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For localized and oriented vibrationally excited molecules, the qualitative features of the

one-body probability density of the nuclei (one-nucleus density) are investigated. Like the

familiar and widely used one-electron density that represents the probability of finding an

electron at a given location in space, the one-nucleus density represents the probability

of finding a nucleus at a given position in space independent of the location of the other

nuclei and independent of their type. In contrast to the electrons, however, the nuclei are

comparably localized. Due to this localization of the individual nuclei, the one-nucleus

density provides a quantum-mechanical representation of the “chemical picture” of the

molecule as an object that can largely be understood in a three-dimensional space, even

though its full nuclear probability density is defined on the high-dimensional configuration

space of all the nuclei. We study how the nodal structure of the wavefunctions of

vibrationally excited states translates to the one-nucleus density. It is found that nodes do

not necessarily lead to visible changes in the one-nucleus density: Already for relatively

small molecules, only certain vibrational excitations change the one-nucleus density

qualitatively compared to the ground state. It turns out that there are simple rules for

predicting the shape of the one-nucleus density from the normal mode coordinates. A

Python module for the computation of the one-nucleus density is provided at https://

gitlab.com/axelschild/mQNMc

Keywords: molecular structure, normal modes, vibrational states, vibrational density, nuclear probability density,

marginal density, one-body density, one-nucleus density

1. INTRODUCTION

Quantum-mechanically, a molecule is typically described with a complex-valued function 9 , the
wavefunction, that is a solution of the Schrödinger equation Ĥmol9 = E9 with the molecular
Hamiltonian Ĥmol that includes the Coulomb interactions among and between the electrons and
nuclei of the molecule. If we want to understand features of the spatial molecular structure like
the relative arrangement of the nuclei with respect to (w.r.t.) each other from the wavefunction,
we would have to consider the corresponding probability density |9|2 (in position space) that
represent the probability of finding a particle within a certain volume of the configuration space
of all particles. It follows that |9|2 is a function which depends on the coordinates of all nuclei and
electrons of the molecule and hence is a rather complicated object: Already for a small molecule
like H2O, |9|2 depends on the coordinates of thirteen particles (three nuclei and ten electrons) and
is thus difficult to visualize, to comprehend, and also to measure.
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Notwithstanding, in chemistry there exists an intuitive
concept of a molecule. This concept is nicely illustrated by
the idea of Lewis structures that indicate the participating
compounds and the mechanism of a chemical reaction by means
of graphs. The corners of the graphs are thought to represent the
relative position of the nuclei (together with “core electrons”) in
a three-dimensional space and the edges of the graph represent
the electrons as “electron bonds.” The success of Lewis structures
to encode and to rationalize chemical transformations suggests
that somehow, from |9|2 an effective three-dimensional picture
of a molecule should emerge. We call this picture the “chemical
picture” and understanding this emergence is a non-trivial and
still partially open problem (Cafiero and Adamowicz, 2004, 2007;
Sutcliffe andWoolley, 2005; Sutcliffe, 2010;Mátyus et al., 2011a,b;
Mátyus and Reiher, 2012; Goli and Shahbazian, 2015) The aim of
this paper is to investigate a certain aspect of the emergence: How
the nuclei, whose quantum-mechanical probability densities
depend on all their coordinates, become essentially points in a
three-dimensional space in the chemical picture. This reduction
of complexity can be achieved if the N nuclei are considered
to be classical particles with their location being described by
a point in the 3N-dimensional configuration space, which is
equivalent to N points in a three-dimensional space. However,
despite the success of this classical picture the nuclei are quantum
particles, as is exemplified by recent interest inmeasuring e.g., the
nuclear probability density (Shapiro, 1981; Zewail, 2000; Jurek
et al., 2004; Ergler et al., 2006; Schmidt et al., 2012; Kimberg
and Miron, 2014; Zeller et al., 2016) or the nuclear flux (current)
density (Manz et al., 2013; Barth et al., 2015; Bredtmann et al.,
2015). Hence, for the chemical picture to make sense it should be
possible to obtain it quantum-mechanically without the need for
(semi-)classical approximations.

In this article, we investigate how a three-dimensional
nuclear structure emerges quantum-mechanically from |9|2. As
explained below, the equivalent quantum-mechanical operation
of the reduction of a classical system from configuration
space to a three-dimensional space is the calculation of the
marginal probability density of a nucleus independent of its
type, called the “one-nucleus density.” The nuclear (many-
body) probability density in configuration space has often been
calculated and analyzed (Smit et al., 2001; Dawes et al., 2013;
Welsch and Manthe, 2015; Donoghue et al., 2016), but to
this authors knowledge the one-nucleus has been calculated
previously only for a few small molecules (Barth et al.,
2008, 2009, 2012) and a systematic study of the one-nucleus
densities of the eigenstates of a molecule is still missing. From
the chemical picture, we expect that the one-nucleus density
yields well-localized and spatially separated densities for each
nucleus and that the localization depends on the nuclear mass.
Additionally, the one-nucleus density should provide a quantum-
mechanical picture of vibrational excitations: For classical nuclei,
a vibrational excitation corresponds to a larger amplitude of
motion, but quantum-mechanically the wavefunction of an
excited state not only becomes more delocalized but also
has nodes. The nodes exist in the configuration space of all
nuclei but it is not obvious how they manifest in the one-
nucleus density.

In the next sections, we discuss how the chemical picture of a
molecule can be obtained conceptually as well as what the one-
nucleus density is and how it is calculated. Thereafter, examples
of the one-nucleus densities for vibrationally excited states of
small molecules are given. It is shown how qualitative features
of the one-nucleus density can be predicted from knowledge
of the normal modes and it is discussed to what extend the
idea that vibrationally excited nuclear states simply have a
broader probability distribution than the vibrational ground state
holds despite the nodes that such wavefunctions exhibit in the
configuration space of all nuclei.

2. THEORY

2.1. Obtaining the Chemical Picture of a
Molecule
An important prerequisite for the obtaining the chemical picture
of a molecule is the large mass difference of nuclei and
electrons. Exact calculations for the static states of small systems
show e.g., how the features of the molecular wavefunction
|9|2 change when H− becomes H+

2 , which is mathematically
“just” a change of the mass of one particle (|9|2 is invariant
w.r.t. charge conjugation) (Mátyus et al., 2011a,b; Mátyus and
Reiher, 2012). The mass difference motivates a separation of the
molecular wavefunction into a (marginal) nuclear wavefunction
and an electronic wavefunction that conditionally depends on the
location of the nuclei,

9(X, x) = ψnuc(X)ψel(x|X), (1)

where X and x represent the coordinates of all nuclei and
electrons, respectively. While such a separation is exact and can
be used to define a nuclear wavefunction (Hunter, 1975; Abedi
et al., 2010, 2012), its practical application is usually in terms of
the Born-Oppenheimer approximation (Born and Oppenheimer,
1927; Eich and Agostini, 2016) where the effect of the nuclear
motion on the electronic wavefunction is neglected and only the
chosen positions of the nuclei are relevant (Schild et al., 2016).

However, the nuclear probability density |ψnuc|
2 of a single

water molecule still depends on nine coordinates and thus does
not directly correspond to the corners of the Lewis structure
that are thought to represent the relative position of the nuclei
w.r.t. each other. There are two additional problems when the
molecule is assumed to be a closed system: The first problem is
that for a perfectly isolated molecule the density |ψnuc|

2 would
be a constant, because only relative interactions exists and the
Hamiltonian is invariant w.r.t. translation of the whole system.
This view of an isolated molecule is a bit useless but can be
remedied by taking a relative view. A sensible choice would be
to give up the idea of considering the molecule as a closed system
and to define its coordinates relative to an external system. This
choice is discussed further below. What is typically done instead
is to chose an internal coordinate to which the coordinates
of the nuclei are referred to, in particular the center-of-mass
coordinates of either the nuclei or of the whole molecule. Then
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the nuclear wavefunction is

ψnuc(X) = ψcom
nuc (Xcom)ψ

rel
nuc(Xrel|Xcom), (2)

where ψcom
nuc is the wavefunction of the center of mass with the

(three) coordinates Xcom and ψ rel
nuc is the wavefunction of the

relative coordinates Xrel that conditionally depends on Xcom. For
a closed system without external interactions this conditional
dependence vanishes (for the center of mass of the molecule or,
in the Born-Oppenheimer approximation, for the center of mass
of the nuclei) and ψ rel

nuc(Xrel|Xcom) ≡ ψ rel
nuc(Xrel) can be obtained

independent of Xcom.
The second problem when the molecule is considered to

be a closed system is that the probability density |ψ rel
nuc(Xrel)|

2

after separation of the center of mass is spherically symmetric
because the Hamiltonian is invariant w.r.t. rotation of the whole
molecule (Mátyus et al., 2011a,b; Mátyus and Reiher, 2012).
Such a bubble-shaped density has interesting dynamical features
(Manz et al., 2014; Bredtmann et al., 2015; Pérez-Torres, 2015;
Diestler et al., 2018) and is an excellent approximation to the
rotational eigenstates of single molecules in vacuum, but it is
of limited help to understand how Lewis structures represent a
molecule. The wavefunction ψ rel

nuc can, however, approximately
be written as (Bunker and Jensen, 2006)

ψ rel
nuc ≈ ψ rot

nuc × ψvib
nuc. (3)

where ψ rot
nuc depends on three coordinates that describe the

overall rotation of the molecule and ψvib
nuc may be interpreted

as describing the vibrations of the molecule. For water, |ψvib
nuc|

2

depends on three coordinates, but for N nuclei |ψvib
nuc|

2 depends
on 3N − 6 coordinates (or 3N − 5 coordinates for linear
nuclear configurations) and describes the shape of the molecule
in configuration space for a given location and orientation. Thus,
it encodes the relative location of the nuclei w.r.t. each other but
it is not the three-dimensional arrangement that the corners of a
Lewis structure are representing.

From the preceding discussion follows that for the chemical
picture, it is necessary to have a localized and oriented
the molecule so that we can go back to the full nuclear
wavefunction ψnuc(X) and determine reduced quantities that
yield the information about the nuclear structure that we are
interested in, i.e., the one-nucleus density. Before doing that by
simply assuming a distribution such that the molecule is localized
and oriented, we would like to comment on how the one-nucleus
density could be obtained more rigorously.

The localization and orientation of the molecule can be
achieved conceptually by changing from an absolute view of
a molecule to a relative view where there is a second system
which the molecule is related to. We might call the second
system an “environment.” This environment can e.g., be other
molecules (like in a liquid phase or during a chemical reaction),
a surface with which the molecule is interacting, or a suitably
chosen laser pulse. We can then obtain a Schrödinger equation
for the molecule alone by either choosing it as a marginal
system (like a Schrödinger equation can be obtained for the
nuclei in a molecule alone, which is, however, representing

the whole molecule Hunter, 1975; Abedi et al., 2010, 2012)
or as a system that conditionally depends on the state of
a second system (which yields a generalization of the time-
dependent Schrödinger equation Schild, 2018). In any case, we
may remove the translational and rotational degrees of freedom
of the combined system and work within a relative picture. The
interaction with the environment can then result in a localization
and orientation of the molecule.

Following this procedure to embed the molecule in an
environment is mathematically challenging and depends on the
actual problem under study. It will not be done or needed in
this article but is outlined here to motivate why we will, in
the following, use calculations for isolated molecules but still
assume that the molecule is located and oriented (relative to
another molecule, a surface, etc.). Clearly, the interaction with
an environment changes the problem and thus also the details of
the nuclear densities that are presented below. Nevertheless, the
general rules given below for predicting the shapes of the one-
nucleus densities still apply but care has to be taken to determine
the normal modes correctly.

2.2. The One-Nucleus Density
In the theoretical description of a molecule, the nuclei are often
treated as (semi-)classical particles with a definite configuration
and momentum. In contrast, the electrons are usually treated
quantum-mechanically and the methods of Quantum Chemistry
are used to approximately determine their wavefunction
(Szabo and Ostlund, 1996). The corresponding many-electron
probability density depends on the coordinates of all electrons
and, although the correlated two-electron probability density of
the H2 molecule was measured (Waitz et al., 2017), for more
electrons it is a rather inaccessible observable. An alternative
quantum-mechanical observable that is defined in a three-
dimensional space is the electronic one-body probability density,
also known as the one-electron density. The one-electron density
is the marginal density of finding one electron at a given
location in space independent of where the other electrons are.
It is the central quantity of Density Functional Theory (Ullrich,
2012), it is easily visualized, and it is directly accessible to
experiment if the molecule is localized: For example, an electron
scanning tunneling microscope does essentially measure the
one-electron density of a localized molecule and can provide
intuitive images of molecules on surfaces (Moore and Weiss,
2008). However, while some information about the electronic
state can be extracted from the one-electron density (Baer,
2010), this task is in general difficult: Although the many-
electron density is qualitatively different for different excited
states due to the appearance of nodes in the wavefunction,
the corresponding one-electron densities may be very similar.
That the information content of the one-electron density is
comparably limited (in the sense that it is hard to extract;
formally, it contains similar information like the many-electron
density) can be explained by the rather delocalizedmany-electron
density. The one-electron density is obtained by integration
of the many-electron density over all but the coordinates of
one electron, and delocalization means that there is a relatively
large part of the many-electron configuration space which
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contributes to the integral. In an excited electronic state sign-
changes in the many-electron wavefunction lead to a depletion
and nodes of the many-electron density in some regions of
configuration space compared to the ground state, but due to
the integration which also includes (approximately) unchanged
regions of configuration space, the one-electron density is likely
to be little affected. This is also one of the reasons why, instead
of the one-electron density, electron orbitals as effective single-
electron wavefunctions are needed in chemistry to rationalize
many chemical reaction mechanisms. Electron orbitals are three-
dimensional mathematical objects that are rather intuitive and
that encode important information about the full electronic
wavefunction which is not easily accessible in the one-electron
density. Also, it may be argued that they are effectively present in
the Lewis structures in the form of “electron bonds” indicated by
the connections in the graphs.

The situation is different for the nuclei because, due to
their large mass, the nuclear wavefunction is rather localized
in some regions of the nuclear configuration space. This raises
the question if the analog of the one-electron density for the
nuclei, the one-nucleus density, contains accessible information
about the nuclear wavefunction. In particular, we want to
investigate if it provides information about the vibrational state
of the molecule, i.e., would the nodal structure of wavefunctions
in excited states be visible in the one-nucleus density? This
question is answered in the following with the help of the
nuclear wavefunction obtained from a normal mode analysis,
i.e., obtained from the local harmonic approximation of the
potential energy surface for the nuclear configuration of lowest
energy (Henriksen and Hansen, 2011). The nuclear wavefunction
ψnuc is then a product of a translational, a rotational, and a
vibrational part,

ψnuc = ψcom
nuc × ψ rot

nuc × ψvib
nuc. (4)

The translational part ψcom
nuc represents translation of the center

of mass of the nuclei in space and can, within the Born-
Oppenheimer approximation, be factored exactly, while the
separation of ψ rot

nuc (which describes rotations of the whole
molecule) from ψvib

nuc is only valid for small displacements
from the equilibrium configuration (Eckart, 1935; Littlejohn
and Reinsch, 1997; Bunker and Jensen, 2006; Lauvergnat et al.,
2016). Typically, a normal mode analysis aims at computing the
vibrational frequencies (and maybe analyzing the normal mode
coordinates) while ψnuc is of little interest. However, if those
frequencies are in good agreement with measured frequencies,
the function ψnuc is likely also a good approximation to the exact
nuclear wavefunction. Then, statements about how qualitative
features ofψnuc translate to the approximate one-nucleus density
can be expected to be also true for the exact one-nucleus
density. Notwithstanding, anharmonic effects may be important
and could potentially even change the qualitative outcome, as
discussed below.

In the following, the one-nucleus densities of the nuclei for
different states of ψvib

nuc are studied and it is investigated how
nodes of the wavefunction in excited states manifest in the one-
nucleus density. In analogy to the classical representation of the

N nuclei asN points in a three-dimensional space, the sum of the
one-nucleus densities for all individual (types of) nuclei yields a
density in three-dimensional space where, in contrast to the one-
electron density, the probability distributions of each nucleus are
well-separated and clearly visible. For brevity, hereafter this sum
is simply called the one-nucleus density (in analogy to the one-
electron density) and the nuclear many-body probability density
in theN-dimensional configuration space is called theN-nucleus
density. A detailed description of how the one-nucleus densities
are obtained is given in the Supporting Information. Here, only
the approximations and assumptions are discussed to point out
when the approach is applicable. The aim is to determine the one-
nucleus density ρ(ER) from the approximate nuclear wavefunction
ψnuc(X), where ER = (R1,R2,R3) is a three-component vector
and where X = (EX1, . . . , EXN) stands for the N three-component
position vectors EXj of the nuclei. The one-nucleus densities for
each nucleus are obtained by integrating the N-nucleus density
|ψnuc(X)|

2 over all but the coordinates of the selected nucleus,

ρj(ER) =

∫

· · ·

∫

|ψnuc(X)|
2dEX{1···Nn}\j

∣

∣

∣

∣

EXj=ER

(5)

for dEX{1···Nn}\j = dEX1 . . . dEXj−1dEXj+1 . . . dEXNn . The approximate
nuclear wavefunction that we use does not obey any exchange
symmetry for identical nuclei, hence ρj needs to be computed
for each single nucleus and not only once for identical nuclei.
The neglect of exchange symmetry is not a problem for the
systems studied here because the nuclei are localized and there
is a large energy barrier for exchanging nuclei. Hence the one-
nucleus density of the molecule, which we define as the sum of
the one-nucleus densities for all nuclei,

ρ(ER) =

N
∑

j=1

ρj(ER), (6)

is (for the cases discussed below) practically identical to the
one obtained from the corresponding wavefunction with correct
exchange symmetry. The meaning of the one-nucleus density
given in (6) is that it is the probability to find any nucleus in a
given region of space independent of its type. However, from the
relative spatial location it is immediately clear if the nucleus is
e.g., an oxygen or a hydrogen nucleus.

The nuclear wavefunction is obtained as follows: (1)
The Born-Oppenheimer approximation is made to obtain a
Schrödinger equation for the nuclear wavefunction alone, with
a potential energy surface V(X). Only the electronic ground state
is considered. (2) A standard normal mode analysis (Henriksen
and Hansen, 2011) at one of the minima of V is made. From this
calculation N normal mode coordinates qj and the frequencies
of their harmonic oscillator (HO) potentials are obtained. The
nuclear wavefunction is a product of HO wavefunctions in
each normal mode coordinate, and coupling of rotational and
vibrational degrees of freedom is neglected (Littlejohn and
Reinsch, 1997; Bunker and Jensen, 2006). (3) There are six (five
for linear molecules) normal modes for which the corresponding
HO frequencies are zero, representing translation and rotation of
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the molecule. The nuclear wavefunction has the form of (4). It is
assumed that ψcom

nuc and ψ rot
nuc are normalized Gaussian functions

with a very small width corresponding to a frequency of 0.5 Eh/h̄.
This acts like a constraint on the coordinates and has the effect of
localizing and orienting the molecule. The resulting probability
density can be interpreted either as a cut through the full density
or as the nuclear density given themolecule is at a certain position
and oriented in a certain way. A practical advantage of this choice
for ψcom

nuc and ψ rot
nuc is that the wavefunction becomes a product of

HO eigenfunctions in all modes. The nuclear wavefunction is

ψnuc(X) =

3N
∏

j=1

φj
(

qj(X), nνj
)

, (7)

where φj(qj, nνj ) is a HO wavefunction with quantum number
nνj for mode νj, and where nνj = 0 for the normal mode
coordinates for translation and rotation of the whole molecule.
In the Supporting Information, it is described how the high-
dimensional integral of (5) with wavefunction (7) can be solved
analytically. All quantum chemical calculations are made with
the program Psi4 (Turney et al., 2012) using 3rd order Møller-
Plesset perturbation theory and a cc-pVTZ basis set (Dunning,
1989). This level of electronic structure theory is suitable for
the molecules presented in this article because it reproduces the
experimentally known vibrational frequencies reasonably well
and because the results shown here do not depend critically on
the accuracy of the harmonic approximation. However, there can
be cases where and accurate description of the potential energy
surface is more important, as discussed below.

2.3. Implementation: The mQNMc Python
Module
For the calculation of the one-nucleus density the Python 3
module mQNMc was developed. This module is available at
https://gitlab.com/axelschild/mQNMc and is released under the
GNU General Public License version 3. It uses the output of a
Psi4 calculation as input, but adding interfaces to other programs
is straightforward because mQNMc needs only the Hessianmatrix,
the nuclear configuration and the nuclear masses to perform the
calculation. The codes for generating the figures of the water
molecule are given as examples in the module and can be used
as a template for other calculations.

3. RESULTS

The first example is the one-nucleus density of the water
molecule. Figure 1 shows its familiar vibrations as arrows
indicating the motion of classical nuclei. There are three
vibrational normal mode coordinates which are labeled
according to the usual spectroscopic notation (Shimanouchi,
1972): the symmetric stretch ν1, the bending mode (scissoring)
ν2, and the antisymmetric stretch ν3. The one-nucleus densities
of the water molecule for some excitations of these modes are
shown in Figure 2 as contour plots in the molecular plane,
labeled as (nν1 , nν2 , nν3 ), where nνj is the quantum number of
mode νj. Insets magnify the details of the nuclear density around

the oxygen nucleus, as the density there is much more localized
compared to the hydrogen nuclei due to the mass difference.

The one-nucleus density of the vibrational ground state (000)
shown in Figure 2 looks for each nucleus like a product of
Gaussian functions oriented along the directions of the normal
modes. The one-nucleus densities of the first excitation in each
mode, (100), (010), and (001), show how a node in the first
excited state of the HO along the corresponding normal modes
translates to the one-nucleus density. From the pictures, it seems
that the node in the wavefunction of one of these modes leads to
a depletion of the one-nucleus density along this normal mode
coordinate, but not to exact nodes or nodal planes in the one-
nucleus density. There are two reasons for the absence of exact
nodes: First, a Gaussian distribution for the translational and
rotationalmodes is assumed. Depending on the width of the these
distributions, the resulting one-nucleus densities become broader
and loose their structure. A very narrow Gaussian distribution
is chosen, hence this reason is of minor importance. The main
reasons for the absence of exact nodes in the one-nucleus density
is that those nodes only exists in configuration space, while the
reduction of the N-nucleus density to the one-nucleus density as
given in (5) in general does not yield zero anywhere in space.

To understand the one-nucleus density in Figure 2, the
analytic form of the N-nucleus density needs to be investigated.
It is a product of HO densities in all normal modes, because
the wavefunction (7) is a product of HO wavefunctions. These
1d-HO densities can be visualized by functions centered at the
equilibrium position of the three nuclei, with extent and direction
as given by the arrows. In Figure 1, the idea is illustrated for
the first excited state of the bending mode, (010), and of the
antisymmetric stretch, (001).

Some predictions can bemade about the qualitative features of
the one-nucleus densities at the nuclei by means of a set of simple
rules. These rules are called the LOcal COmparison (LOCO)
rules, because they are based on a comparison of the normal
mode coordinates at the location of each nucleus separately.
The LOCO rules are as follows: For a nucleus, the magnitudes
and directions of the displacements along the normal modes are
compared. (a) If only one normal mode displaces the nucleus
in a certain direction or if there is one normal mode that
displaces the nucleus in a certain direction much stronger than
the other normal modes, the nodes of the wavefunction due to an
excitation of this normal mode are clearly visible as depletions in
the one-nucleus density. (b) If several normal modes displace the
nucleus in the same direction by similar magnitude, an excitation
of one of these modes is not necessarily visible in the one-nucleus
density. In general, the more such modes exist, the less likely it is
that an excitation in one of these can be recognized in the one-
nucleus density. It follows that typically, only the normal modes
that displace a nucleus the most in a given direction can have
a strong influence on the qualitative shape of the one-nucleus
density. (c) If there are two (or more) modes that displace the
nucleus in the same direction, simultaneous excitation of these
modes may show combination features, as exemplified below.

For example, the one-nucleus density of states (100), (010),
and (001) can be understood from the LOCO rules (a) and
(b) as follows: In Figure 1, sketches of the harmonic oscillator
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FIGURE 1 | Normal modes of a water molecule in the molecular plane (arrows show the extent and directionality (color) of the nuclear displacement along the mode):

Symmetric stretch ν1, bending mode ν2, and antisymmetric stretch ν3. The top-row shows sketches of the harmonic oscillator densities along the modes for the first

excitation of the bending mode (010), the bottom row for the first excitation of the antisymmetric stretch (001). A light filling of these densities indicates that locally

other modes point in the same direction, while a dark filling means that this is not the case.

FIGURE 2 | Contour plots of the one-nucleus density of a localized and oriented water molecule in the molecular plane for different vibrationally excited states. State

labels (nν1 , nν2 , nν3 ) indicate the number of quanta in normal modes ν1, ν2, ν3, respectively.

wavefunctions in the modes are shown. At the hydrogen nuclei,
ν1 and ν3 point in a similar direction, while ν2 is perpendicular.
Thus, the excitation of ν2 state (010) leads almost to a nodal plane
in the one-nucleus density at the hydrogen nuclei, cf. Figure 2.
In contrast, excitation of ν1 state (100) or ν3 state (001) lead
to a significantly less pronounced depletion of the one-nucleus
density at the equilibrium position of hydrogen. For the oxygen
nucleus, the situation is reversed, as ν1 and ν2 point in the same
direction and ν3 is perpendicular. Consequently, the one-nucleus

density of state (001) shows a depletion at the oxygen equilibrium
position, while no depletion is seen in state (100). As ν2 displaces
the oxygen nucleus stronger than ν1 (which is, however, hardly
visible on the scale of Figure 1), a depletion due to the node in ν2
is visible in state (010).

A situation similar to that of state (001) is found for states
(002) and (003), i.e., when the HO function of ν3 is in its second
or third excited state. For (002), there is the expected triple-
maximum structure at the oxygen nucleus (with a lower central
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maximum), while the central maximum at the hydrogen nuclei
is not visible. For state (003) four maxima are found in the one-
nucleus density at the oxygen nucleus (although the two central
ones are too weak to be clearly seen in Figure 2), while at the
hydrogen nuclei still only two maxima can be found.

An example for LOCO rule (c) is found if two normal modes
are excited that locally have similar magnitude and direction.
For state (101) three maxima appear at the hydrogen nuclei,
similar to a second excited state of the HO, but the central
maximum is strongest while the outer maxima are weaker. At the
oxygen nucleus only two maxima that point along the direction
of normal ν3 are found, i.e., a combination of the features of
the one-nucleus densities for states (100) (only one maximum
in the direction of ν1) and (001) (two maxima in the direction
of ν3). For states (102) and (201) the qualitative features of the
one-nucleus densities can be explained analogously and in accord
with the LOCO rules, especially the four maxima at the hydrogen
nuclei and a triple maximum at the oxygen nucleus for state
(102), but only a double maximum at the state (201).

Last, for state (111) the resulting one-nucleus density is a
simple combination of features of states (010) and (101), because
ν2 is locally perpendicular to the other two vibrational modes at
the hydrogen nuclei. At the oxygen nucleus, the effect of exciting
two modes with similar direction and magnitude, LOCO rule (c),
is that three maxima are found along coordinate R3 (as defined
in the figure) upon closer inspection, although the central one is
hardly visible.

The normal modes of the water molecule have a symmetry
with respect to the hydrogen nuclei. If the symmetry of the
nuclear structure is broken by replacing one hydrogen nucleus

with a deuterium nucleus, a very different picture for the one-

nucleus densities is obtained. The normal mode coordinates for
a mono-deuterated water molecule are given in Figure 3. The
bending mode ν2 is similar to the bending mode of water, but
ν1 is the O-D stretch mode that only displaces the deuterium
nucleus strongly, while ν3 is the O-H stretch mode that almost
exclusively displaces the hydrogen nucleus. Thus, according to
the LOCO rules it is expected that any excitation of ν2 is clearly
visible in the one-nucleus density at the hydrogen and deuterium

nucleus, that an excitation of ν1 is visible at the deuteriumnucleus
but not at the hydrogen nucleus, and that an excitation of ν3 is
visible at the hydrogen nucleus but not at the deuterium nucleus.
The prediction of the LOCO rules is accurate, as the one-nucleus
densities of the first excited states of each of these modes shown
in Figure 3 illustrate.

A consequence of the LOCO rules is that for molecules
with many nuclei, only certain (of the lowest) excited states are
qualitative visible in the one-nucleus density, i.e., those that are
the ones displacing a nucleus the most in a certain direction
of space. This is indeed the case. For example, for the benzene
molecule the one-nucleus density of none of the first excited
states of any normal mode in the molecular plane is qualitatively
different from the vibrational ground state. The situation changes
if one hydrogen nucleus is exchanged by a deuterium nucleus.
In the Supporting Information, the one-nucleus densities for
the only two normal mode coordinates that strongly displace
the deuterium nucleus are shown. Further examples given in the
Supporting Information are an analysis of ethene and mono-
deuterated ethene as molecules that contain less nuclei than
benzene but where similar effects are found, and methane as an
example of a non-planar molecule.

4. CONCLUSION

The discussed examples of the one-nucleus densities show that
an important part of the chemical picture of a molecule can
also be obtained within a quantum-mechanical treatment: Except
for light quantum nuclei like hydrogen or deuterium, the one-
nucleus density is very localized around the equilibrium position
of the nuclei. Hence, it yields a three-dimensional relative
arrangement of the nuclei that is similar to what is expected
for a classical approximation of the nuclear wavefunction. It
is interesting to compare this result with the similar three-
dimensional representation of quantum nuclei by means of
path integral methods, where the density matrix for finite
temperatures is written as a path integral that can be interpreted
as an integral over a classical system composed of “a chain of
beads connected with springs” for each nucleus (Ceperley, 1995).

FIGURE 3 | (Top) Normal mode coordinates of the mono-deuterated water molecule in the molecular plane: O-D stretch ν1, bending mode ν2, O-H stretch ν3.

(Bottom) Contour plots of the one-nucleus density of a localized and oriented mono-deuterated water molecule in the molecular plane for vibrational states

corresponding to the first excitations of the normal modes shown above.
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The path-integral formulation also yields a three-dimensional
representation of the nuclear density that includes quantum
effects (see e.g., Richardson, 2018) but that does not correspond
to any observable, whereas the one-nucleus density is an
observable that can in principle be measured.

Importantly, in contrast to the one-electron density where
the electronic state is in general not qualitatively visible (or
where, to this authors knowledge, there are no rules available
to predict if this is the case), the vibrational state of a molecule
may be directly visible in the one-nucleus density. The presented
LOCO rules allow to predict, from a normal mode analysis of
the nuclear wavefunction, without much effort which vibrational
excitations would be visible in the one-nucleus density. From
the LOCO rules follows that in many case the classical idea that
vibrationally excited molecules simply have a larger amplitude of
vibration is in fact also what the one-nucleus density shows. Only
for small molecules or certain vibrational modes the excitation
can clearly be seen as qualitative change compared to the
ground state.

The description of the potential energy surface can be
important for the one-nucleus density, because the LOCO
rules show that the relative amplitude of the normal modes
matters. This relative amplitude has to be described accurately
with a suitable electronic structure method. In this respect,
the underlying harmonic approximation of the potential is a
limitation of the model. Anharmonic effects will for many
molecules not change the LOCO rules, but even for molecules
that have no large-amplitude mode they can be important
for the relative amplitudes of the different vibrations and
thus for the influence that a certain mode has on the one-
nucleus density. However, an extension of the harmonic model
to include anharmonic effects is problematic because the
advantage that the integrals can be treated analytically may be
lost. A numerical evaluation of the high-dimensional becomes
infeasible already for small molecules, hence analytic solutions
are highly desirable.

Despite the limitations of the presented analysis, a careful
application of the LOCO rules together with the harmonic
approximation can in principle be used to guide a possible
experimental study: A suitable target molecule and target state

for which the one-nucleus density might be measurable can
be found, and the Python module mQNMc can be a useful
for that purpose. Although it is difficult to measure details of
a very localized density, the many-body nuclear density is a
prohibitively complicated object for larger molecules because all
electrons have to be measured in coincidence and because the
data is hard to interpret. Thus, the one-nucleus density can be
an interesting alternative observable to learn more about the
quantum nature of molecular structure.
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