AUTHOR=Zheng Fengjiao, Wang Peixi, Du Qingfeng, Chen Yiping, Liu Nan TITLE=Simultaneous and Ultrasensitive Detection of Foodborne Bacteria by Gold Nanoparticles-Amplified Microcantilever Array Biosensor JOURNAL=Frontiers in Chemistry VOLUME=7 YEAR=2019 URL=https://www.frontiersin.org/articles/10.3389/fchem.2019.00232 DOI=10.3389/fchem.2019.00232 ISSN=2296-2646 ABSTRACT=Foodborne pathogens, especially bacteria, are explicitly threatening public health worldwide. Biosensors represent advances in rapid diagnosis with high sensitivity and selectivity. However, multiplexed analysis and minimal pretreatment are still challenging. We fabricate a gold nanoparticle (Au NP)-amplified microcantilever array biosensor that is capable of determining ultralow concentrations of foodborne bacteria including Escherichia coli O157:H7, Vibrio parahaemolyticus, Salmonella, Staphylococcus aureus, Listeria monocytogenes, Shigella, etc. The method is much faster than using conventional tools without germiculturing and PCR amplification. The six pairs of ssDNA probes (ssDNA1 + ssDNA2 partially complementary to the target gene) that originated from the sequence analysis of the specific gene of the bacteria were developed and validated. The ssDNA1 probes were modified with -S-(CH2)6 at the 5′-end and ready to immobilize on the self-assembled monolayers (SAMs) of the sensing cantilevers in the array and couple with Au NPs, while 6-mercapto-1-hexanol SAM modification was carried out on the reference cantilevers to eliminate the interferences by detecting the deflection from the environment induced by non-specific interactions. For multianalyte sensing, the target gene sequence was captured by the ssDNA2-Au NPs in the solution, and then the Au NPs-ssDNA2-target complex was hybridized with ssNDA1 fixed on the beam of the cantilever sensor, which results in a secondary cascade amplification effect. Integrated with the enrichment of the Au NP platform and the microcantilever array sensor detection, multiple bacteria could be rapidly and accurately determined as low as 1–9 cells/mL, and the working ranges were three to four orders of magnitude. There was virtually no cross-reaction among the various probes with different species. As described herein, it holds great potential for rapid, multiplexed, and ultrasensitive detection in food, environment, clinical, and communal samples.