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A new fluorescent “turn-on” probe-based immunosensor for detecting drug residues

in foodstuffs was established by combining the mechanism of aggregation-induced

emission (AIE) and an indirect competitive enzyme-linked immunosorbent assay (ELISA).

In this study, a luminogen, with negligible fluorescence emission (TPE-HPro), aggregated

in the presence of H2O2, and exhibited astrong yellow emission based on its AIE

characteristics. This AIE process was further configured into an immunoassay for

analyzing drug residues in foodstuffs. In this approach, glucose oxidase (GOx) was

used as an enzyme label for the immunoassay and triggered GOx/glucose-mediated

H2O2 generation, which caused oxidation of TPE-HPro and a “turn-on” fluorescence

response at 540 nm. To quantitatively analyze the drug residues in foodstuffs, we used

amantadine (AMD) as an assay model. By combining the AIE-active “turn-on” fluorescent

signal generation mechanism with conventional ELISAs, quantifying AMD concentrations

in chicken muscle samples was realized with an IC50 (50% inhibitory concentration) value

of 0.38 ng/mL in buffer and a limited detection of 0.06 µg/kg in chicken samples. Overall,

the conceptual integration of AIE with ELISA represents a potent and sensitive strategy

that broadens the applicability of the AIE-based fluorometric assays.

Keywords: aggregation-induced emission, fluorescence, ELISA, drug residues, foodstuffs analysis

INTRODUCTION

The enzyme-linked immunosorbent assay (ELISA) is an extensively used immunoassay to detect
the concentration of protein biomarkers and small molecules for clinical diagnosis, environmental
monitoring, and food analysis (Suri et al., 2009; Chikkaveeraiah et al., 2012; Cheng et al., 2017;
Wang et al., 2017). In conventional ELISAs, the enzyme-conjugated antibody simultaneously
uses its specific immune recognition and bio-catalytic capabilities (Clark et al., 1986). Although
conventional ELISAs are simple to use, effective, and commercially available, they suffer from
moderate sensitivity, and are therefore unsuitable for analyzing low concentration analytes
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(Zhang et al., 2015b; Wang et al., 2016; Chen et al., 2019).
A variety of fluorogenic ELISAs use fluorescent molecules or
nanoparticles and have attracted increasing attention due to their
higher sensitivity compared with traditional ELISAs (Li et al.,
2015a; Fu et al., 2017; Sharma et al., 2018). Current fluorescent
immunoassays have focused on the extensive synthesis of
antibody and fluorescent molecules/nanomaterials conjugates
and/or design of fluorescent signal mechanisms instead of
enzymatic antibody labeling, as in traditional ELISA (Liu et al.,
2013; Hlavácek et al., 2016; Sun et al., 2016). However, these
fluorogenic ELISAs still have several limitations: (I) traditional
organic fluorophores are vulnerable to photobleaching; (II)
the synthesis of fluorescent nanoparticles is complicated and
time-consuming; (III) the bio-conjugation process affects the
stability of fluorescence probes and antibody activity; and (IV)
aggregation-induced quenching results in fluorescent intensity
decay. To solve these critical issues, fluorogens with aggregation-
induced emission (AIE) properties might be a useful alternative.

Recently, fluorogens with AIE characteristics have emerged as
a new class of fluorescent materials to detect various analytes
(Hong et al., 2009; Kwok et al., 2015; Mei et al., 2015; Gao
and Tang, 2017; Xia et al., 2018). AIE luminogens (AIEgens)
are non-emissive in their molecularly dissolved state but exhibit
strong emission in their aggregated state, the opposite of
aggregation-caused quenching (ACQ), which is observed in
conventional fluorophores (Luo and Xie, 2001; Zhang et al.,
2014; Cai et al., 2018; He et al., 2018). Due to the unique
AIE-based fluorogenic process, AIEgens have become a versatile
and potent strategy for designing various sensors such as for
gas (Zhang et al., 2015a), metal ions (Feng et al., 2018), and
pH changes (Zhao et al., 2016). Until recently, few groups
have designed new approaches that integrate immunoassays and
fluorogens with AIE (Wang et al., 2014; Engels et al., 2016;
Xiong et al., 2018). However, a hurdle for practical applications is
their incompatibility with conventional immunoassay platforms,
because they additionally require complicated chemical reactions
to activate the AIE process, such as synthesis and themodification
of AIE nanoparticles (Li et al., 2015b; Zhang et al., 2018) and a
Cu+-catalyzed click reaction to form AIE polymers (Yuan et al.,
2017). Therefore, the major challenge in developing an AIE-
based immunosensor is designing a straightforward fluorescent
signal generation methodology that is compatible with the
current ELISA platform, which can be directly applicable with
AIE-triggered fluorescent “turn-on.”

In this work, we designed a fluorogenic ELISA based on an
AIE-active “turn-on” fluorescent probe, which can be directly
applied to current immunoassay platforms and offers a much
higher sensitivity. Previous studies in our group suggested
that the AIE-active bioprobe, TPE-HPro, can sense hydrogen
peroxide, which can be further used for a sensitive glucose
detection in serum samples (Song et al., 2016b). Based on
this principle, we developed a glucose oxidase (GOx)-triggered
fluorescent “turn-on” system that uses GOx-catalyzed glucose
oxidation and TPE-HPro aggregation. In this strategy, GOx
was used as an enzyme label in the immunosensor for H2O2

generation, which triggered TPE-HPro oxidation and enabled
fluorescent “turn-on” detection. This straightforward approach

is fully compatible with the current immunoassay platform and
can be generally applicable to the detection of drug residues in
foodstuffs, which broadens the applicability of the AIE-based
signal transduction system.

MATERIALS AND METHODS

Reagents and Instruments
D-glucose, hydrogen peroxide, acetic acid, and acetonitrile were
purchased from Sigma-Aldrich (St. Louis, USA). AMD was
purchased from Tokyo Chemical Industry Co., Ltd (Tokyo,
Japan). Bovine serum albumin (BSA) was purchased from
Amresco Inc. (Solon, USA). Glucose oxidase-labeled goat
anti-mouse IgG (gtAm-GOx) was purchased from Abcam
(Cambridge, UK), and horseradish peroxidase-labeled goat
anti-mouse IgG (gtAm-HRP) was purchased from Jackson
ImmunoResearch (West Grove, USA). Phosphate-buffered
saline (PBS) and Tris-HCl were purchased from Solaribo
(Beijing, China). TMB substrate was purchased from Beyotime
Biotechnology (Shanghai, China). TPE-HPro was produced in
our laboratory as previously described (Song et al., 2016b). The
coating antigen AMD-OVA (amantadine-ovalbumin conjugates)
and monoclonal antibodies against AMD (mAb 3F2) were
produced in our laboratory as described (Wang et al., 2018). All
other chemical reagents required for the experiments were of
analytical grade and obtained from Sigma-Aldrich (St. Louis,
USA). UV-Vis and fluorescence (FL) spectra were measured on
a SpectraMax M5 microplate reader (Molecular Devices San
Jose, CA, USA).

AIE-Based Hydrogen Peroxide and
GtAm-GOx Sensing
The cleavage of the phenyl boronic ester occurs only in high pH
environment. In our previous work, we evaluated and optimized
the pH effect on the AIE process (Song et al., 2016b). At pH
>10, the cleavage of phenyl boronic ester occurs and shows a
significant fluorescence emission. Furthermore, the fluorescence
intensity increases weakly after a 30min incubation with TPE-
HPro and H2O2, which indicates the saturation of the cleavage
reaction. Thus, for AIE-based H2O2 sensing, 120 µL of different
H2O2 concentrations (0–60µM) were mixed with 42 µL Tris-
HCl buffer (38mM, pH = 11.5). Then the mixtures were added
into the TPE-HPro probe solutions (400µM in acetonitrile) at
a 9:1 volume ratio. The solutions were kept to react at 37◦C for
30min. The fluorescence spectra of the solutions were recorded
using a microplate reader.

For AIE-based gtAm-GOx sensing, gtAm-GOx was serially
diluted with deionized water 0–14µg/mL. Then, glucose (50mM
in H2O) was mixed with the gtAm-GOx solutions at a 3:1 volume
ratio and incubated at 37

◦

C for 30min. Subsequently, 120 µL of
these solutions were mixed with 42 µL Tris-HCl buffer (38mM,
pH = 11.5). Finally, 135 µL of the mixture was incubated
with 15 µL TPE-HPro probe solutions (400µM in acetonitrile).
Fluorescence intensity was measured after incubation at 37

◦

C
for 30 min.
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Food Sample Pretreatment
Negative chicken muscle samples were provided and confirmed
by the National Veterinary Drug Safety Evaluation Center
(Beijing, China). Samples were analyzed by the AIE-based and
conventional methods after the following pretreatment: 1.00 g
of the chicken muscle sample was exactly weighed and spiked
with AMD at 0.5, 1.0, and 2.0 µg/kg. Then, 5mL 1% acetic
acid in acetonitrile was added and well homogenized for 2min.
Subsequently, the homogenate was centrifuged for 5min at
4,000 g. Finally, 3mL of the supernatant was evaporated under
nitrogen to dryness at 40

◦

C, and the residue was dissolved
in PBS and analyzed using an indirect competitive ELISA
(Wang et al., 2018).

Fluorometric “Turn-On” Immunoassay for
the Model Analyte
For the AIE-based fluorometric immunoassays, 100 µL AMD-
OVA conjugates were added to a 96-well plate and incubated at
4
◦

C overnight. The plate was then blocked with 150 µL 1% BSA
in PBS at 37

◦

C for 1 h. The plates were washed three times with
washing buffer (PBS containing 0.025% Tween-20) then 50 µL
mAb 3F2 was added with 50 µL AMD of varying concentration
or samples for competitive reactions. After incubation at 37

◦

C for
30min, the plate was washed four times and 100 µL gtAm-GOx
in PBS (containing 1% BSA and 0.01% Tween-20) was added and
incubated for 30min at 37

◦

C. The plate was washed three times
with washing buffer and three times with deionized water. Then,
we added 120 µL glucose (50mM in H2O) and incubated it for
30min at 37

◦

C. Finally, 42 µL Tris-HCl buffer (38mM, pH =

11.5) was added and the mixtures were added into the TPE-HPro
probe solutions (400µM in acetonitrile) at a 9:1 volume ratio.
FL intensity was recorded by the plate reader after incubation
at 37

◦

C for 30min. The calibration curve was analyzed by a
four-parameter logistic equation using OriginPro 9.1 (OriginLab,
Northampton, MA, USA).

RESULTS AND DISCUSSION

The TPE-HPro-Based “Turn-On” Sensor for
H2O2 and GtAm-GOx
As a proof of principle, we first demonstrated that H2O2

oxidation of TPE-HPro to TPE-HPro-Ox could be used to
sense H2O2. TPE-HPro, which consists of a TPE core structure
and a phenyl boronic ester, exhibited negligible emission. In
the chemical structure of TPE-HPro, the imine group acts as
an emission mediator and can block the fluorescence emission
by photo-induced electron transfer (PET) and a cis-trans
isomerization process of C=N (Huxley et al., 2014; Song et al.,
2016a). Therefore, in the presence of H2O2, the phenyl boronic
ester is oxidized and cleaved. Due to the resulting intramolecular
hydrogen bonding, the imine is conformed followed by a
significant emission (Song et al., 2016b). The color changing
of the AIE process could be clearly distinguished by the naked
eye under a hand-held UV lamp and quantitatively measured
by monitoring the FL spectra (Figure 1A). Different H2O2

concentration were used to oxidize TPE-HPro, and fluorescence

“turn-on” was measured. Due to the AIE process, FL spectra
showed an obvious characteristic peak at 540 nm, and the peak
intensity at 540 nm gradually increased with H2O2 concentration
from 0 to 60µM. By plotting the FL intensity with H2O2

concentration (Figure 1B), the calibration curve with R2 =

0.9978 indicated a good linear response (Figure 1B inset).
Moreover, the lowest H2O2 concentration (5µM) can even be
sensed with the fluorescence spectrophotometer. The sensitivity
suggested that H2O2-triggered “turn-on” fluorescence could be
further implemented to design a highly sensitive AIE-active
“turn-on” sensor.

When developing an enzyme-mediated immunoassay, the
main challenge is finding a H2O2-generating enzyme that can
modulate the AIE process for fluorescent measurements. To
achieve this goal, we employed commercially available gtAm-
GOx to effectively generate H2O2, as in our previous studies
(Yu et al., 2017, 2018). As the concentration of the GOx-
labeled secondary antibody increased, more H2O2 was generated
by the enzymatic oxidation of glucose, which can be used to
trigger the AIE process. We tested the sensitivity of GOx-
catalyzed glucose oxidation for secondary antibody sensing. Final
concentrations of GOx-labeled secondary antibody ranging from
0.2 to 14.0µg/mL were investigated on AIE process (Figure 2).
The FL intensity at 540 nm increased linearly with GOx-labeled
secondary antibody concentrations in the range of 0–7.0µg/mL
(R2 = 0.9842; Figure 2 inset). As the concentration of gtAm-
GOx increases, more H2O2 can be generated by the GOx/glucose
enzymatic reaction, which leads to an increased level of the
oxidation-stimulated AIE-process and fluorescence “Turn-On.”
In this established enzyme-catalyzed signal transduction and
oxidation reaction-triggered fluorescent “turn-on” sensor: (I)
H2O2 was efficiently formed by the GOx-catalyzed oxidation
reaction; (II) the AIEgen could be hydrolyzed by H2O2 even at
5µM to produce strongly emissive AIE aggregates. Therefore,
we expect to achieve highly sensitive detection by combining
the AIE-active “turn-on” fluorescent sensor with conventional
immunoassay technology.

An AIE-Active “Turn-On” Fluorescent
Probe-Based Indirect Competitive ELISA
We further employed this AIE-active “turn-on” fluorescent
sensor for highly sensitive indirect competitive ELISAs
(Figure 3A). AMD-OVA conjugates were used as the coating
antigen and were immobilized on a 96-well plate. For the
competitive reaction, coated AMD-OVA conjugates competed
with AMD in the buffer or sample for primary antibody
(3F2) binding. Then, commercial GOx-labeled anti-mouse
IgG antibodies were used as the secondary antibody for H2O2

formation and subsequent of AIE induction and fluorescent
“turn-on” signal generation. Compared with traditional ELISAs,
the only difference was that glucose rather than TMB was
introduced into the signal generation step. Therefore, the
procedures of our newly established AIE-based fluorescence
“turn-on” immunoassay were nearly the same, and thus
were fully compatible and comparable with current ELISA
platforms. Instead of the absorbance values of a traditional
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FIGURE 1 | H2O2-triggred “turn-on” fluorescence. (A) Fluorescence spectra in the presence of varying H2O2 concentrations (0–60µM). Photograph showing color

changes of the solutions using a hand-held UV lamp; (B) Fluorescent intensities plotted against H2O2 concentration.

FIGURE 2 | Glucose oxidase-mediated fluorescence “turn-on” using varying

GOx-labeled secondary antibody concentrations (0–14µg/mL).

ELISA, the fluorescence “turn-on” from the AIE-based
sensor further amplified the signal output and enhanced
the detection sensitivity.

To evaluate the sensitivity of our AIE-based indirect
competitive ELISA, various concentrations of AMD were tested
(0.06–13.5 ng/mL). Because of the competitive nature of this

immunoassay platform, an increased AMD concentration led
to intense competition, such that less primary and GOx-labeled
secondary antibodies were bound on the ELISA plate; and
subsequently less H2O2 was generated. Thus, no noticeable
H2O2-induced “turn-on” fluorescence was obtained in the
presence of high concentration of AMD. With decreasing
AMD concentration of, fluorescence intensity gradually
increased (Figure 3B). Relative fluorescence intensity [(FL-
FLblk)/(FL0-FLblk)%] was used to quantitatively evaluate
AIE process level (FL, FLblk, and FL0 were fluorescence
intensities in the presence of varying AMD concentration,
in the absence of secondary antibody, and at 0 ng/mL
AMD, respectively).

We next compared our newly designed AIE-based ELISA with
a conventional ELISA (Figure 3B). These results showed that
the IC50 value of a conventional TMB/HRP-based ELISA was
0.93 ng/mL, while our newly established AIE-based fluorescence
“turn-on” immunoassay provided a higher sensitivity; the IC50

value was 0.38 ng/mL. This suggests approximately 2.5-fold
improvement in sensitivity. The limit of detection (signal-
to-noise ratio of 3) was determined to be 0.06 ng/mL. This
improved sensitivity relied on the following two principles:
first, H2O2 was efficiently generated by the enzyme-catalyzed
oxidation reaction; and second, the production of strong emissive
AIE aggregates could be triggered by low concentrations of
H2O2. These unique features make this “turn-on” fluorescent
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FIGURE 3 | (A) Schematic illustration of the aggregation-induced emission

(AIE)-active “turn-on” fluorescent immunosensor for indirect competitive

ELISA; (B) Inhibition curve for quantitative determination of amantadine (AMD)

by the newly designed AIE-based fluorescent “turn-on” immunosensor (left)

and the conventional TMB-based method (right).

immunosensor an attractive immunoassay platform for highly
sensitive detection.

Applying the “Turn-On” Fluorescent
Immunoassay to Detecting Drug Residues
in Foodstuffs
Finally, having successfully shown that the assay could quantify
AMD, the “turn-on” fluorescent immunosensor was further
evaluated using real food samples. AMD-contaminated chicken
samples were used as a model. Chicken muscle samples
were spiked with AMD at concentrations of 0.5, 1.0, and
2.0 µg/kg. In the indirect competitive immunoassay, spiked
AMD in chicken samples competed with coating antigen
for binding of the primary antibody. Thus, as the level of
competition increased, less H2O2 was generated by GOx, which
decreased the AIE-based fluorescence “turn-on.” Because of the
complexity of chicken muscle samples, a pretreatment step was
required. The color intensity change obtained for negative and
positive chicken samples could be visually distinguished using
a hand-held UV lamp (Figure 4). To quantitatively analyze
AMD concentration in chicken muscle samples, fluorescence
intensities were recorded by a microplate reader. As shown
in Table 1, the recovery rates ranged from 88.2 to 91.7%
with CVs of 8.3 to 11.8%. These results were comparable
to our previous study based on conventional ELISAs for

FIGURE 4 | Emission photos of the AIE-based indirect competitive

immunoassay using a hand-held UV lamp. Positive food samples containing

AMD compete with the coated AMD-OVA on the ELISA plate, inhibiting the

binding of GOx-labeled antibody, which catalyzes the oxidation reaction that

stimulates fluorescent signal generation.

TABLE 1 | AMD detection rates from spiked chicken muscle samples at different

concentrations (n = 5).

Added Found

Concentration [µk/kg] Mean [µg/kg] Recovery [%] CV [%]

0.5 0.44 88.2 11.8

1.0 0.89 89.3 9.1

2.0 1.83 91.7 8.3

AMD detection, which used the same primary antibody
(Wang et al., 2018). Therefore, our newly designed AIE-based
fluorescent “turn-on” indirect competitive immunoassay was
capable of detecting AMD in complex food matrices with
high sensitivity.

CONCLUSION

In conclusion, we developed an AIE-based fluorescence
“turn-on” immunoassay by combining a GOx-triggered AIE
process with an indirect competitive ELISA for the highly
sensitive detection of drug residues in foodstuffs. In this
approach, the fluorescence “turn-on” is triggered by the GOx-
catalyzed oxidation of glucose and H2O2-stimulated TPE-HPro
aggregation. This cascade reaction makes use of the catalytic
ability of the enzyme and the AIE characteristics, which lead to
the signal amplification of the immunoassay. The AIE-based
fluorogenic ELISA hasmuch higher sensitivity due to the efficient
generation of H2O2, which leads to a high fluorescence emission
at low concentrations of H2O2. Compared with conventional
HRP/TMB-based ELISAs, this newly designed immunoassay
offers a 2.5-fold enhancement in sensitivity. Furthermore, this
novel sensing strategy can be directly adapted to the current
indirect competitive conventional ELISA format using an H2O2-
triggered AIE fluorescence “turn-on” as the signal generation
mechanism. This represents an alternative to the existing

Frontiers in Chemistry | www.frontiersin.org 5 April 2019 | Volume 7 | Article 228

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Yu et al. Fluorescence “Turn-On” Analysis of Drug Residues

commercial immunoassay. More importantly, this approach can
be applied to quantifying AMD in real food samples. Therefore,
the developed AIE-based fluorescence “turn-on” ELISA has
excellent potential for use in the testing of other drug residues in
food samples.
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