystic fibrosis (CF),
chronic obstructive pulmonary disease (COPD), and asthma. As
with the other inflammatory conditions described above, both
high and low expression of natural HDPs within the lungs can
contribute to various disease pathologies.

CF is an autosomal recessive genetic disorder caused by
mutations in the CF transmembrane conductance regulator
protein (CFTR) gene which regulates anion transport in the
airway and other epithelial surfaces (Elborn, 2016). Patients
with this disease get mucus buildup within the lungs and
have difficulty clearing bacteria which contributes to persistent
respiratory infections and chronic inflammation (Elborn, 2016).
A direct consequence of this CFTR defect is that the salt
concentration within the lungs of CF patients is higher than
in healthy individuals (Smith et al., 1996) and this high salt
concentration has been shown to inhibit the antibacterial activity
of natural HDPs like HNP1 (Turner et al., 1998) possibly
contributing to increased susceptibility to bacterial infections.
Interestingly, in in vitro models, IDR-1018 was able to reduce
the exaggerated inflammatory response of CFTR-mutated human
airway epithelial cells to bacterial inflammatory agonists, largely
by correcting defective autophagosomal clearance (Mayer et al.,
2013).

COPD is a progressive lung disease that affects nearly 10%
of the population and is particularly prevalent in smokers

(Cosio et al., 2009). Patients with COPD have limited and
progressively deteriorating lung function and exhibit abnormal
inflammatory responses within the small airways and alveoli in
their lungs (Cosio et al., 2009). The role of HDPs in COPD
has been recognized for some time and the expression of many
natural HDPs is often dysregulated in patients afflicted with
this condition, which causes patients to have increased lung
inflammation and leaves them prone to bacterial infections
(Hiemstra et al., 2016). In addition to alteredHDP expression, the
enzymatic activity of peptidylarginine deiminases (PADIs) has
recently been shown to influence the function of natural HDPs
in the lungs of smokers with COPD. PADIs are enzymes that
postranslationally modify cationic peptidylarginine residues to
peptidylcitrulline which blocks their associated cationic charge
(Wang and Wang, 2013). Interestingly, the levels of PADI2 are
elevated in the lungs of smokers (Makrygiannakis et al., 2008) and
recombinant human PADI2 has been shown to citrullinate the
Arg residues in LL-37 in vitro (Kilsgård et al., 2012). Citrullinated
LL-37 exhibits reduced antibacterial activity in vitro compared to
LL-37 and is more susceptible to protease degradation (Kilsgård
et al., 2012), suggesting that this form of the peptide would be
less effective and more rapidly cleared from the lungs of COPD
patients. More recent work has demonstrated that citrullination
of LL-37 also suppressed the immunomodulatory function of this
peptide by reducing its anti-inflammatory ability to neutralize the
pro-inflammatory activity of bacterial LPS (Koziel et al., 2014),
further implicating this process as a contributing factor to COPD
progression.

Asthma is the most common inflammatory condition of the
lung and, when triggered by dust or allergens, leads to airway
inflammation and airflow obstruction (Holgate et al., 2015).
The exact cause of asthma is thought to involve a range of
environmental and genetic factors; however, one of the features of
this diseases is an altered innate immune response (Holgate et al.,
2015). Allergic airway inflammation has been shown to suppress
innate host defenses in mouse models of asthma, including
reducing levels of the mouse cathelicidin CRAMP (Beisswenger
et al., 2006). Steroid treatment by glucocorticoids is a common
treatment for asthma. However, steroid treatment in a murine
model of asthma reduced the levels of pulmonary HDPs and led
to increased susceptibility to infections by P. aeruginosa (Wang
et al., 2013).

Recently, the use of synthetic HDPs was explored as a
potential treatment option to overcome the reduced levels
of natural HDPs seen in asthmatic lungs. Impressively,
subcutaneous administration of IDR-1002 reduced airway hyper-
responsiveness in a murine model of house dust mite (HDM)
induced allergic asthma (Piyadasa et al., 2018). Mechanistic
studies revealed that the peptide suppressed the production
of interleukin (IL)-33 in murine lungs and human primary
bronchial epithelial cells. Since the levels of IL-33 are often
elevated in patients with asthma and disease severity is linked
with the levels of this chemokine (Préfontaine et al., 2009), the
use of peptide based therapeutics to suppress this key effector
molecule represents a potentially unexplored treatment option
for asthma. Notably, IDR and HDP peptides have demonstrated
activity in a variety of lung infection models including M.
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tuberculosis (Rivas-Santiago et al., 2013a,b) as well as acute and
chronic P. aeruginosa infection models (Wuerth et al., 2017,
2018), demonstrating anti-inflammatory and/or anti-infective
activity.

Cancer
The role of natural HDPs in tumorigenesis is complex and not
fully understood (for recent reviews, see Droin et al., 2009;
Wu et al., 2010; Jin and Weinberg, 2018). Nevertheless, several
studies have shown that natural HDPs are dysregulated in various
cancers and whether they are purported to promote or prevent
cancer progression appears to depend on the type of cancer
and which peptide is being considered. For instance, the human
cathelicidin LL-37 is expressed in lung (von Haussen et al., 2008),
breast (Heilborn et al., 2005), and ovarian (Coffelt et al., 2008)
cancers. It has been shown to have angiogenic properties (Salvado
et al., 2013) and can serve as a growth factor (Heilborn et al., 2005;
von Haussen et al., 2008), two functions which could promote
tumor growth in vivo. On the other hand, LL-37 has also been
shown to kill Jurkat T leukemia cells by inducing apoptosis
(Mader et al., 2009) and peptide fragments derived from LL-37
have been identified with direct anticancer activity against several
cancer cell lines (Kuroda et al., 2015).

HBD-1 appears to have largely antitumor effects since this
peptide is toxic toward late stage prostate cancer cell lines
(Bullard et al., 2008), while hBD-1 expression is suppressed in
malignant prostate tissue (Donald et al., 2003). Furthermore, four
common defensin haplotypes are associated with the increased
risk of prostate cancer and high copy numbers of the defensin
gene cluster are less observed in prostate cancer patient samples
(Huse et al., 2008). Conversely, hBD-3 appears to be carcinogenic
as it is highly expressed in cervical cancer (Xu et al., 2016) and
carcinomas of the head and neck (Mburu et al., 2011) and has
been shown to promote cervical cancer growth in mouse models
(Xu et al., 2016).

Based on these examples, it is attractive to speculate that
the peptide activity landscape that promotes tumorigenesis
is independent of peptides with anticancer properties and it
therefore may be possible to specifically enhance the anticancer
properties of a peptide as novel chemotherapeutics. In fact, this
anticancer activity of HDPs has spurred significant interest into
this class of molecules (Gaspar et al., 2013; Felício et al., 2017) as
researchers seek to identify and optimize peptides for their direct
anticancer effects (Hilchie et al., 2016; Arias et al., 2017).

Biofilm-Associated Infections
While this category is not per se a specific disease type, biofilms
form locally and can be associated with a variety of pathological
circumstances (including some of those described above). The
seminal observation that the human cathelicidin LL-37 inhibited
biofilm growth at sub-inhibitory concentrations (Overhage et al.,
2008) revealed that HDPs could potentially be exploited as
novel antibiofilm agents. Many more antibiofilm peptides have
since been identified from screening available synthetic peptide
libraries for biofilm specific activity (de la Fuente-Núñez et al.,
2014a,b; Reffuveille et al., 2014) or using activity-guided design
strategies to optimize known antibiofilm peptide sequences

(Haney et al., 2015). Indeed, the antibiofilm activity of newly
described HDP sequences is now often reported in addition to
the standard MIC values.

The reason for the preferential activity of some peptides
against biofilms (Overhage et al., 2008; de la Fuente-Núñez
et al., 2014b, 2015) is likely related to differing abilities to
target the physiological underpinnings of biofilms as a stress-
coping state, such as attacking the (p)ppGpp nucleotide signals
that mediate the stringent stress response (Potrykus and Cashel,
2008). This suggests that the mechanism of action (and by
extension, the activity landscape) of HDPs with antibiofilm
activity is independent from the cellular functions that target
planktonic bacterial cells. Given that overall HDPs are seen
as “dirty drugs” (Hancock and Sahl, 2006), it is probable that
multiple mechanisms of action occur downstream of the stress
response, likely dependent on the environment of the HDP
and the composition of the biofilm itself. Whether or not these
mechanisms are truly independent or interdependent remains to
be determined.

In an effort to begin to appreciate the range of HDP sequences
with antibiofilm activity, an online database has been established
to collect information on peptide sequences with documented
activity specifically directed toward bacterial biofilms (Luca
et al., 2015). In addition, a computational approach using
QSAR modeling was recently used to identify novel antibiofilm
specific peptides with therapeutic potential (Haney et al., 2018a).
Using antibiofilm activity data derived from a SPOT-synthesized
peptide arrays consisting of singly-substituted variants of 1018, a
QSAR model was generated to describe this antibiofilm activity.
The resulting model, which identified the seven most important
molecular descriptors from a starting list of ∼2,500 descriptors,
was able to accurately predict 85% of the antibiofilm peptides
within the training set. This QSAR model was subsequently
used to predict potential antibiofilm peptides in silico from a
virtual library consisting of 100,000 peptides and a subset were
synthesized to evaluate and confirm their antibiofilm activity in
vitro and in vivo (Haney et al., 2018a).

As more diverse antibiofilm peptide sequences are reported
with greater potency, the activity landscape of antibiofilm
specific peptides will begin to materialize. As details regarding
their mechanism of action and overlapping activity landscapes
with other biological functions are appreciated, multifunctional
peptides capable of exerting an array of biological effects are
sure to emerge as promising drug candidates to treat biofilm-
associated infections.

EMERGING CONCEPTS IN HDP
RESEARCH

In this review, we have highlighted several biological functions
that have been reported for natural and synthetic HDPs. The
breadth and diversity of these activities is vast (Figure 2) and
new peptide sequences and biological functions are continuously
being reported in the literature. Indeed, the majority of new
studies continue to focus on the antibacterial effects of HDPs with
an emphasis on membrane-active peptide sequences. However,
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FIGURE 2 | Diversity of biological functions described for HDPs.

the plethora of other activities described for HDPs deserves
increased appreciation and detailedmechanistic studies that push
beyond the idea of “membrane busters” will be necessary to
finally unlock the therapeutic potential of these biomolecules. In
an ideal world, synthetic HDPs could be designed to maximize
a desired biological function provided sufficient data existed to
accurately define the activity landscape of all possible activities of
interest. At the moment, defining these activity landscapes and
accurately mapping their chemical space is a daunting challenge,
but with new sophisticated screening and modeling techniques,
it is something that can likely be overcome.

An important consideration that is often overlooked in many
optimization studies is whether the assay conditions used to
measure a biological property of an HDP accurately capture the
behavior of the peptide that would occur in vivo. For instance,
measuring the MIC of a peptide in phosphate buffer or nutrient
limiting conditions will often yield values that appear more
potent than MICs recorded in rich media or in the presence
of high salt (Mahlapuu et al., 2016). Furthermore, the presence
of host cells can also interfere with the observed potency
of AMPs. For instance, preincubation of several AMPs with
red blood cells (RBCs) drastically reduced their antibacterial
efficacy against E. coli and S. aureus in vitro (Starr et al., 2016).
However, when added to a cell suspension containing both
RBCs and bacteria, the inhibition of antimicrobial activity was
not observed (Savini et al., 2017), highlighting the influence
of experimental setup on the observed biological activities. In
practice, the optimization of an HDP actually enhances peptide
sequences for a very specific functional assay. The more faithfully
that an experimental setup represents conditions that would
be encountered in vivo, the greater the likelihood that the

optimized synthetic HDPs would retain their biological functions
in vivo.

It is also presently unclear whether a peptide should or could
be simultaneously optimized for multiple biological functions or
if a specific biological activity should be the driving force that
guides the optimization strategy. For instance, the antibacterial
and antibiofilm properties of HDPs appear to be independent
of one another (Overhage et al., 2008; de la Fuente-Núñez
et al., 2014b; Haney et al., 2018a) and they are likely defined
by distinct activity landscapes. This is also probably the case for
AMPs and immunomodulatory functions (Scott et al., 2007) as
well as antibiofilm, chemokine induction and anti-inflammatory
activities (Haney et al., 2015). Perhaps ultimately the best
candidate peptide will be one that has the best compromise
of a mixture of activities. Furthermore, HDPs like LL-37 exert
their pleiotropic effects on the host through binding to various
receptors or intracellular targets, as well as interacting with the
cell membrane (Verjans et al., 2016). Presumably, each of these
functions occurs because of a specific interaction between LL-
37 and a particular biomolecule but whether the enhancement
of a unique HDP interaction could be teased apart to target a
specific immune cell or signaling pathway of interest remains to
be elucidated.

A long recognized (Scott et al., 1999b) but increasingly
appreciated (Lewies et al., 2018) ability of HDPs to synergize
with conventional antibiotics holds promise as a means to
overcome specific bacterial resistance mechanisms or restore
the antibacterial potency of previously effective antibiotics.
Several AMPs have been shown to synergize with conventional
antibiotics in vitro (Choi and Lee, 2012; Mataraci and Dosler,
2012; Hwang et al., 2013; Gier et al., 2016; Wu et al., 2017b)
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and these protective effects have been demonstrated in in vivo
infection models (Otvos et al., 2018) providing an exciting path
forward for the development of AMPs as adjunctive therapies
for conventional antibiotics. This combination approach can
be applied to bacteria growing within biofilms as antibiofilm
peptides have been shown to synergize with conventional
antibiotics to prevent and eradicate biofilms in vitro (Dosler
and Karaaslan, 2014; Reffuveille et al., 2014; de la Fuente-Núñez
et al., 2015). Recent studies in vivo revealed that this synergy
can be extended to hard-to-treat cutaneous abscesses in mice
and that peptides could be used in combination with an array of
antibiotics to effectively reduce the size of abscesses caused by all
of the ESKAPE pathogens (Pletzer et al., 2018). The mechanism
of antimicrobial synergy was proposed to involve promoting
antibiotic penetration and disruption of the stringent response.
Thus, future design studies could be aimed at promoting specific
aspects of this synergistic relationship to further enhance the
effectiveness of drug combinations.

Enhancing endogenous expression of natural HDPs as a
therapeutic approach has also been a topic of considerable
interest in recent years. Much of this work has stemmed from
the observation that transcription of the CAMP gene is regulated
by the vitamin D receptor (Gombart et al., 2005; Liu et al., 2006)
and it has been shown that vitaminD levels directly correlate with
LL-37 levels in healthy individuals (Bhan et al., 2011; Dixon et al.,
2012). Clinical trials have examined the effects of supplementing
patients suffering from a variety of inflammatory disorders with
vitamin D in an effort to enhance LL-37 levels and promote
innate immune functions associated with this peptide. The
benefits of such a therapeutic approach have been seen in several
diseases including: CF (Grossmann et al., 2012), atopic dermatitis
(Hata et al., 2008), cirrhosis (Zhang et al., 2016), tuberculosis
(Coussens et al., 2012), and Crohn’s disease (Raftery et al., 2015).
The success of vitamin D as an inducer of a natural HDP
(although it should be mentioned that this vitamin has many
other immunomodulatory properties), has spurred research
looking to identify other compounds capable of the same effect.
For instance, butyrate and other short chain fatty acids are well-
known inducers of LL-37 expression (Schauber et al., 2003; Jiang
et al., 2013). Proteins and biomolecules produced by commensal
bacteria have also been shown to modulate expression of HDP
levels in the host. For example, a bacterial lipoprotein from
the commensal bacterium Fusobacterium nucleatum called FAD-
I (Fusobacterium Associated Defensin Inducer) was recently
shown to activate hBD-2 expression in oral epithelial cells
(Ghosh et al., 2018). Since F. nucleatum is resistant to direct
killing by hBD-2, it was speculated that this may represent
a co-evolution of a commensal organism with the human
host to outcompete bacteria that would be susceptible to this
HDP.

Finally, there are several perceived limitations to the
development of HDPs as viable therapeutics that warrant
some discussion. The most often cited issues associated with
peptide drugs include high production costs, low stability and
bioavailability in vivo as well as the potential to induce an
immunogenic response (Marr et al., 2006; Vlieghe et al., 2010).
Issues associated with production costs are likely unfounded

as these can be addressed by optimizing large scale synthesis
procedures (Bray, 2003). With regards to bioavailability, peptides
appear to have unusual pharmacokinetics when delivered
systemically, with a rapid initial distribution blood followed by
moderate stable levels appearing in various tissues for up to
4 (Bolouri et al., 2014) or 6 h (Brunetti et al., 2016). These
concentrations may be too low to achieve direct antibacterial
activity (Roversi et al., 2014) but they could prove useful
in situations where these levels are sufficient (e.g., as immune
modulators), or certain peptides may delivered locally to
achieve high concentrations in the affected tissue (e.g., for
skin or lung infections). In general, small therapeutic peptides
are considered to be non-immunogenic (McGregor, 2008);
however, detailed studies on the ability of synthetic HDPs to
elicit an immunogenic response are largely lacking. In our
experience, generating antibodies against synthetic HDPs is
difficult, suggesting that HDPs may occupy an immunological
“blindspot” (perhaps mediated by clonal T-cell deletion during
development) with regards to adaptive immunity. Synthetic
HDPs also have potential issues associated with toxicity
mediated in part by a tendency to aggregate in the presence
of specific anions and body fluids (Haney et al., 2017) or
through non-specific interactions with host cells that cause
cell lysis. Formulating peptides with various delivery vectors
such as liposomes (Yang et al., 2011; Allen and Cullis, 2013),
nanoparticles (d’Angelo et al., 2015; Nordström and Malmsten,
2017; Wadhwani et al., 2017) or covalently attaching them to
bio-compatible polymers (Sahariah et al., 2015; Pranantyo et al.,
2016; Kumar et al., 2017) can potentially mitigate some of
these effects while retaining the desired biological functions, but
further studies will be required to define how a given peptide-
drug formulation combination impacts the pharmacokinetics,
pharmacodynamics, and activity profile of a given therapeutic
peptide.

CONCLUDING REMARKS

Faced with the prospect of a world without effective antibiotics,
it is imperative that we continue the search for new anti-
infective strategies and especially alternatives to conventional
antibiotics. AMPs and HDPs have been championed as candidate
drugs that could fill the void created by the rise of antibiotic
resistance, largely by considering them as a new wave of
antibiotics. Unfortunately, even after nearly 40 years of work
since their discovery, we have yet to see this promise fulfilled.
It could be argued that the writing is on the wall for AMPs
and that we will never make these compounds into viable drugs.
However, we maintain that HDPs overall still have tremendous
potential as therapeutic options for bacterial infections but
we have been focusing our efforts on mapping the wrong
activity landscape related to anti-infective activity. The multi-
faceted nature of HDPs and their ability to influence a wide
range of biological processes opens the door to expanding our
understanding of other activity landscapes within the chemical
space of HDPs. As our understanding of these other activity
types improves, and the mechanistic details underpinning
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these other processes are laid bare, this will undoubtedly lead
to the development of HDP based drugs that are effective
against infectious diseases as well as inflammatory conditions.
Indeed, the antibacterial mountain of HDPs has probably been
conquered, but the exploration of the peaks and valleys that
make up the entire chemical landscape of HDPs has only just
begun.
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