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In this work, a novel method for assigning the absolute configuration of a chiral

primary amine has been developed based on the experimental and DFT-calculated
19F NMR chemical shift differences of its derived two fluorinated amides by

reacting with two enantiomers of a chiral derivatizing agent FPP (α-fluorinated

phenylacetic phenylselenoester) separately. Comparing the experimental chemical shift

difference 1δ
R,S
α−F of (R)-FPA-amide/(S)-FPA-amide with the calculated 1δα−F

R,S of

(R)-FPA-(R)-amide/(S)-FPA-(R)-amide, if the experimental 1δα−F
R,S has the same symbol

(positive or negative) as one of the theoretical 1δα−F
R,S, the assigned configuration

of the amine is considered to be consistent with the theoretical one. Our method

could be applied to a broad substrate scope avoiding wrong conclusion due to

empirical judgment.

Keywords: absolute configuration assignment, primary amine, 19F nuclear magnetic resonance, DFT calculation,

fluorinated phenylacetic phenylselenoester

INTRODUCTION

Over the decade, the increased tremendous demand of optically pure organic compounds in many
fields, such as drug discovery, medicinal chemistry, and asymmetric synthesis, has promoted the
exploration of practical strategies for determining the absolute configuration of a chiral molecule
(Bijvoet et al., 1951; Flack and Bernardinelli, 2000; De Gussem et al., 2012; Burtea and Rychnovsky,
2017; Liu et al., 2017; Sairenji et al., 2017; Yan et al., 2017; Ma et al., 2018). Among varied developed
technologies for this purpose, NMR spectroscopic detection of the chemical shift differences of
NMR signals of formed diastereomers of chiral guests with chiral agents is one of the most used
methods, which is simple and convenient, giving straightforward information for analysis without
the need of standard samples (Shvo et al., 1967; Jacobus et al., 1968; Ohtani et al., 1991; Takeuchi
et al., 1991, 1993, 2004, 2006; Hanna and Lau-Cam, 1993; Trost et al., 1994; Hoye and Renner, 1996;
Kirk, 1998; Yabuuchi and Kusumi, 2000; Fujiwara et al., 2001; Seco et al., 2004; Freire et al., 2005,
2008; Orlov and Ananikov, 2010, 2011; Wenzel and Chisholm, 2011; Kumari et al., 2013, 2015; Pal
et al., 2014; Bian et al., 2015; Lakshmipriya et al., 2016; Laskowski et al., 2016; Yan et al., 2017; Burns
et al., 2018).
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Chiral amines have been ubiquitous in natural products and
widely used in the field of medicine, so it is very important
to determine their absolute configurations. Up to now, the
published research concerning the determination of absolute
configuration by NMR is mostly based on 1HNMR. It is very rare
to use 19F NMR for this purpose and all are based on empirical
models. Determining the absolute configuration of amines in
19F NMR was firstly reported by Mosher using triflurophenyl
acetic acid as the chiral derivatizing agent (CDA) who empirically
assigned the absolute configurations by comparing the 19F NMR
experimental chemical shift differences of the formed amides
between a chiral amine and two enantiomers of a CDA based
on Mosher’s models (Dale and Mosher, 1973; Sullivan et al.,
1973) as shown in Figure 1A in which Llarge is the large group
of amine and Lsmall is the small group of amine by comparing
their inherent stereochemistry. Successful assignment heavily
depends on correct judgment of inherent stereochemistry of
the groups. However, it is difficult to judge the intrinsic size of
groups in many cases, which could result in wrong conclusions.
In the 1990s, using alpha-fluorinated phenyl acetic acid (FPA)
as a CDA, Hamman observed that correctly constructing the
correlation between the absolute configuration of amines and
chemical shifts of 19F NMR of formed alpha-fluorinated phenyl
acetic amide depends on the property of the L1 and L2 groups
of amines. If both groups are alkyl or aryl groups, L1 should
be the bulkier group. However, if the formed amide having a
CO2Me group attached to the chiral alpha carbon, then the
L1 group is always a CO2Me group, no matter how large the
other group is (Figure 1B) (Hamman, 1990, 1993; Temperini
et al., 2017). In addition to the CO2Me group, our group also
observed that if another functional group is attached (such as a
hydroxyl group or fluorine atom), this group should be the L1
group in order to give correct configurations (Figure 1B). The
interactions between the alpha chiral F atom and the functional
groups may cause the judgment complexity of the L1 group.
These observations indicate that proper judgment of the L1 group
is critical for the correct assignment of absolute configuration.
Thus, an empirical model based on inherent stereochemistry
simply could not be established for correlating the absolute
configurations of amines containing functional groups with the
chemical shift values of their corresponding alpha-fluorinated
phenyl acetic amides. Interestingly, the international union of
pure and applied chemistry (IUPAC) rule for the assignment of
the L1 group is more appropriate than inherent stereochemistry
with the fluorinated phenyl acetic acid derived amides, but
such kind of assignment is arbitrary. How does one establish
the correlation between the absolute configuration of varied
amines and 19F NMR signal of their corresponding alpha-
fluorinated phenyl acetic amides excluding arbitrary assignment?
Considering that the assignment of absolute configuration of
chiral molecules using a circular dichroism spectrometer by
comparing the experimental and calculated CD spectra has been
well-established (Dickins et al., 1999; Aamouche et al., 2000;
Huang et al., 2000; Pescitelli and Bruhn, 2016), we wonder if we
can do the same thing with NMR.

Here, we report a novel method for the assignment of absolute
configuration of a chiral amine by comparing the experimental

and DFT-calculated 19F NMR chemical shift differences of
its corresponding (R)-FPA-amide and (S)-FPA-amide derived
from the chiral amine by reacting with two enantiomers
of a CDA FPP (α-fluorinated phenylacetic phenylselenoester,
Table 1) separately. By comparison, the experimental 1δα−F

R,S

(1δα−F
R,S

= δα−F
R – δα−F

S, where δα−F
R and δα−F

S are 19F-{1H}
NMR values of (R)-FPA-amide and (S)-FPA-amide, respectively)
has the same symbol (positive or negative) as one of the
theoretical 1δα−F

R,S; the assigned configuration of the amine is
considered to be consistent with the theoretical one (Figure 1C).
The advantages of FPP are as follows: it can react with amines
directly in NMR tubes to form amides immediately without the
addition of other chemical reagents and give very clean solution
avoiding any further handling step. Chiral FPP is stable in varied
solvents over weeks and can be stored in a sealed bottle covered
with foil for months in a refrigerator.

MATERIALS AND METHODS

General Information and Materials
All commercial reagents were used as received without further
purification unless otherwise stated. All reactions were run under
N2 unless otherwise indicated. NMR spectra were recorded
using a 400-MHz spectrometer. Chemical shifts were reported
in parts per million (ppm), using CDCl3 (δH = 7.26 ppm, δC
= 77.16 ppm) and trifluorotoluene (−63.9 ppm) as internal
standards. Multiplicities are indicated as s (singlet), d (doublet),
t (triplet), q (quartet), and m (multiplet). High-resolution mass
spectra (HRMS) were obtained by the ESI ionization sources
using the TOF MS technique. The calculated 19F NMR shifts
were referenced to trifluorotoluene (σref = 257.58 ppm, δref =

−63.9 ppm).

General Synthesis Procedure for
Chiral FPP
Chiral FPP was readily prepared by a one-pot procedure reported
by Temperini’s group (Temperini et al., 2017) using chiral α-
fluorinated phenylacetic acid and diphenyl diselenide as the
starting materials (the procedure is illustrated in Scheme 1).

To a mixture of (S)-α-fluorobenzeneacetic acid (1.0 g, 6.49
mmol) and N-methylmorpholine (NMM) (722mg, 7.14 mmol)
in 20ml of dried ethyl acetate, i-BuOCOCl (975mg, 7.14 mmol)
was added dropwise in 30min under N2 at 0

◦C. After addition,
the mixture was stirred for another 30min at 0◦C. Then,
a fresh and white solution of nucleophilic selenium species,
prepared by reacting diphenyl diselenide (1.48 g, 3.245 mmol),
sodium borohydride (245mg, 6.49 mmol), and CH3COOH
(973.5mg, 16.225 mmol) in 10ml of dried ethyl acetate at
40◦C for 30min, was added to the above mixture, and the
stirring was continued at room temperature until completion
of reaction as detected by TLC. The mixture was quenched
by 5ml of 1M HCl and extracted by ethyl acetate (20ml
× 2). The organic phase was washed by brine (20ml), dried
over anhydrous sodium sulfate, and concentrated in vacuo.
The crude product was purified via flash chromatography
on silica gel (petroleum ether/ethyl acetate 10:1 to 5:1),
affording the corresponding product (S)-FPP (little yellow
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FIGURE 1 | (A) Mosher’s models. (B) Hamman’s models. (C) Our method.

oil, total yield up to 69%) (Supplementary Figures S1–S4).
[α]22D = 13.4◦ (c = 1.0 in CHCl3);

1H NMR (400 MHz,
CDCl3) δ 7.54–7.47 (m, 4H), 7.46–7.43 (m, 2H), 7.42–
7.37 (m, 4H), 5.81 (d, J = 47.6Hz, 1H) ppm; 13C NMR
(CDCl3, 100 MHz) δ 198.8, 136.2, 135.8, 132.7, 130.1, 129.5,
129.4, 129.0, 128.9, 128.8, 127.9, 126.7, 95.7 (d, J = 189Hz)

ppm; 19F-{1H} NMR (376 MHz, CDCl3) δ −180.8 ppm;
HRMS (ESI) Calcd for [C14H11FOSeNa, M+Na]+: 316.9851,
found: 316.9849.

Following the same procedure, (R)-FPP was synthesized from
(R)-α-fluorobenzeneacetic acid (little yellow oil, total yield up to
67%). [α]22D =−13.2◦ (c= 1.0 in CHCl3).
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TABLE 1 | Constructing the correlation between the absolute configuration of amines with the experimental measurements and DFT calculations of 1δα−F
R,S of their

corresponding (R)-FPA-amide and (S)-FPA-amidea.

Entry Amine Contrasting

spectrab
1δα−F

R,S(ppm) Entry Amine Contrasting

spectrab
1δα−F

R,S (ppm)

Exptl.c Calcd. Exptl.c Calcd.

1 1.18 (S) 0.92 (S) 13 −0.30 (R) −0.66 (R)

2 −1.19 (R) −0.92 (R) 14 0.30 (S) 0.66 (S)

3 −1.73 (R) −0.30 (R) 15 −1.34 (R) −0.89

4 1.65 (S) 0.30 (S) 16 1.34 (S) 0.89

5 −1.50 (R) −1.35 (R) 17 −0.68 (R) −1.26 (R)

6 1.51 (S) 1.35 (S) 18 0.68 (S) 1.26 (S)

7 −0.23 (R) −0.58 (R) 19 −2.23 (R) −0.77 (R)

8 0.23 (S) 0.58 (S) 20 2.25 (S) 0.77 (S)

9 −2.33 (R) −3.23 (R) 21 −1.01 (R) −0.50

10 2.33 (S) 3.23 (S) 22 1.01 (S) 0.50

(Continued)
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TABLE 1 | Continued

Entry Amine Contrasting

spectrab
1δα−F

R,S(ppm) Entry Amine Contrasting

spectrab
1δα−F

R,S (ppm)

Exptl.c Calcd. Exptl.c Calcd.

11 −2.44 (R) −1.55 (R) 23 2.29 (S)d −0.68 (R)

12 2.44 (S) 1.55 (S) 0.68 (S)

a (R)-FPP or (S)-FPP (0.017 mmol) and amine (0.085 mmol) in 0.5ml CDCl3, the proton-decoupled
19F NMR spectra were collected on a Bruker Avance 400-MHz spectrometer at

25◦C (the solvent was DMSO-d6 in entries 17–20), 19F NMR experiment (15-s delay time, 64 scans each) and trifluorotoluene as internal standard (−63.9 ppm). b The blue spectra

were obtained from (R)-FPA-amide and the red spectra were obtained from (S)-FPA-amide. c The assigned configurations were labeled in parentheses. d Assigned configuration was

confirmed by comparison the optical rotation data with reference (Thvedt et al., 2010).

SCHEME 1 | General synthesis procedure for chiral FPP.

Configurational Assignment of Amines
by FPP
FPP [0.017 mmol, (R)-FPP or (S)-FPP] and amine (0.085 mmol)
were mixed in 0.5ml of CDCl3, and the proton-decoupled 19F
NMR spectra were collected on a Bruker Avance 400-MHz
spectrometer at 25◦C (the solvent was DMSO-d6 for guests
17–20) (delay time: 15 s, 64 scans each for 19F-{1H} NMR
experiment). The internal standard of fluorine spectrum is 4-
trifluorotoluene (−63.9 ppm).

RESULTS AND DISCUSSION

First, to examine FPP as in-tube CDA for chiral amines, 1 equiv.
of (S)-FPP was added to an NMR tube with 1 equiv. of (S)-
α-phenylethanamine in CDCl3 under air at room temperature
giving clean solution, and the proton-decoupled 19F(19F-{1H})
NMR spectra were recorded immediately. The corresponding
amide was generated within 5min and the whole derivatizing
process was finished within 20min. Also, the fluorine chemical
shift values of the derivatives do not vary with the reaction time
and the different ratios of chiral FPP/amine (Supplementary 1),
which is crucial to determine the absolute configuration. It is
unfortunate that slightly partial racemization happened during
the derivatization, which leads to the failure of measuring the
enantiomeric purity of chiral amines, but it does not affect
the assignment of absolute configuration by using the main
enantiomers’ signals.

Then, we recorded the 19F-{1H} NMR spectra of a series
of amines with known configurations after FPP derivatization

(Supplementary Figures S5–S50). The results are listed in
Table 1 (entries 1–22). It can be seen that the obtained 1δα−F

R,S

values are positive for all tested (S)-amines and are negative for
all tested (R)-amines, whether the amine is aromatic amine, fatty
amine, amino alcohol, or amino acid ester.

How to correlate configurations with 1δα−F
R,S reasonably

is the key to establishing the method of determining absolute

configuration by 19F NMR with FPP. For the amines of
entries 1–8, correct configurations could be given by comparing

the inherent stereochemistry of groups based on Hamman’s
model. However, for several amines (Table 1, entries 9–16, 19,

and 20), the comparison of the inherent stereochemistry of

groups based on Hamman’s model gave incorrect assignment
of the absolute configuration, which is likely to be caused

by the electron effect of the heteroatom (Hamman, 1990,
1993; Apparu et al., 2000). Thus, we need to explore a new

strategy to overcome these problems. We propose that δα−F

in FPA-amide is mainly influenced by the composite factors
of electronic and steric hindrance effects of groups. It is
unrealistic to correlate interactions of electronic and steric
hindrance effects by a simple empirical model. Nevertheless,
in today’s highly developed computational chemistry, the
combined effects of electronic effect and steric hindrance can
be achieved by strict theoretical calculation. By theoretically
calculating the chemical shift differences of the amide formed
from a chiral amine with two enantiomers of FPP separately
and comparing the experiment and calculated values, a new
method for assigning the absolute configuration could be well-
established.

Our theoretical calculation is as follows. Conformation

screening was applied using molecular mechanics methods in
our calculations in order to obtain more reliable results. Nine

energy favorable conformations of every molecule were selected
and geometry optimization was performed based on B3LYP/6-

111 G(d,p) level. Vibrational frequency analyses at the same basis

sets were used on all optimized structures in order to characterize
stationary points as local minima. Then, the Gibbs free energy
with zero-point energy (ZPE) corrections was obtained for
every conformer. The lowest Gibbs free energy conformers
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were selected and the 19F NMR parameters for FPA-amines
were calculated at the level of B972/cc-PVQZ with the GIAO
method. All the calculations were in chloroform solvent and
the solvent effects were evaluated by the IEFPCM model. The
Gaussian 09 package (Frisch et al., 2010) was used for all of
our calculations. All the conformers were local minimum and
verified by frequency calculation. Also, two molecules were
selected to perform 19F NMR calculation for all conformers
according to Boltzmann equations based on free energy data
by frequency calculation. It was found that there is a trivial
difference in 1δα−F

R,S between the data of the most stable
conformer and the statistic values (Supplementary 3). Hence, the
most stable conformer of each molecule was used to calculate
19F NMR and 1δα−F

R,S data. The calculated 19F chemical shifts
for the lowest-energy conformers were in agreement with the
experimental values (Table 1, entries 1–22). Then, the method
is applied to determine the absolute configuration of an amine
with unknown configuration (2-fluoro-1-phenylethanamine in
Table 1, entry 23). The calculation-predicted 1δα−F

R,S of (R)-
amide of amine 23 was negative (−0.68), and 1δα−F

R,S of
(S)-amide of amine 23 was positive (0.68). The experimental
measured 1δα−F

R,S of the derived amide from amine 23 is
positive (2.29), so the assigned configuration of amine 23 was
S, which was confirmed by comparison of the optical rotation
data with reference (Thvedt et al., 2010) (Supplementary 2). In
addition, it should be noted that the present method was limited
to be chiral amines, including a chiral tertiary carbon center
and sterically more differentiated groups (L1/L2). As to chiral
amines containing similar size in space, the obtained chemical
shift difference is too small to be suitable for judging absolute
configurations (Hamman, 1990).

CONCLUSIONS

A novel method for assigning the absolute configuration of
chiral primary amines based on experimental and calculated
19F NMR has been developed. The method employs a new type
of CDA, chiral α-fluorinated phenylacetic phenylselenoester,
which can derivatize a primary amine directly in an NMR
tube. Calculating the 1δα−F

R,S value of (R)-FPA-(R)-amide

and (S)-FPA-(R)-amide and the 1δα−F
R,S value of (R)-

FPA-(S)-amide and (S)-FPA-(S)-amide, the experimental
chemical shift difference 1δα−F

R,S of (R)-FPA-amide and
(S)-FPA-amide is compared with the calculated values. If
the experimental 1δα−F

R,S has the same symbol (positive
or negative) as one of the theoretical 1δα−F

R,S, the assigned
configuration of the amine is considered to be consistent
with the theoretical one. Since both electronic and steric
hindrance effects for the absolute configuration are considered,
our method is widely valid for a broad substrate scope and
avoids incorrect assignment of absolute configuration by
empirical judgment.
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