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This paper presents a new strategy of integrating lateral silicon nanospikes using

metal-assisted chemical etching (MacEtch) on the sidewall of micropillars for on-chip

bacterial study. Silicon nanospikes have been reported to be able to kill bacteria without

using chemicals and offer a new route to kill bacteria and can prevent the overuse

of antibiotics to reduce bacteria. We demonstrated a new methodology to fabricate

a chip with integrated silicon nanospikes onto the sidewalls of micropillars inside the

microfluidic channel and attested its interactions with the representative gram-negative

bacteria Escherichia coli. The results of colony-forming unit (CFU) calculation showed

that 80% bacteria lost their viability after passing through the chip. Moreover, the results

of adenosine triphosphate (ATP) measurement indicated that the chip with lateral silicon

nanospikes could extract more than two times ATP contents compared with the chip

without lateral silicon nanospikes, showing potential for using the chip with lateral silicon

nanospikes as a bacterial lysing module.

Keywords: lateral silicon nanospikes, nanofabrication, metal-assisted chemical etching, anti-bacterial, lab on

a chip

INTRODUCTION

Lab-on-a-chip (LOC) technology, which features microchannels and microstructures with
dimensions ranging from a micron to a few 100 microns, has offered tremendous benefits for the
research of mammalian cells since early 1990s. In recent years, increasing numbers and varieties of
LOC devices have been used for bacteria study, such as capture (Guo et al., 2012), separation (Beech
et al., 2018), and detection (Jalali et al., 2018). However, since the size of bacteria is usually about
one micron and the widely used ultra-violet (UV) light lithography for LOC fabrication cannot
produce structures below one micron due to diffraction limit, the performance of LOC systems for
bacterial research have not reached the same level with mammalian cells.

Introducing nanostructures with the similar size as bacterial cells into LOC systems can
interact with individual bacteria for more efficient manipulation, separation and lysing, and
eventually achieve single bacteria analysis. The fabrication and integration of nanostructures on
a chip generally require top-down nanofabrication technology, such as electron beam lithography
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and focused ion beam. However, these top-down nanofabrication
technologies generally require expensive equipment and are
not scalable. Therefore, they are not suitable for fabricating
microfluidic chip with nanostructures in a cost-effective and
affordable approach.

Along another route, nanomaterials such as nanoparticles
(Gao et al., 2014), nanowires (Jeong et al., 2013; Liu et al.,
2018), carbon nanotubes (Akasaka and Watari, 2009), and nano
diamonds (Wehling et al., 2014; Ong et al., 2018) have been
studied about their interactions with bacteria (Yang et al., 2008).
One application is the construction of antibacterial surfaces.
Recently, scientists have discovered a new method of killing
bacteria using nanospikes on wings of insects such as cicadas
and dragonflies (Ivanova et al., 2012). Ivanova et al. suggested
The bacterial killing mechanism or bactericidal mechanism
was purely due to the morphology and the interaction between
the spikes and the membrane of bacteria. Adsorption of
bacterial membrane on the nanospike surfaces leaded to drastic
increase of contact area, accompanied by stretching of the
bacterial membrane, likely to cause irreversible membrane
rupture and death of bacteria (Pogodin et al., 2013). Similar
nanostructures but made of other materials such as titanium
(Bhadra et al., 2015), titanium oxide (Diu et al., 2014), diamond
(Fisher et al., 2016), copper oxide (Nishino et al., 2017), gold
(Wu et al., 2016), and zinc oxide (Sengstock et al., 2014)
also show anti-bacteria properties, which indicates that the
bactericidal mechanism is highly related to the structure
morphologies but less related to the surface chemistry. In
addition, materials with only one dimension in nanometers
are also reported to be capable of killing bacteria. Tu et al.
(2013) reported killing bacteria using materials such as graphene
and graphene oxide. Molecular dynamic simulation also
revealed that it was energetically favorable for the graphene
sheets to enter the hydrophobic interfaces of two contacting
proteins, leading to disrupted metabolisms of cells (Luan
et al., 2015). Previously, we also demonstrated antibacterial
surfaces by vertical silicon nanospikes on bare silicon
samples (Hu et al., 2017).

LOC devices with some similar nanostructures have been
reported but mostly are for the study of mammalian cells.
For example, Di Carlo et al. (2003) used silicon nanoscale
barbs formed during deep reactive ion etching of silicon
to lyse human leukemia cells. Kim et al. (2012) used ZnO
nanowires grown on the sidewall of PDMS micropillars to
disrupt HaCaT, HeLa and Jurkat cells. So et al. (2014) used ZnO
nanowires-decorated multifunctional membrane for a hand-held
cell lysis devices. Yun et al. (2010) used silicon nano-blade
arrays produced by wet etching of (110) silicon for EL4 mouse
T-lymphoma cells disruption. However, it is worth noting that
these studies are all based on mammalian cells and to the
best of our knowledge, this kind of devices has not been used
for bacterial study. It is well-known that bacterial cells and
mammalian cells have differences in both of their sizes and
the structures of membranes. Therefore, it is both interesting
and fundamentally important to investigate how bacterial cells
will response and react to these sharp nanostructures on a
LOC platform.

Here, we present a hybrid strategy to integrate silicon
nanospikes prepared by metal-assisted chemical etching
(MacEtch) on the sidewalls of silicon micropillars fabricated by
microfabrication technology, creating a unique environment for
the study of interaction of bacteria with sharp nanostructures
on a chip. The method of producing the nanospikes, MacEtch,
is a low-cost and scalable nanofabrication method (Li, 2012).
The results of colony-forming unit (CFU) calculation of
bacterial sample flowing through devices containing lateral
silicon nanospikes showed 80% reduction compared to the
original sample. ATP measurements of bacterial sample also
showed more than two times increase of ATP concentration
compared with using chip without nanospikes, which represents
that More contents were released from bacteria. Scanning
electron microscope images of devices after test also revealed
both captured bacteria and lysed bacteria. Our work presents
a new methodology to synergistically combine bottom-up
nanofabrication technology for nanostructures and top-down
microfabrication technology for microstructures to produce a
cost-effective LOC with integrated nanostructures for bacterial
killing and assess the possibility of using nanospike-based
approaches for bacteria lysing.

EXPERIMENTS

Fabrication Process
Figure 1 illustrates the three major steps of the fabrication
process. Using conventional lithography and deep reactive
ion etching, silicon microchannels and silicon micropillars
were fabricated on a single crystal silicon wafer with (100)
crystal direction as shown in Figures 1A,B. Then MacEtch was
applied to fabricate silicon nanospikes on sidewalls of silicon
micropillars. The top part of the silicon substrate is protected
by the 2µm thick silicon oxide. After silicon nanospikes were
created on the sidewalls, we used hydrofluoric acid to remove
the top silicon oxide. Finally, a flat piece of PDMS cover with
pre-punched inlets and outlets was bonded on top of the silicon
substrate to render the chip.

For theMacEtch process, we used amixture solution of 20mM
silver nitrate and 5M hydrofluoric acid at room temperature.
Prior toMacEtch, the silicon sample with micropillars was placed
in a furnace to grow 500 nm thick thermal oxide and etched
with hydrofluoric acid to remove the scallops or the roughness
on the sidewalls of the micropillars. This sidewall smoothing
step is critical for producing silicon nanospikes (Gao et al.,
2014). Then the sample was dipped into the MacEtch etchants
to produce lateral silicon nanospikes on the sidewalls of the
micropillars (shown as Figure 1C). The tip radius of nanospikes
fabricated by MacEtch were reported to be distributed from
20 to 300 nm with an average of 100 nm (Hochbaum et al.,
2008) and were sharp enough to disrupt the cell membranes
as reported.

Detailed fabrication procedure was provided in Figure S1. We
also fabricated a microfluidic chip with only silicon micropillars
(shown as Figure 1B) and bonded with a PDMS cover to be acted
as the control device.
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FIGURE 1 | Major steps of the fabrication process for the chip with silicon lateral nanospikes. (A) UV lithography to define the shapes of micropillars and the

microchannels; (B) deep reactive ion etching of silicon and silicon oxide; (C) MacEtch to produce lateral silicon nanospikes on the sidewalls and remove oxide using

hydrofluoric acids.

Numerical Simulation and Design
Optimization
We employed the design of deterministic lateral displacement
(DLD) device (Huang et al., 2004) that uses an array of
micropillars to manipulate the laminar flow streams inside the
microfluidic channels. This strategy facilitates the flow streams
around the edges of micropillars to increase the chances of
bacteria to contact the micropillars and have been used for
separating mammalian cells (Inglis et al., 2011), bacteria (Inglis
et al., 2010), DNA (Huang et al., 2004), and exosomes (Kim et al.,
2017). The micropillar geometry has a significant impact on the
flow stream and affect collision probability with the micropillars
and thus the chance of bacteria being captured by the nanospikes.
Therefore, we used numerical simulations to optimize the design
of silicon micropillar shapes for increased collision probability
and improved capturing efficiency. The Navier-Stokes equation
and Newton’s second law were used to model the flow field
and bacteria trajectory in the microchannel, respectively. Briefly,
the flow field is first solved by a stationary solver, and then
the particle tracing for fluid flow is solved by a time-dependent
solver. The effects of three different configuration of triangular-
shaped micropillars on bacteria capturing efficiency and collision
probability are investigated. The numerical results of velocity
profiles and bacteria trajectories are shown in Figure 2. The
column shifts of micropillars configuration in Figures 2A–C are
0, 5, and 10µm, respectively. The bacteria capturing efficiency is
correlated to the percentage of bacteria that enter certain distance
range (2µm) from the micropillars, by assuming finite size of
Escherichia coli bacteria. Based on this criterion, the triangle
configuration of column shift by 5µm provides the maximum
collision efficiency. Therefore, we chose the design of triangular
micropillars with 5µm column shift.

Figure 3a shows the photo of a completed device. Each device
has three separate microchannels with micropillar regions in the
middle of channels serving as the interaction zone. Figure 3b
shows the SEM images of the fabricated microchannels and
micropillars. Figure 3c shows a triangular-shaped micropillar
with lateral silicon spikes on the sidewalls. The lateral spikes
have a tip radius in the range of 10–200 nm, which could
produce shear force to disrupt the bacterial cell walls under
shear flows.

Bacteria Test Procedures
The bacterial killing ability of the chip was quantified by
comparing the numbers of colonies of the samples with
and without chip treatment with spread-plating methods. To
determine whether the bacterial cells were lysed and released
their contents, we measured the amount of ATP from the
supernatant of the solution passed through the chip. In addition,
We used a scanning electron microscope to verify the bacteria
capture and lysing qualitatively. The experimental procedure was
represented in Figure 4.

Bacterial Sample Preparation
Luria-Bertani (LB) broth and LB agar were prepared with
tryptone (Oxoid Ltd., UK), yeast extract (Oxoid Ltd., UK), NaCl
(Sinopharm Chemical Reagent Co Ltd., China), agar (Becton,
Dickinson and Company, USA), and distilled water. E. coliDH5α
cells incubated in LB broth were harvested at exponential phase
and the viable cells were counted by quantifying the CFUs with
spread-plating method. The initial bacterial concentration was
about 109 CFU/mL.

The cells were centrifuged at 4,000 rpm for 5min and rinsed
with PBS buffer solution (Thermo Fisher Scientific, pH 7.4) for
three times. Then the bacterial sample was diluted 1,000× in PBS
for the subsequent on-chip experiments. Bacterial cell numbers
of the diluted sample were determined by plate counting of CFUs
on LB agar plates and ATP measurement.

On-Chip Experiment
As shown in Figure 4, the diluted bacterial sample was poured
into a plate and silicone tubes were inserted into the inlet and
outlet of chip. Then the inlet tube was inserted into the liquid
and the outlet tube was connected to a syringe. The syringe
was withdrawn and held for 10min to get the solution passing
through the chip. Approximate 500 µL of liquid was collected
from the outlet, which indicated a flow rate of about 50 µL/min.
Bacterial cell number of the sample after on-chip experiment was
determined by spread-plating method and ATP measurement.

ATP Measurement
The amount of ATP was measured by using the BacTiter-GloTM

Microbial Cell Viability Assay (Promega, USA). The luminescent
signal is proportional to the amount of ATP present. In addition
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FIGURE 2 | Velocity profiles and bacteria trajectories for three configurations of triangular-shaped micropillars of column shift of (A) 0 µm, (B) 5 µm, and (C) 10 µm.

FIGURE 3 | (a) Photo of the completed device with PDMS cover on top of the silicon chip. (b) SEM images of three separate microchannels each containing an array

of micropillars with different pillar arrangements. (c) SEM image of a triangular-shaped micropillars with lateral and top silicon spikes.

to measure the ATP amount of the sample after chip treatment,
we also centrifuged the sample at 4,000 rpm for 10min to
get the ATP amount of the supernatant. Luminescence for the
supernatant (LSUP) and the sample (LSAM) were recorded on a
multimode plate reader (EnSpire, PerkinElmer, USA).

SEM Observation
After the on-chip experiment, we peeled off the PDMS layer
and soaked the silicon structure into 4% glutaraldehyde (Beijing
Leagene Biotech Co Ltd, China), dehydrated in 50, 70, 80,
90, 95, and 100% ethanol. Then the silicon structure was
dried and covered with a thin gold film by using an Ion
Sputter Coater (MC1000, Hitachi, Japan) before imaging by the
environmental scanning electron microscope (QUANTA FEG
250, FEI, Hillsboro, OR, USA).

Statistical Analysis
The one-way analysis of variance (ANOVA) with Tukey HSD
test was used to determine if there were statistically significant

differences between themeans of the groups. Data were expressed
as the mean± SD from three independent on-chip experiments.

RESULTS AND DISCUSSIONS

We first compared the CFU of the bacterial solution collected
from the outlet of the chip with that of the sample without
chip treatment (shown as numbers of percentages in Figure 5

and the CFU of the sample without chip treatment was used
as 100%). The chip without silicon nanospikes on the sidewalls
of micropillars were tested as the control group. For the device
without silicon nanospikes but only silicon micropillars, the
CFU of output sample decreased about 19%, while for the
chip with silicon nanospikes, the CFU significantly decreased
about 80%. There was no statistically significant difference
(p > 0.05) between the group without chip treatment and
the group with only micropillars inside the chip. In contrast,
there were statistically significant decreases in viable cell number
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FIGURE 4 | Bacterial experimental protocol. (1) Bacterial sample preparation; (2) On-chip experiment; (3) CFU calculation and ATP measurement for the samples

collected from the chip; (4) main procedures of the sample preparation for the SEM observation.

(p < 0.01) after passing through the chip with lateral nanospikes.
The existing of nanospikes remarkably increased the killing
efficiency of the bacterial cells. The results also indicated that
most bacteria interacted with the lateral silicon nanospikes when
they flew through the chip and lost their viability. When the
concentration of the bacterial solution increased to about five
times, CFU decreased 63.5% (shown as Figure S2), indicating
that the chip has its limit for bacteria processing. Since the chip
has fixed amount of lateral silicon nanospikes and can only
process a certain number of bacteria, with bacteria concentration
increasing, the average collision efficiency will decrease and thus
less bacteria get killed.

To further determine the lysing capability of the chip, we
centrifuged the output samples for their supernatant and test the
content of extracellular ATP. We supposed that if the bacterial
cells were disrupted by the nanospikes when they passed through
the microchannel, their ATP would release into the solution.
The results of the luminescence of the supernatants were shown
in Figure 6, which suggested that the chip with lateral silicon
nanospikes lysed more than two times more of the bacterial cells
than the chip with only micropillars and there was a statistically
significant difference between the two groups (p < 0.01). In
addition, we also investigated that some E. coli bacteria cells
were captured on the sidewalls and some of them appeared to be
lysed with the disrupted membrane from the SEM images of an
array of triangular micropillars with silicon nanospikes (shown
in Figure 7).

FIGURE 5 | Bacterial killing performance as indicated by the decreases in

CFU compared with the chip without nanospike (control). The concentration of

the input bacterial sample was ∼2.38 × 106 CFU/mL. *Significant difference

between groups (p < 0.01).

In this work, MacEtch was used to fabricate silicon nanospikes
on the sidewalls of micropillars in the microchannel. Compared
with other nanofabrication methods, MacEtch shows significant
advantages. First, MacEtch offers the benefits of lower cost and
lower power consumption. It only requires regular chemicals
and can be operated in room temperature without using
sophisticated vacuum equipment (Linklater et al., 2017; Du
et al., 2018; Hazell et al., 2018) or consuming a big amount of
power for high-temperature, which leads to significant power
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saving and green manufacturing. Second, MacEtch offers the
unique capability of fabricatingmonolithic nanostructures on the
sidewalls of silicon microstructures, which is very challenging
for conventional semiconductor manufacturing technologies.
Fabricating nanostructures on the sidewall can enable improved
functionalities, such as the better liquid repelling capability
for the self-cleaning surface. Conventional semiconductor
manufacturing, such as reactive ion etching, can only produce
micro/nanostructures on the front surface of the sample and has
limited access to the sidewall. Other bottom-up methods, such
as growing nanostructures and attaching nanomaterials on the
surfaces, tend to have adhesion issues because the nanomaterials
are attached to the surface via relatively weak Van derWaals force
(Yun et al., 2010).

This device can kill about 80% of the bacterial cells by using
mechanical structure without using chemicals. Several studies
suggest that the cell membrane ruptured by nanospikes is purely
due to physical disruption, as Pogodin et al. (2013) and Li (2016)

FIGURE 6 | ATP measurement results of the sample passed through the chip

with and without nanospikes. *Significant difference between groups

(p < 0.01).

proposed in their papers. Adsorption of bacterial membrane on
the nanospike surfaces led to a drastic increase of contact area,
accompanied by stretching of the bacterial membrane, likely
to cause irreversible membrane rupture and death of bacteria.
Moreover, the chip can also potentially function as a bacterial
lysing module and can be integrated with other modules such
as separation and analysis to form a LOC system performing a
complete set of operation for bacteria analysis. This is particularly
useful at places where bacterial lysing agents are not available
and other types of lysing technique such as acoustic or electrical
are difficult to implement. However, the lysing efficiency with
the current chip was only around 16.67% (detailed calculation
process was shown in the Supplemental Material), meaning
that 16.67% of the bacterial cells actually had their membranes
disrupted and released their contents despite the fact that 80% of
the cells lost their viability after passing through the chip. This
might be attributed to the structure of cell wall of the gram-
negative bacterial species, which consists of three layers–the outer
and inner cytoplasmic membranes, and a peptidoglycan layer
in between. Therefore, it is much more challenging to disrupt
their cell walls compared to mammalian cells which only have
the plasma membrane consisting of mainly bi-lipid layers. The
membrane of bacterial cells may be partially damaged, which
induced the loss of viability and the capability for growing into
colonies, but insufficiently to release their contents.

To improve the bacterial lysing efficiency, we could increase
the shear force acted upon the bacterial cells by increasing
the flow rate of sample and further reduce the tip radius of
nanospikes by optimizing thermal oxidation and hydrofluoric
acid etching (Resnik et al., 2003). Moreover, we could increase
the width and length of the microchannels to arrange more
micropillars to increase the collision probability when the
bacterial cells flowing through the chip. As shown in Figure 7,
some dead bacterial cells covered the nanospikes and prevented
subsequent puncture. Therefore, increasing the height of

FIGURE 7 | SEM images of the silicon micropillars with lateral silicon nanospikes. (a) an array; (b) zoomed-in view of a single triangular micropillar; (c) zoomed-in view

of bacteria observed sticking on the lateral silicon nanospikes, some of them still had integral cell walls while some of them had been disrupted. Scale bars are 10, 5,

and 1µm for (a–c), respectively.
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micropillars for larger areas of nanospikes and implementing
backwashing to remove the some of the dead bacteria cells
might be helpful for a higher processing capability. Further
works are on-going to optimize the chip design and process
conditions for the improvement of the lysing efficiency as well as
the throughput.

CONCLUSIONS

We presented a new methodology to fabricate a chip with
monolithic lateral silicon nanospikes on sidewalls of silicon
micropillars inside a microfluidic channel. Our chip provides
a unique tool to study the interactions of bacteria with sharp
nanospikes. Our measurement results showed that this chip
killed 80% of E. coli based on mechanical forces during the
interaction of the bacteria and the nanospikes. Moreover, the
results also suggested that this chip could further be served
as a mechanical lysing module and integrated with other
functional modules such as separation and analysis to form a
whole-functioning bacterial test chip.
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