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The sluggish kinetics of oxygen evolution reaction (OER) on anode hinders the efficiency

of electrochemical water splitting. Electrocatalysts for OER based on non-precious

transition metals are highly desirable. Herein, iron and nickel mixed oxides with

surface oxygen vacancies were fabricated using NiIIFeII-Prussian blue analog as the

precursors by a facile two-step thermal-assisted method. The precursor compositions

and calcination temperatures exert great impact on the structure and morphology of the

derivatives, as well as the electrocatalytic performances for OER. Both the higher content

of Ni ions during the synthesis of precursors and lower calcination temperature favor the

electrocatalytic performance of the corresponding derivatives. The porous metal oxides

consisting of nickel oxide and nickel ferrite exhibited the remarkable electrocatalytic

property toward OER in an alkaline solution, which can be attributed to the nanosized and

porous structure, the co-existence of spinel NiFe2O4 and cubic NiO, the high content of

surface oxygen vacancies, and the low charge transfer resistance. This study will provide

new inspiration for the facile design of low-cost active catalysts for OER in the future.

Keywords: oxygen evolution reaction, oxygen vacancy, nickel ferrite, nickel oxide, Prussian blue analog

INTRODUCTION

With the increasing concern over environmental protection and fossil fuel consumption, clean,
and renewable energy like solar and wind power has attracted great attention. However, such
energy is highly dependent on natural conditions, e.g., weather and region differences, and thus
cannot guarantee the continuous energy supply. Water electrolysis is to convert the electric
energy into hydrogen, supplying energy by combustion without the limitation of weather. Two
thermodynamically uphill reactions are involved in the water electrolysis, i.e., hydrogen evolution
reaction (HER) and oxygen evolution reaction (OER). With the endeavor of researchers, currently
the overpotential to initiate HER has become quite low (Nørskov et al., 2005). However, OER on
the anode of water electrolysis has more reaction barriers and larger overpotential is required, thus
hinders the efficient production of hydrogen (Dau et al., 2010). Various electrocatalysts have been
developed to boost the kinetics of OER. Ru and Ir-based oxides are commercially employed as the
OER electrocatalysts, but the high cost and scarcity restrain the large-scale applications. Therefore,
electrocatalysts based on the relatively cheap transition metals such as Fe, Ni, Mn, and Co are
desirable to be explored.
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Versatile transition metal catalysts, e.g., metal oxides, alloys,
layered double hydroxides, oxyhydroxides, and phosphides have
been studied for OER (Solmaz and Kardaş, 2009; Gong et al.,
2013; Trotochaud et al., 2014; Xuan et al., 2017). Among them,
Ni and Fe-based oxides were considered as the promising
OER electrocatalysts. It is widely perceived that the Fe-doped
nickel oxides outperform the cubic NiO and spinel Fe3O4 (Li
and Selloni, 2014; Fominykh et al., 2015). Corrigan et al.
discovered that Fe impurities had great effect on the OER
catalytic performance of NiO, and a NiFe hydrous oxide with
10% Fe impurity showed enhanced electrocatalytic property
compared with catalysts with less Fe or without Fe, requiring
an overpotential of only ∼200–250mV to achieve the current
density of 10mA cm−2 (Corrigan, 1987). The nickel ferrite
(spinel NiFe2O4) is a close-packed cubic oxide with Ni2+

occupying the tetrahedral holes and Fe3+ in the octahedral
holes. The coexistence of Ni2+ and Fe3+ induces the hopping
of bonding electrons, conferring NiFe2O4 with high electrical
conductivity which is favorable for OER (Landon et al., 2012). It is
also claimed that the crystalline metal oxides inclined to achieve
better stability compared with the amorphous materials (Gong
and Dai, 2015).

It was previously reported that the oxygen vacancies on the
surface of the catalysts can improve the electronic conductivity
and create more active sites, facilitating the electrochemical
OER performance (Xu L. et al., 2016). Transition metal oxides
with surface oxygen vacancies, such as FeCo oxide nanosheets,
NiCo2O4 nanosheets, Co3O4 and MnO2, have showed enhanced
electrocatalytic performance of oxygen reduction or evolution
reactions (Cheng et al., 2013; Bao et al., 2015; Xu L. et al.,
2016; Zhuang et al., 2017). The oxygen vacancies can create new
defect states located in the bandgap of the metal oxides, where
two electrons are easily excited, thus improving the conductivity
of the metal oxides. Perovskite oxides with abundant oxygen
vacancies are also generally applied as active OER electrocatalysts
(Zhu et al., 2016). However, Ni and Fe-based oxides with oxygen
vacancies for OER have rarely been reported previously.

Nickel and iron oxides with various morphologies, such as
nanoparticles, films, hollow cubes, and nanofibers, have been
prepared by spin-coating, aerosol spray, electrospinning, and
microwave-assisted method (Trotochaud et al., 2012; Kuai et al.,
2014; Li et al., 2015; Barforoush et al., 2017). Recently, metal
organic frameworks (MOFs), consisting of metal nodes and
organic linkers, have been widely used as the promising templates
of carbon, metal oxides, and carbon-metal composites (Guo et al.,
2015; Tang et al., 2015; Aijaz et al., 2016; Xu et al., 2017; Zheng
et al., 2018). Compared with the conventional synthetic methods,
templating from MOFs has the advantages of low cost, simple
procedures and easily-adjustable compositions (Cao et al., 2017;
Xie et al., 2017; Zou and Li, 2018). In addition, the derivatives
can inherit the porosity of mother MOFs, which facilitates the
mass transfer and exposure of active sites. For instance, Jiang et al.
successfully synthesized Fe-Ni oxide architectures with different
Ni and Fe contents as the electrocatalyst for OER, using Fe-Ni-
based aminoterephthalate MOFs as the precursor (Jiang et al.,
2016). Prussian blue analogs (PBAs) with the chemical formula

AxMy[M
′(CN)6]z·nH2O or My[M

′

(CN)6]z·nH2O (A = alkali

metal such as K and Na; M, M
′

= transition metals like Co,
Ni, and Fe) are frequently chosen as the MOF precursors to
prepare transition metal-based materials (Kaneti et al., 2017;
Li et al., 2018). Du et al. synthesized Zn-Fe-mixed oxide by
thermal conversion of K2Zn3[Fe(CN)6]2 (Du et al., 2013). Han
et al. achieved Ni-Co-mixed oxide by conversion of NiCo-PBA
(Ni3[Co(CN)6]2) nanocages, manifesting enhanced OER activity
(Han et al., 2016). Kang et al. prepared mesoporous Ni-Fe
oxide hollow nanocage derived from Ni3[Fe(CN)6]2, showing a
low overpotential and excellent durability in the electrocatalytic
activities for OER (Kang et al., 2017). The studies above proved
that PBAs could be excellent precursors to derive metal oxide-
based electrocatalysts.

Inspired by this, we developed novel Ni-Fe oxides with
surface oxygen vacancies as OER electrocatalysts derived from
nanocrystalline NiIIFeII-PBA (K2NixFey(CN)6) precursor. The
synthesis involved two steps, including thermal-assisted synthesis
of PBA precursors and pyrolysis conversion of PBA into metal
oxides. The catalytic performance of the derived metal oxides
was optimized by varying the calcination temperatures and
Ni/Fe contents during synthesis. The results proved that the
coexistence of NiFe2O4 and NiO facilitates the OER kinetics.
Moreover, the surface oxygen vacancies were found to promote
the electrocatalytic performance toward OER as well.

MATERIALS AND METHODS

Materials
Polyvineypirrolydone (PVP) and isopropyl alcohol were
purchased from Shanghai Macklin Biochemical Co., Ltd.
Potassium ferrocyanide trihydrate (K4[Fe(CN)6]·3H2O)
and nickel acetate tetrahydrate (Ni(CH3COO)2·4H2O) were
obtained from Sinopharm Reagent Co., Ltd. Hydrochloric acid
(HCl solution, 36%) and anhydrous ethanol were purchased
from Guangdong Guanghua Sci-Tech Co., Ltd. Nafion solution

(D520, 5 wt.%) from DuPont
TM

and Vulcan XC-72R carbon
black fromCabot were used as received for the study. All reagents
were used without further purification. Water (DI water, 18.2
M�) used for all the experiments in this study was purified
through an Aquaplore 2S system.

Synthesis of Nickel and Iron Oxides
The synthesis routes of samples are illustrated in Figure 1. The
PBAs with different Ni and Fe molar ratios were prepared as the
precursors for metal oxides. The sample Fe-PB was synthesized
without the addition of Ni(CH3COO)2·4H2O. First, 3 g of PVP
and 0.4 mmol of K4Fe(CN)6·3H2O were dissolved in 0.1M HCl
(40mL) and stirred rapidly for 30min. Then the solution was
placed in an oven for 20 h at 80◦C. The blue precipitate was
collected with centrifugation and washed thoroughly with DI
water and ethanol several times, and finally dried in an oven
at 80◦C. The NiFe-based PBAs (including NiFe2-PB, NiFe-PB,
Ni2Fe-PB, with the molar ratio of Ni ion and ferrocyanide
at 0.5, 1.0, and 2.0, respectively) were prepared following the
same procedures as above, except that Ni(CH3COO)2·4H2O was
added. The NiFe-PBAs precipitates appeared pale green, due
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FIGURE 1 | The flow chart of sample synthesis.

to the weak UV-vis absorption coefficient at around 520 nm as
previously reported (Sato, 2006).

To fabricate the derived metal oxides, the as-synthesized PBAs
were annealed in air at various temperatures. Specifically, the Fe-
PB and NiFe-PBAs were transferred in the crucibles separately
and calcinated in air at 500◦C for 1 h with a ramping rate
of 2◦C min−1. The powders obtained were correspondingly
named as Fe-O, NiFe2-O, NiFe-O, and Ni2Fe-O. In addition,
the samples Fe-OX, NiFe2-OX, NiFe-OX, and Ni2Fe-OX (X:
calcination temperature of 600 or 700◦C) were also prepared. The
sample names with the synthetic conditions are demonstrated in
Figure S1.

Characterizations
X-ray diffraction (XRD, X’pert Pro MFD) with a Cu Kα

radiation (λ = 0.154178 nm) was used to investigate the phase
compositions of the samples. The surface microstructure,
morphology, and corresponding energy dispersive spectroscopy
(EDS) spectra of the powders were obtained on a field emission
scanning electron microscope (FESEM, Zeiss Sigma 500). The
transmission electron microscopy (TEM), high-resolution
transmission electron microscopy (HRTEM), selected area
electron diffraction (SAED), scanning transmission electron
microscopy-energy dispersive spectroscopy (STEM-EDS)
mapping were obtained on a FEI Tecnai G2 F20 transmission
electron microscopy. X-ray photoelectron spectroscopy (XPS,
Thermo Scientific) was used to characterize the chemical states
of the samples, using monochromatic Al Kα radiation. C 1 s
electron binding energy at 284.6 eV was used for the correction
of charge in all XPS spectra.

Electrochemical Measurements
All electrochemical measurements were carried out in a three-
electrode cell on a Solartron EnergyLab XM electrochemical
workstation with a Model 636A Ring-Disk Electrode System
at room temperature. A rotating disk electrode (RDE) with a
glassy carbon disk (area of 0.196 cm2) served as the working
electrode. The counter and reference electrodes were Pt plate
and Ag/AgCl (saturated KCl-filled), respectively. All potentials

measured were converted to the reversible hydrogen electrode
(RHE) scale, according to ERHE = EAg/AgCl + 0.059 pH+ 0.197.

In a typical preparation procedure of catalyst ink, a mixture of
3mg catalyst, 2mg carbon black, and 15µL Nafion was dispersed
in 1.0mL isopropyl alcohol solvent and ultrasonically treated for
30min. Then, 10 µl of catalyst ink was pipetted onto the clean
glassy carbon surface and dried in a vacuum tank to form a
catalyst film, yielding a catalyst mass loading of 0.150 mg cm−2.

The OER polarization curves were carried out in an O2-
saturated 1.0M KOH electrolyte between 1.0244 and 2.0244
(vs. RHE) with a sweep rate of 5mV s−1 at 1,600 rpm.
The actual measurement was not initiated until a stable cyclic
voltammetry (CV) curve appeared by running CV cycles
repeatedly. All polarization curves were corrected with iR-
compensation. Electrochemical impedance spectroscopy (EIS)
for OER was conducted in an O2-saturated 1.0M KOH
electrolyte from 1,000 kHz to 0.1Hz with an amplitude of 5mV
at 0.6V vs. open circuit.

RESULTS AND DISCUSSIONS

The phase compositions of pristine NiIIFeII-PBA were analyzed
by XRD (Figure S2, Supporting Information). The diffraction
peaks are independent of the Ni and Fe molar ratio, and all the
patterns can be assigned toNiFe PBAwith anNaCl-type structure
as previously reported (Shigeyuki et al., 1997), indicating the
successful synthesis of NiIIFeII-PBA. No additional impurities
were detected, suggesting the high purity of the products. The
peak intensities of NiFe-based PBAs (including NiFe2-PB, NiFe-
PB, and Ni2Fe-PB) became smaller compared with Fe-PB. It is
possibly due to the addition of Ni ions, causing the distortion
of the linear arrangement Fe-C-N-Ni in the NiFe-based PBAs
(Hallmeier and Szargan, 2001). After calcination in air at 500◦C,
metal oxides formed as shown in Figure 2. Only Fe oxide (Fe2O3)
was derived from Fe-PB while nickel ferrite (NiFe2O4) was
obtained after pyrolysis of NiFe2-PB. The derivatives of NiFe-
PB and Ni2Fe-PB were NiFe2O4 and NiO composites with clear
phase separation. The intensity of diffraction peak at 43.8◦ (2θ)
of NiFe-O was comparable to that of the peak at 35.6◦, while the
peak at 43.8◦ of Ni2Fe-O apparently had higher intensity than
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FIGURE 2 | XRD patterns of samples annealed at 500◦C.

the peak at 35.6◦, suggesting that more NiO exists in Ni2Fe-O
than in NiFe-O. When the calcination temperature increased to
600 and 700◦ C, the same conclusions could be obtained from
the XRD results of the derivatives (Figures S3, S4), indicating
that the phase formation can be fully completed at 500◦C, and
phases of the derivatives are determined by the composition of
the precursors, rather than the calcination conditions.

Except for affecting the phase compositions, the introduction
of Ni ions also influences the morphologies of the pristine
PBAs. As shown in Figure S5, it displayed a cubic morphology
on Fe-PB with the cubic size of ∼400 nm. In contrast, the
NiFe-based PBAs could not maintain the large cubic shape and
consisted of ultrafine particles with the size of 20∼150 nm. After
calcination at 500◦C, Fe-O inherited the large cubic shape of
Fe-PB while nanosized cube-like particles were found on the
rest Ni-Fe mixed oxides (Figure S6). As shown in Figure 3a, the
particle size of Ni2Fe-O ranged from 20 to 150 nm. The particles
with round corners distributed loosely with numerous pores
located between. Particle aggregation could be observed when the
calcination temperature increased to 600◦C (Figure S7). When
the calcination temperature rose to 700◦C, the large cubic shape
of Fe-O700 collapsed and particle aggregation accelerated on
the Ni-Fe mixed oxides (Figure S8). The Ni and Fe signals
could be found on the EDS spectra of NiFe-based PBA while
only Fe peak existed on Fe-PB, indicating that the bimetallic
PBAs are successfully synthesized (Figures S9a–d). Notably, the
intensity of peak at 3.312 eV assigned to potassium on Ni2Fe-
PB was lower than that on other three precursors. As previously
reported (Shigeyuki et al., 1997), when the molar ratio of Ni ion
to cyanoferrate ion increased to 1.5 during synthesis, insoluble
cyanides containing no potassium ions took the priority to
form instead of nickel-iron cyanide containing potassium ions.
This could explain why less potassium content was discovered
when the molar ratio of Ni and cyanoferrate ion was 2.0 in
this study. As shown in Table S1, the content of Ni and Fe
on the precursors mostly agreed with the molar design during

the synthesis except Ni2Fe-PB. The molar ratio of Ni and
Fe on Ni2Fe-PB was far below 2.0, because the insolubility
of cyanides as discussed above hinders the precise control of
composition during precipitation (Wessells et al., 2011). The
element compositions and molar ratios of Fe and Ni of the
derivatives after calcination at 500◦C owned the same features as
their corresponding precursors (Figures S9e–g, Figure 3b, and
Table S2).

The TEM image in Figure 3c confirms the ultrafine Ni2Fe-O
nanoparticles and porous structure, where darker parts present
the particles and lighter areas denote the pores. The formation
of the porous structure is attributed to the following two
reasons: (1) the pores in the precursors were retained during
the calcination; (2) the decomposition of linkers (-CN) in
the precursor induced gas (such as COx and NOx) release
during pyrolysis, creating pores in Ni2Fe-O. Figure 3d shows
the HRTEM image of Ni2Fe-O, and the lattice spacing of
0.251 and 0.241 nm corresponds to the crystal planes (311)
and (222) of the spinel NiFe2O4, respectively. In addition, a
(200) planar spacing of 0.209 nm assigned to cubic NiO is also
found. The corresponding SAED pattern (Figure 3e) reveals that
Ni2Fe-O is polycrystalline and consists of NiFe2O4 and NiO,
agreeing well with the XRD result. The STEM-EDS mapping
profiles of Ni2Fe-O (Figures 3f–i) prove that Ni2Fe-O contains
the elements Ni, Fe, and O, where Ni and Fe distribute non-
uniformly. The areas in the gold circles are Fe-rich in the
form of NiFe2O4 while Fe-rich parts in the white circles are
mainly NiO.

The surface chemical state of Ni2Fe-O was investigated by
XPS. The full XPS survey spectra (Figure 4A) reveals that the
surface of Ni2Fe-O includes Ni, Fe, and O. Figure 4B shows
the Fe 2p doublet ranging from 700 to 740 eV. The binding
energies at 710.3 and 723.8 eV are ascribed to Fe 2p3/2 and Fe
2p1/2, respectively, suggesting the formation of NiFe2O4 (Chen
et al., 2010). The Ni 2p1/2 peak at 873 eV and Ni 2p3/2 peak
at 854 eV are found in Figure 4C, and both peaks could be
deconvoluted into components corresponding to the Ni2+ and
Ni3+ oxidation states (Mcintyre and Cook, 1975; Biesinger et al.,
2011). Moreover, the shake-up satellite peaks at 860 and 877 eV
also reveals the Ni2+ and Ni3+ oxidation states (Uddin et al.,
2015). The binding energy of O 1 s peak located at 529.2 eV
(Figure 4D) is ascribed to bound oxygen in the lattice in the
form of Ni-O and Fe-O (Solís et al., 2014). The fitting peak at
530.4 eV is the signal of the highly oxidative oxygen (O2−

2 /O−)
at the surface of Ni2Fe-O (Zhu et al., 2015; Xu X. et al., 2016).
The component at 532.9 eV represents the adsorbed molecular
water on the surface (Solís et al., 2014). Noteworthily, the
oxygen in Ni2Fe-O is dominated by lattice oxygen and highly
oxidative oxygen, accounting for 39.7 and 52.3%, respectively. As
previously reported, the mixed Ni and Fe metal oxides are active
components for OER (Gerken et al., 2014). Moreover, the highly
oxidative oxygen representing the surface oxygen vacancies will
lower the charge transfer resistance, and thus promote the OER
activities (Gui et al., 2019). Thus, it is expected that the mixed
phase composition and highly oxidative oxygen revealed by
XPS results facilitate Ni2Fe-O to be a promising candidate for
electrochemical OER.
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FIGURE 3 | (a) SEM image, (b) EDS spectrum, (c) TEM image, (d) HRTEM image, (e) SAED pattern, and (f–i) element mapping of Ni2Fe-O.

The catalytic activity toward OER of as-synthesized
metal oxides was investigated. The iR-corrected linear scan
voltammograms (LSV) curves in Figure 5A show that the
electrocatalytic activities of the Fe-Ni mixed oxides were much
better than the pure Fe2O3. Especially, Ni2Fe-O exhibited
the best catalytic performance, requiring an overpotential
(ηa) of 370mV to reach a current density of 10mA cm−2

and an overpotential (ηb) of 270mV at the onset potential.
The electrocatalytic activity of Ni2Fe-O in this study is also
better than the previously reported results (Table S3) for
NiFe2O4 nanoparticles (η

b
= 470mV) (Li et al., 2015), NiFe2O4

nanofibers (ηb
= 440mV) (Li et al., 2015), Fe0.5Ni0.5Ox (ηa

=

584mV) (Jiang et al., 2016), NiO (ηa
= 430mV) (Jung et al.,

2016), NiFe2O4 (η
a
= 500mV) (Jung et al., 2016), Ni-Co mixed

oxide porous cubes (ηa
= 430mV) (Han et al., 2016), and is

comparable to the electrocatalytic performance of Fe3Ni2O
(ηb

= 270mV) (Chen et al., 2014), NiOH nanoplate (ηa
=

360mV, ηb
= 270mV) (Yu et al., 2016), as well as Ni-Co mixed

oxide cages (ηa
= 380mV) (Han et al., 2016). The catalytic

kinetics of the catalysts are evaluated by the Tafel plot originated
from the polarization curves. The lowest slope (48mV dec−1)
of Ni2Fe-O compared with the others suggests its favorable
catalytic kinetics for OER (Figure 5B). The charge transfer
resistance (Rct) of the catalysts exerts great influences on the
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FIGURE 4 | (A) The Full XPS survey spectra and the deconvoluted high-resolution XPS spectra of (B) Fe 2p, (C) Ni 2p, and (D) O 1s obtained from Ni2Fe-O.

catalytic performances and was investigated by electrochemical
impedance spectroscopy (EIS), as shown in Figure 5C. The
Rct values of the catalysts are in good agreement with the
corresponding electrocatalytic activity. The charge transfer
resistance of Ni2Fe-O (∼4.1�) was the lowest, compared with
that of NiFe-O, NiFe2-O, and Fe-O. To make it clear, the
overpotentials at a current density of 10mA cm−2, the Tafel slops
and the Rct values of the samples are summarized in Table S4.
The stability of Ni2Fe-O was also studied as shown in Figure 5D.
No apparent potential or overpotential rise was discovered in
300 cycles, suggesting the stability of Ni2Fe-O is reasonably
well, benefiting from the high crystallinity. In particular, the
overpotential happened to drop in the first 50 and 100 cycles
with the corresponding Rct decrease (Figure S10), which could
be explained by that NiO undergoes an in situ transformation
into the more active nickel hydroxide/oxydroxide for OER
during the scanning (Trotochaud et al., 2012). This is also
the reason why NiFe-O performed worse than Ni2Fe-O in
the electrocatalytic OER here (Figure 5A). As discussed above
by the XRD patterns, more NiO exists in Ni2Fe-O than in
NiFe-O, resulting in more nickel hydroxide/oxydroxide forming
during catalysis.

In addition to the molar ratios of Fe and Ni during synthesis,
the calcination temperature also has great impact on the
electrocatalytic performance of the derivatives. As shown in
Figure 6A, the Ni2Fe-O performed much better than Ni2Fe-
O600 and Ni2Fe-O700. The charge transfer resistances of the

samples are consistent with their electrocatalytic properties.
The worse catalytic effect and higher Rct values of Ni2Fe-
O600 and Ni2Fe-O700 (Figure 6B) are attributed to the
aggregation of nanoparticles as discussed above (Figures S7, S8),
which hinders the mass transfer and reduces the exposure of
active sites.

Based on the analysis above, the best electrocatalytic
performance of Ni2Fe-O for OER in this study is attributed
to the following reasons: first, the nanosized particles and
porous structures facilitate the exposure of active sites, the
diffusion of the electrolyte and enlarge the contact area
of electrode and electrolyte (Yu et al., 2016); second, the
spinel NiFe2O4 with high electrical conductivity is more
active for OER (Li and Selloni, 2014) and cubic NiO can
be transformed into active nickel hydroxide/oxydroxide
during cycling; third, the high content of surface oxygen
vacancies confirmed by XPS spectra contributes to the
electrocatalysis (Zhu et al., 2016); the last, the smallest charge
transfer resistance of Ni2Fe-O favors the catalytic activity
for OER.

CONCLUSIONS

Iron and nickel oxides derived from NiIIFeII-PBA have been
successfully synthesized by a facile two-step route. The molar
ratio of Ni and Fe and calcination temperature during
the synthesis have great influences on the morphology and
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FIGURE 5 | Comparison of electrocatalytic properties of derivatives (calcination temperature at 500◦C) with different contents of nickel and iron. (A) OER polarization

curves with iR-compensation, (B) Tafel plots of the derivative catalysts, (C) Nyquist plots of the catalysts, (D) Chronopotentiometric curve of Ni2Fe-O.

FIGURE 6 | Comparison of electrocatalytic properties of derivatives under different calcination temperatures. (A) OER polarization curves with iR-compensation, (B)

Nyquist plots of the catalysts.

structure of the derivatives, as well as the OER activity. The
sample Ni2Fe-O consisting of NiO and NiFe2O4 nanoparticles
exhibited the best among the catalysts in this study, requiring
an overpotential of 370mV to achieve a current density
of 10mA cm−2. The constituents, porous structure, surface
oxygen vacancies, and low charge transfer resistance of
Ni2Fe-O favor the electrocatalytic activity. This study opens
a new perspective for the development of active catalysts
for OER.
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