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A long wavelength TCF-based fluorescent probe (TCF-ALP) was developed for the

detection of alkaline phosphatase (ALP). ALP-mediated hydrolysis of the phosphate

group of TCF-ALP resulted in a significant fluorescence “turn on” (58-fold), which

was accompanied by a colorimetric response from yellow to purple. TCF-ALP was

cell-permeable, which allowed it to be used to image ALP in HeLa cells. Upon addition

of bone morphogenic protein 2, TCF-ALP proved capable of imaging endogenously

stimulated ALP in myogenic murine C2C12 cells. Overall, TCF-ALP offers promise as

an effective fluorescent/colorimetric probe for evaluating phosphatase activity in clinical

assays or live cell systems.
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INTRODUCTION

Alkaline phosphatase (ALP) is an ubiquitous enzyme found in the majority of human tissues,
where it catalyses the dephosphorylation of various substrates such as nucleic acids, proteins,
and other small molecules (Coleman, 1992; Millán, 2006). ALP also plays an important role in
signal transduction and regulation of intracellular processes (cell growth, apoptosis, and signal
transduction pathways) (Julien et al., 2011). Abnormal levels of ALP in serum are an indicator
of several diseases including bone disease (Garnero and Delmas, 1993), liver dysfunction (Rosen
et al., 2016), breast and prostatic cancer (Ritzke et al., 1998; Wymenga et al., 2001), and diabetes
(Tibi et al., 1988). As a result, ALP is regarded as a key biomarker in medical diagnosis (Coleman,
1992; Ooi et al., 2007). Therefore, it is important to develop a fast, reliable, and selective detection
system for monitoring ALP activity that is amenable to clinical diagnostics.

There have been numerous approaches to determine ALP levels, including colorimetric
(Yang et al., 2016; Hu et al., 2017), chemiluminescent (Jiang and Wang, 2012), electrochemical
(Zhang L. et al., 2015), surface-enhanced Raman methods (Ruan et al., 2006), and fluorescence
(Cao et al., 2016; Fan et al., 2016). Our group has been particularly interested in the
development of fluorescent probes for the detection of biologically relevant analytes (Sedgwick
et al., 2017a,b, 2018a,b; Wu et al., 2017; Zhang et al., 2019). Fluorescence has many
advantages over other methods owing to its simplicity and high sensitivity/selectivity, providing
rapid, non-invasive, real-time detection (Wu et al., 2017). Whilst there have been many
fluorophores developed for assaying ALP activity such as organic dyes (Zhang H. et al.,
2015; Zhao et al., 2017), conjugated polymers (Li et al., 2014), inorganic semiconductor
dots (Qian et al., 2015), and noble metal clusters (Sun et al., 2014), most require
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high probe concentrations and crucially rely on short
wavelength emission, thus limiting their applicability in
biological systems. Therefore, ALP probes that operate
at long wavelengths are required to allow for deeper
tissue penetration and to avoid cell-based autofluorescence
(Liu et al., 2017; Tan et al., 2017; Zhang et al., 2017).

RESULTS AND DISCUSSION

Chemistry
Here we report a TCF-based fluorescent probe that allows
for the detection of ALP and/or acid phosphatase (ACP).
As shown in Scheme 1, this probe (TCF-ALP) is based on
the conjugation of 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-
2,5-dihydrofuran (TCF) to an electron-donating phenol moiety,
a phosphorylated phenol; this affords an internal charge transfer
(ICT) donor-π-acceptor (D-π-A) system whose fluorescence
properties vary dramatically following ALP-mediated phosphate
group cleavage (Gopalan et al., 2004; Liao et al., 2006; Bouffard
et al., 2008; Lord et al., 2008; Jin et al., 2010; Sedgwick
et al., 2017b; Teng et al., 2018). TCF-ALP was synthesized
in four steps with an overall yield of 27% (Scheme 2).
In brief, 3-hydroxy-3-methyl-2-butanone, malononitrile, and
NaOEt were heated at reflux in EtOH for 1 h and then
cooled. The resultant precipitate TCF (1) was then added
to a mixture of piperidine (cat.) and 4-hydroxybenzaldehyde
in EtOH, which was subsequently heated to 100◦C by
microwave irradiation to afford intermediate 2 (TCF-OH).
Intermediate 2 was then treated with diethylchlorophosphate,
DMAP (cat.) and NEt3 in THF to give the phosphonate ester
3. Hydrolysis using trimethylsilyl iodide in dichloromethane
(DCM) afforded TCF-ALP as a crystalline solid (After trituration
with Et2O).

Spectroscopic Studies of TCF-ALP
UV-Vis and fluorescence spectroscopic titrations of TCF-ALP
were performed in 50mM Tris-HCl buffer in the absence and
presence of ALP from porcine kidney. In the absence of ALP,
TCF-ALP was found to have no UV absorption features above
∼550 nm; however, upon addition of ALP a bathochromic shift
in the UV absorption maximum was observed (from 440 to
580 nm), which was accompanied by a change in color from
yellow to purple (Figure S1). ALP-mediated hydrolysis of TCF-

SCHEME 1 | A TCF-based fluorescence probe (TCF-ALP) for the detection of alkaline phosphatase.

ALP to form the highly fluorescent phenol (2), was confirmed
by 31P NMR studies and HRMS (see Figures S1–S4). The effect
of pH on the rate of ALP mediated hydrolysis of TCF-ALP was
evaluated. It was found that incubation with 0.8 U/mL of ALP at
pH 9.2 resulted in the largest fluorescence response (Figure S5).
Consequently, all in vitro experiments to determine ALP activity
were carried out in 50mM Tris-HCl buffer at pH 9.2.

The kinetics of ALP toward TCF-ALP were determined via
fluorescence spectroscopy (Figures S6, S7), with the resultant
fluorescence data analyzed using the Michaelis-Menten equation
(Figure S8). This revealed a Km of 35.81 ± 2.63µM and a Vmax

of 3029 ± 157.3 min−1 for hydrolysis of TCF-ALP by ALP
at pH 9.2 (see Supplementary Material for details). TCF-ALP
was then incubated with various concentrations of ALP (0.0–
0.2 U/mL) for 15min to evaluate its ability to monitor ALP
activity. As shown in Figure 1, a significant fluorescence response
was observed in the presence of ALP (58-fold) with a limit of
detection (LOD) calculated as 0.12 mU/mL (Figure S9). This
sensitivity is comparable to other fluorescent probes found in the
literature (Table S3). Although serum alkaline phosphatase levels
vary with age in normal individuals (Kattwinkel et al., 1973),
it is widely accepted that serum ALP levels in healthy adults
lies between 39 and 117 U/mL (Saif et al., 2005; Sahran et al.,
2018). This suggests that TCF-ALP is capable of detecting ALP
in human serum, and therefore could be used in clinical assays.

Inhibition studies were carried out in the presence of sodium
orthovanadate (Na3VO4), which is known to be a strong
inhibitor of ALP activity. Addition of Na3VO4 resulted in a
decrease in the fluorescence response in the TCF-ALP hydrolysis
assay (see Figure S10) (Swarup et al., 1982). These inhibition
studies enabled an IC50 of 6.23µM to be calculated (Figure S11),
which is similar in value to other ALP substrates that have been
reported in the literature (Zhang H. et al., 2015; Tan et al., 2017).

The selectivity of TCF-ALP toward other biologically
relevant enzymes (at their optimal pH values) was then
determined (Figure 2 and Figure S12), with TCF-ALP

displaying high substrate selectivity for ALP over other
common hydrolytic enzymes (e.g., trypsin, porcine liver esterase)
or non-specific binding proteins [e.g., bovine serum albumin
(BSA)]. Interestingly, TCF-ALP produced a fluorescence
response when treated with ACP. The detection of this enzyme
is of significance since it is a tumor biomarker for metastatic
prostate cancer (Makarov et al., 2009). Normal levels of ACP
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SCHEME 2 | Synthesis of TCF-ALP.

FIGURE 1 | Fluorescence spectra of TCF-ALP (10µM) produced via the

addition of alkaline phosphatase (ALP; 0–0.2 U/mL) in 50mM Tris-HCl buffer,

pH = 9.2 at 25◦C. λex = 542 (bandwidth 15) nm. All measurements were

made 15min after the addition of ALP.

in serum range from 3.0 to 4.7 U/mL, and elevated ACP levels
can be indicative of a variety of other diseases (Bull et al., 2002).
Furthermore, TCF-ALP proved capable of detecting ACP (25-
fold fluorescence enhancement) and ALP (38-fold enhancement)
at a physiological pH of 7.1 (Figures S13, S14). Kinetic
determination of ALP and ACP toward TCF-ALP at pH 7.1
was conducted, and the resultant Km and Vmax were compared
(see Supplementary Material 3.1 and Figures S15–S18). It was
found that ALP has a smaller Km value in comparison to ACP
(0.38 ± 0.042µM and 99.22 ± 13.16µM, respectively) and
a lower Vmax (208 ± 3.81 min−1 and 1962 ± 223.6 min−1,
respectively). Hence, ALP has higher affinity toward TCF-ALP

compared to ACP, thus TCF-ALP is more selective toward ALP
at physiological pH.

FIGURE 2 | Fluorescence spectra of TCF-ALP (10µM) recorded in the

presence of trypsin (0.8 BAEE U/mL), porcine liver esterase, protease from

Streptomyces griseus, proteinase K, bovine serum albumin (0.1 mg/mL), acid

phosphatase (50mM Tris-HCl, pH = 5.0), and alkaline phosphatase (50mM

Tris-HCl, pH = 9.2). All enzymes were standardized to 0.8 U/mL in Tris-HCl

buffer pH 7.1 unless otherwise stated. λex = 542 (bandwidth 15) nm/ λem =

606 nm. Fluorescence measurements were made 30min after adding the

enzyme in question.

According to current standards, determination of ALP and
ACP is undertaken at the phosphatase’s optimum pH. For
example, the Centers for Disease Control and Prevention (CDC)
procedure for ALP determination is carried out in 2-amino-2-
methyl-1-propanol (AMP) buffer at pH 10.3 [Centers For Disease
Control Prevention (CDC), 2012]. This is in accordance with
other literature sources (Di Lorenzo et al., 1991; Radio et al.,
2006; Pandurangan and Kim, 2015; Guo et al., 2018). Likewise,
ACP determination is carried out at pH 4–6 (Li et al., 1984;
Boivin and Galand, 1986; Myers andWidlanski, 1993). Following
these observations, further studies were conducted to determine
selectivity at pH 5.0 and 9.2 (Figures S19–S22). Results showed
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that TCF-ALP acts selectivity toward ACP at acidic pH, and
ALP at alkaline pH. Therefore, TCF-ALP can be used to
selectively detect ALP/ACP in clinical assays, or live cell systems
(provided the buffer solution is optimal for the phosphatase
under study).

Imaging of ALP in Living Cells
Prior to exploring whether TCF-ALP could be used to image
ALP activity levels in live cells, the cytotoxicity of TCF-ALP was
assessed using a MTT assay (Figure S23). Negligible cell toxicity
was observed for TCF-ALP concentrations between 0 and 5µM,
and cell viability was only slightly reduced (91%) when incubated
with 10µM TCF-ALP, indicating good biocompatibility.

TCF-ALP proved cell permeable to HeLa cells that express
ALP and provided a clear “turn on” response (Figure 3). In
contrast, pre-treatment of HeLa cells with Na3VO4 (5mM) prior

to incubation with TCF-ALP resulted in minimal “turn on.” This
was taken as evidence that the increase in TCF-ALP fluorescence
levels seen for HeLa cells in the absence of Na3VO4 is due to ALP
activity. We thus conclude TCF-ALP is a probe that allows for
the selective cellular imaging of ALP activity.

Bonemorphogenetic protein 2 (BMP-2) is capable of inducing
osteoblast differentiation into a variety of cell types (Guo et al.,
2014;Wang et al., 2015) via pathways that result in increased ALP
mRNA expression, leading to increased ALP activity (Kim et al.,
2004). Treatment of myogenic murine C2C12 cells with TCF-

ALP resulted in a low fluorescence intensity (low ALP levels)
being observed (Figure 4); however, pre-treatment of these cells
with BMP-2 (300 ng/mL, 3 days) resulted in a significant increase
in TCF-ALP-derived fluorescence intensity (high ALP levels).
Once again, pre-incubation with Na3VO4 (5mM) led to no
fluorescence response being observed in the cells treated with

FIGURE 3 | HeLa cells incubated under the following conditions: (a) No treatment. (b) TCF-ALP (10µM, 30min). (c) Pre-treated with Na3VO4 (5mM, 30min),

followed by the addition of TCF-ALP (10µM, 30min). (d) Pretreated with Na3VO4 (0.5mM, 30min) and TCF-ALP (10µM, 30min). Cells were washed with DPBS

before their fluorescence images were acquired using a confocal microscope. Top half: fluorescence images, bottom half: fluorescence images merged with its

corresponding DIC image. Ex. 559 nm/em. 575–675 nm. Scale bar: 20µm. DIC, differential interference contrast.

FIGURE 4 | TCF-ALP in C2C12 cells. C2C12 cells were treated with 300 ng/mL BMP-2 for 3 days and then pretreated with 5mM levamisole for 30min and stained

with 10µM TCF-ALP for 30min. After washing with DPBS, fluorescence images were acquired by confocal microscopy. (a) only TCF-ALP, (b) levamisole +

TCF-ALP, (c) BMP-2 + TCF-ALP (d) BMP-2 + levamisole + TCF-ALP. Top: fluorescence images, bottom: merged with DIC image. Ex. 559 nm/em. 575–675 nm.

Scale bar: 20µm. DIC, differential interference contrast.
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TCF-ALP (with or without BMP-2). This provided support for
the notion that TCF-ALP is capable of imaging endogenous ALP
activity induced by BMP-2.

CONCLUSIONS

In summary, a long wavelength TCF-based fluorescent probe
(TCF-ALP) has been prepared with the goal of detecting ALP
activity. ALP Hydrolysis of the phosphate group of TCF-ALP
resulted in a significant “turn on” fluorescence response (58-fold)
within 15min. These spectroscopic changes were accompanied
by a colorimetric change from yellow to purple. This enables
TCF-ALP to be used as a simple assay for the evaluation of
ALP activity. Further analysis revealed that TCF-ALP could also
be used as a probe for detecting ACP activity. TCF-ALP was
shown to be cell permeable, enabling its use as a fluorescent probe
for monitoring ALP levels in HeLa cells. TCF-ALP also proved
capable of imaging endogenously stimulated ALP produced in
myogenic murine C2C12 cells through the addition of bone
morphogenetic protein 2. We thus suggest that TCF-ALP offers
promise as a tool for measuring ALP and ACP activity levels in
clinical assays or in live cell systems.
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