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A novel Al3+ chemosensor NPA was designed and synthesized on basis of the

mechanism of ICT and CHEF. Upon addition of Al3+, the probe NPA displayed a bright

green fluorescence under UV radiation and visual color change from yellow to colorless.

Spectrum titrations showed thatNPA could be recognized as a fluorescent turn-on probe

with 10−8 Mdetection level. The probe was successfully applied in real water sample and

test paper. More important,NPA-Al3+ complex were used as a fluorescent turn-off probe

for the detection of ClO− with the detection as low as 2.34 × 10−8 M. The performance

of NPA to Al3+ and NPA-Al3+ complex to ClO− demonstrated that NPA could be served

as a sensitive probe and exhibit INHIBIT logic gate behavior with Al3+ and ClO− as inputs.

Keywords: chemosensor, naphthalimides, Al3+, ClO−, logic gate

INTRODUCTION

Aluminum, the third most abundant metal element in the Earth’s crust, is widely used in human’s
daily life including pharmaceuticals, textile, kitchen utensils, and paper industries (Zhang et al.,
2016; Kaur and Kaur, 2017). Moreover, Al3+ ion widely exists in the environment, normally in
natural waters and many plants, which can enter the human body through foods and water.
However, excess aluminum can damage the human nervous system, and has tightly relation to
many diseases such as Alzheimer’s disease, Parkinson’s disease, anemia, dementia, encephalopathy,
and gastrointestinal diseases (Helal et al., 2013; Liu et al., 2014, 2017; Jiang et al., 2015; Zeng
et al., 2018). In addition, hypochlorous acid (HOCl), known as an important reactive oxygen
species (ROS) in many living organisms, plays a vital role in many biological processes (Zhu
et al., 2014). Hypochlorite is a key microbicide that is used for natural defense because it behaves
as a strong nucleophilic non-radical oxidant (Shi et al., 2010). However, it also results in many
pathological diseases, especially is implicated in inflammation-associated injury including hepatic
ischemia-reperfusion injury, lung injury, rheumatoid arthritis, and atherosclerosis. Moreover,
excessive or misplaced of hypochlorite can also cause detrimental effect on tissues (Lei et al., 2017;
Lin et al., 2017; Shen et al., 2017). Therefore, the determination of Al3+ and ClO− in biological
samples is of great importance.

In the last few decades, the designing a molecular system, which displayed significant changes in
electronic, magnetic, or optical signals even at low concentration during the detection for a specific
guest species, was a hot topic for many researchers (Kim et al., 2013; Liu et al., 2014; Kang Y. et al.,
2016; Lim et al., 2017). Among them, small-molecule optical probes, which exhibited many merits
including high selectivity and sensitivity, tunability, simple manipulation, and direct visualization,
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were employed as a powerful tool in the facet of trace analysis
and rapid detection for various analytes (Qin and Yang, 2015;
Wang et al., 2015; Simon et al., 2016; Liu et al., 2017; Murugan
et al., 2017). Up to now, lots of papers that one probe only for
the detection of one special analyte such as Al3+ ion (Tang et al.,
2015; Gupta and Kumar, 2016; Xie et al., 2017) or Hypochlorous
acid (Zhang et al., 2017) had been reported, but the design
idea, one fluorescent probe for successively recognition of two
different analytes, had gained increasing attention in considering
its high efficiency and potential cost reduction (Wang et al.,
2014; Ye et al., 2014; Zhao et al., 2015; Wen and Fan, 2016; Xie
et al., 2016; Zhai et al., 2016; Zhu et al., 2016; Wu et al., 2017).
Many excellent probes had been reported for relay recognition
of two different ions through fluorescent “off-on-off” (Borasea
et al., 2015; He et al., 2015; Zhao et al., 2015; Rai et al., 2016;
Bhattacharyya et al., 2017; Das et al., 2017; Jo et al., 2017; Dwivedi
et al., 2018; Feng et al., 2018; Lim et al., 2018) or “on-off-
on” (Diao et al., 2016; Zhao et al., 2016; Sarkar et al., 2017)
mode. Moreover, 1, 8-naphthalimide fluorophore, holding many
excellent photophysics properties, such as high photostability,
visible absorption and fluorescence emission, large Stokes’ shift
and high fluorescence quantum yield (Dimov et al., 2014; Yu and
Zhang, 2014; Kang L. et al., 2016; Li et al., 2018; Fu et al., 2019),
was successfully applied in designing fluorescent probes toward
various analytes.

Taking above statements into consideration, in this paper,
we prepared and characterized a 1, 8-naphthalimide-based
fluorescent probe NPA for the detection of Al3+ embodied
in colorimetric and fluorescent turn-on was ascribed to
the co-contribution of intramolecular charge transfer (ICT)

SCHEME 1 | Synthesis of probe NPA.

and chelation enhanced fluorescence (CHEF). The binding
stoichiometry between the NPA and Al3+ had been clarified
according to various spectroscopic measurements and data
analysis. Moreover, the performance of in situ formedNPA-Al3+

complex for the detection of ClO− was investigated. The NPA-
Al3+ complex exhibited a fluorescent turn-off response in the
detection of ClO−. Inspiringly, to the best of our knowledge, a
single probe for sequential detection of Al3+ and ClO− through
fluorescence “off-on-off” mode is scarcely documented.

MATERIALS AND METHODS

Reagents and Instrument
All the solvents and reagents (analytical or spectroscopic grade)
were purchased commercially and used as received. Metal salts
[NaClO4, KClO4, Mg(ClO4)2, Ba(ClO4)2, Zn(ClO4)2•6H2O,
Cu(ClO4)2•6H2O, AgNO3, Cd(NO3)2, Pb(NO3)2,
Co(NO3)2•6H2O, Ni(NO3)2•6H2O, Ca(NO3)2•4H2O,
Al(NO3)3•9H2O, MnSO4•H2O, HgCl2, FeCl2•4H2O] were
obtained from commercial suppliers, and used as received

without further purification. 1H NMR and 13C NMR spectra

were recorded on a AV- 600 spectrometer in DMSO-d6
solution. The chemical shifts (δ) are reported in ppm and
coupling constants (J) in Hz relative to TMS (0.00) for
1H NMR and 13C NMR. Mass spectra were measured
on a Waters Xevo UPLC/G2-SQ Tof MS spectrometer.
Absorption spectra were recorded using a Pgeneral TU-1901
UV-vis spectrophotometer. Fluorescence measurements were
performed on a Perkin Elmer LS55 fluorescence spectrometer at
room temperature.
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Synthesis of the Probe NPA
NPA was prepared in four steps from naphthalimide as the
starting material, as shown in Scheme 1. Compound 1–4 were
synthesized using the literature method (Kang L. et al., 2016; Li
et al., 2018).

The compound 4 (330mg, 0.97 mmol) and 2-amino-propane-
1, 3-diol (72mg, 0.8 mmol) were dissolved in ethanol (45mL)
and stirred over anhydrous Et3N (80mg, 0.58 mmol) for
24 h at room temperature. The crude product was purified by
column chromatography with CH3OH/CHCl3 (1:20, v/v) as the
eluent and further purified by recrystallization from ethanol to
get orange-yellow solid NPA (210mg, yield: 46%); m.p: 195–
196◦C.1HNMR (600 MHz, DMSO) (Supplementary Figure 1):
δ (ppm) (d, J = 7.2Hz, 1H), 8.43 (d, J = 8.5Hz, 1H), 8.39
(d, J = 8.1Hz, 1H), 7.83–7.75 (m, 1H), 7.50 (d, J = 8.5Hz,
1H), 7.35 (d, J = 8.1Hz, 1H), 4.71 (t, J = 5.4Hz, 2H), 4.07–
3.97 (m, 2H), 3.82–3.72 (m, 1H), 3.54–3.45 (m, 2H), 3.46–3.38
(m, 2H), 3.27 (s, 4H), 3.10 (s, 2H), 2.80 (s, 4H), 1.64–1.54 (m,
2H), 1.39–1.30 (m, 2H), 0.92 (t, J = 7.4Hz, 3H). 13C NMR
(151 MHz, DMSO) (Supplementary Figure 2): δ (ppm) 168.62,
163.32, 162.81, 155.32, 131.96, 130.42, 130.26, 128.89, 125.84,
125.10, 122.37, 115.42, 114.92, 60.86, 59.69, 52.53, 52.40, 51.91,
38.91, 29.51, 19.59, 13.52. MS (ESI) (Supplementary Figure 3):
m/z [NPA+H+]+ calcd 469.2451, found 469.2458.

Preparation of Solutions for Spectral
Detection
All stock solutions (10mM) including metal cations and the
anions were prepared with distilled water, while the stock
solution of compound NPA (0.1mM) was prepared in CH3OH
(100mL). One milliliter of NPA solution (0.1mM) was diluted
in 9mL CH3OH to make the test solutions (10µM). For
fluorescence measurements, excitation was set at 400 nm, and
the excitation and emission slit widths were 10 and 10 nm,
respectively. All spectroscopic measurements were performed in
CH3OH at room temperature.

Stock solution of NPA (0.1 mM) was prepared by NPA (0.01
mmoL) was dissolved in CH3OH (100mL), the test solutions
of NPA (10µM) was prepared by adding 1mL of NPA stock
solution (0.1mM) was diluted in 9mL CH3OH in CH3OH.

Stock solutions (10mM) including the metal cations and the
anions were prepared with ultrapure water, respectively. For
spectrum measurement, the test solutions were prepared by
adding certain amount of stock solution using a pipette intoNPA
stock solution. For fluorescencemeasurements, excitation was set
at 400 nm, and the excitation and emission slit widths were 10
and 10 nm, respectively.

Determination of Binding Constant and
Detection Limit
According to the fluorescence intensity data, the binding
constant of NPA with Al3+ was calculated based on the modified
Benesi–Hildebrand equation (Li et al., 2018) as followed. Where,
Fmax, F and Fmin are the fluorescence intensities of NPA in
the presence of Al3+ at saturation, at an intermediate Al3+

concentration, and absence of Al3+, respectively. K is the

stability constant.

1

F − Fmin
=

1

K(Fmax − Fmin)[Al3+]
−

1

Fmax − Fmin

The limit of detection (LOD) of Al3+ was calculated on the basis
of 3δ/K according to the fluorescence changes, δ is the standard
deviation of the blank solution, and K is slope of calibration curve
(Borasea et al., 2015; Zeng et al., 2018).

RESULTS AND DISCUSSION

The UV-Vis Spectra Responses of Probe
NPA
Various metal ions: K+, Na+, Ca2+, Mg2+, Ba2+, Pb2+, Cu2+,
Co2+, Ni2+, Fe2+, Cd2+, Hg2+, Mn2+, Ag+, Zn2+, and Al3+

were used to observe the selectivity of probe NPA (10µM) and
their UV-vis spectra were measured in CH3OH. As shown in
Figure 1, NPA exhibited a characteristic absorbance band at
400 nm in the presence of testedmetal ions (K+, Na+, Ag+, Ca2+,
Mg2+, Ba2+, Pb2+, Cu2+, Co2+, Ni2+, Fe2+, Cd2+, Hg2+, Mn2+,
Zn2+) and there was almost no difference compared with that of
NPA itself. However, upon the addition of Al3+, the maximum
absorbance peak of NPA was blue-shifted with 21 nm from 399
to 378 nm, and the solution color was changed from yellow to
colorless. This result might attribute to the decrease of conjugated
degree resulting from the decrease of electron donating ability of
piperazine ring to the naphthalimide after the complexation with
Al3+ (De Silva et al., 1997; Urano et al., 2015; Kang L. et al., 2016).

In addition, the quantitative sensing of Al3+ ion was
elucidated by UV-vis titration of probe NPA in CH3OH
solution (Figure 2). NPA alone showed a major absorbance
band at 399 nm, a new band at 378 nm appeared upon
addition of Al3+ and the intensity increased gradually and
then kept constant until the amount added of Al3+ was more
than 20µM. The good relationship was found between the
ratio of absorbance (A378/A399) vs. the concentration of Al3+

(Supplementary Figure 4), and the limit of detection (LOD) for
Al3+ was calculated as 3.61× 10−8 Mon the basis of 3 δ/K (where
δ is deviation of the blank signal and K is slope of calibration
curve; Borasea et al., 2015; Zeng et al., 2018). These results
indicated that NPA could be used as an absorbance-ratiometric
probe for the detection of Al3+.

Fluorescence Spectral Responses of NPA
The fluorescence properties of NPA were investigated in the
presence of a variety of metal ions in CH3OH (Figure 3).
NPA itself exhibited almost no fluorescence emission upon
excitation at 400 nm. However, the addition of Al3+ (5 equiv.)
into NPA induced an obvious fluorescence enhancement at
505 nm, which might be attributed to the CHEF effect through
the formation of a rigid system after binding with Al3+ (Kang
L. et al., 2016; Zeng et al., 2019). In contrast, few fluorescence
changes were observed in the presence of other tested metal
ions, demonstrating that NPA was highly selective for Al3+ over
competing metal ions.

To further validate the utility of probe NPA, the fluorescence
titrations of NPA were performed by gradually increasing
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FIGURE 1 | UV-vis absorbance spectra of NPA (10µM) in the absence and presence of various mental ions (50µM) in CH3OH. Inset: The color change of NPA

(10µM) in the presence of Al3+ ions (5 equiv.) in CH3OH under natural light.

FIGURE 2 | UV-vis spectral of NPA (10µM) upon addition of increasing concentration of Al3+ (0–5 equiv.) in CH3OH. Insert: Plot of absorbance intensity ratio

(A378/A399) as a function of the Al3+ concentration.

the concentration of Al3+ (Figure 4). The emission intensity
of NPA at 505 nm progressively increased upon addition of
Al3+, and the emission intensity remained constant when the

quantity of Al3+ added was over 15µM (Figure 4, Insert).
Moreover, the fluorescence enhancement of sensor NPA

depending on the concentration of Al3+ was in a linear
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FIGURE 3 | Fluorescence spectral changes (λex = 400 nm) of NPA (10µM) in the presence of various mental ions (50µM) in CH3OH. Inset: The color change of NPA

(10µM) in the presence of Al3+ ions (5 equiv.) in CH3OH under 365 nm UV lamp.

FIGURE 4 | Fluorescence emission spectral (λex = 400 nm) of NPA (10µM) with increasing concentration of Al3+ in CH3OH. Inset: Plot of fluorescence intensity at

505 nm as a function of the Al3+ concentration.

manner (Supplementary Figure 5). The detection limit (LOD)
for Al3+ ion according to fluorescence changes was measured
to be 2.03 × 10−8 M on the basis of 3 δ/K (Borasea et al.,
2015; Zeng et al., 2018). The result clearly demonstrated

that the probe NPA was highly efficient in sensing Al3+ at
nanomolar level.

Further, tolerance of fluorescence intensity of NPA-Al3+

complex in presence of other metal ions was tested (Figure 5).
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FIGURE 5 | Fluorescence intensity of NPA (10µM) at 505 nm upon addition of Al3+ (50µM) in the presence of various mental ions (50µM) (λex = 400 nm). (Error bar

was represented as mean ± standard deviation, n = 3).

FIGURE 6 | Job’s plot of NPA with Al3+ in CH3OH. {[Al
3+]/([Al3+] + [NPA])} is the molar fraction of Al3+ ion.

All competitive metal ions had no obvious interference on
the Al3+ detection, indicated that NPA-Al3+ complex was
hardly affected by these coexistent metal ions. Accordingly,

NPA can be used as selective fluorescent probe for Al3+

determination without disturbance of other competing
metal ions.
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FIGURE 7 | ESI–MS spectrum of NPA (50µM) upon addition of 5 equiv. of Al3+ in CH3OH.

Response Time Studies
As for an excellent fluorescent probe, fluorescent stability and
response time are two crucial factors. Hence, the changes of
fluorescent intensity of NPA and the response time of NPA to
Al3+ were investigated (Supplementary Figure 6). The results
demonstrated that the fluorescence signal of NPA remained
stable for a long time in the absence of Al3+, implying the NPA
had good fluorescence stability. Moreover, after addition of Al3+,
the fluorescence intensity of NPA at the 505 nm reached the
maximumwithin 10 s and maintained constant more than 3min,
indicating the unique feature of high complexation ability ofNPA
with Al3+.

Binding Stoichiometry and Sensing
Mechanism
The total concentration of Al3+ and ligand was 50µM with the
molar ratio of Al3+ changed from 0.1 to 0.9. The fluorescence
mission was measured for each sample in CH3OH with the
excitation wavelength at 400 nm. The maximum point appeared
at a mole fraction of 0.5 (Figure 6), indicating a 1:1 stoichiometry
of the binding mode between NPA and Al3+, and which was
further clarified by a peak at m/z 594.1575, which was assignable
to [NPA – 2H+ + K++ Al3+ + NO−

3 ]
+ (calcd.m/z 594.1547) in

the ESI mass spectrum (Figure 7).
According to the above results, the association constant was

calculated as 7.06 × 104 M−1 according to the fluorescence
titration data (Supplementary Figure 7), basing on the Benesi-
Hildebrand plot (Li et al., 2018).

To better evaluate the interaction ofNPA with Al3+, 1HNMR
spectra of NPA were constructed in the absence and presence of
different equivalent Al3+ in DMSO (Figure 8). The protons of
H1 and H2 of NPA at around 2.80 and 3.27 ppm were shifted

downfield to 3.42 upon the addition of Al3+. In addition, the peak
of NPA at around 3.10 ppm was also shifted downfield to 3.42
ppm, indicated that the two nitrogen atoms of piperazine ring
might coordinate the Al3+. Moreover, the proton of amide was
disappeared supporting the occurrence of deprotonation upon
the interaction of amide with the Al3+. According to the above
results, the two nitrogen atoms of piperazine ring and the amide
nitrogen atom might coordinate with Al3+ (Scheme 2).

Reversibility of NPA Toward Al3+

The fluorescence intensity enhancement of NPA on interaction
with Al3+ was found to be reversible by using EDTA as the
recovering reagent. When the strong metal ion chelating agent
EDTA was added gradually to a mixture of NPA-Al3+, the
UV-vis absorbance spectral and fluorescence spectral of the
solution of NPA-Al3+ almost recovered to the original condition
in the absence of Al3+ (Supplementary Figures 8, 9). These
results indicating that recognition process can be made reversible
merely by treatment with EDTA. Besides, as for an excellent
chemosensor, reversibility and regeneration are crucial for the
fabrication of apparatus to sense Al3+.

Application of NPA for Al3+ Analysis in Test
Paper
Interestingly, the noticeable colorimetric changes of the system
and qualitative recognition of Al3+ in solution were confirmed
by the simple test strips. The required test strips were immersed
in CH3OH (10mL) including Al3+ and then dried in air.
The color changes in various concentrations of Al3+ under
sunlight and under 365 nm UV light were illustrated in
Supplementary Figure 10. Visual color changed from yellow to
colorless and bright-green fluorescence increased gradually with
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FIGURE 8 | 1H NMR spectra of NPA with Al3+ in DMSO d6.

FIGURE 9 | Fluorescence spectra (λex = 400 nm) of NPA-Al3+ system in presence of various anions (100µM) in CH3OH.
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FIGURE 10 | Changes in emission intensity of the NPA-Al3+ complex at 505 nm upon addition of 100µM of various anions followed by addition of ClO− (λex =

400 nm). (Error bar was represented as mean ± standard deviation, n = 3).

FIGURE 11 | Fluorescence spectral (λex = 400 nm) of NPA-Al3+ complex at different added concentration of ClO− in CH3OH. Insert: Plot of fluorescence intensity of

verse ClO− concentration in in CH3OH.
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increasing amounts of Al3+ were clearly observed. This result
showed that NPAmight be used as a portable detector for Al3+.

Application of NPA for Al3+ Analysis in
Water Samples
In order to verify the practical application of NPA,
ultrapure water and tap water samples were analyzed
by the proposed fluorimetric method. The results were
summarized in Supplementary Table 1 with satisfactory

recovery of Al3+, indicating that the present fluorescent
probe seem to be applicable for the determination of Al3+ in
environmental analysis.

Fluorescent “On-Off” Sensing of ClO− by
NPA-Al3+ Complex
In order to further explore the performance of NPA-Al3+

complex to different anionic, the fluorescence spectra of NPA-
Al3+ complex were investigated in presence of various 100µM

FIGURE 12 | Fluorescence spectrum (A) and UV-vis absorbance spectrum (B) of NPA in CH3OH while adding Al3+ (3 eq.) and ClO− (10 eq.) to the solution.

SCHEME 2 | Proposed mechanism for the fluorescent sensing of NPA and its in situ complex with Al3+ and ClO−.

FIGURE 13 | (A) The logic circuit displaying memory unit with two inputs (Al3+ and ClO−) and one output; (B) corresponding truth table.
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anions (ClO−, ROO−, H2O2, OH
−, NO−, Cl−, Br−, NO−

3 ,
BF−4 , ClO−

4 ) in CH3OH (Figure 9). The result showed that
fluorescence intensity of NPA-Al3+ complex was affected to
tolerable degree by I−, H2O2, and BF−4 except for ClO−,
which completely quenched the fluorescence of NPA-Al3+

complex. This result suggested that theNPA-Al3+ complex could
distinguish ClO− anion over other ROO−, H2O2, OH

−, NO−,
Cl−, Br−, NO−

3 , BF
−

4 , ClO
−

4 by fluorescence “on-off” mode.
Furthermore, competition experiments were carried out by

addition of various anions (100µM) to the solution of NPA-
Al3+ in the presence of 100µM of ClO−. As shown in Figure 10,
competitive anion had no prominent interference with the
determination of ClO−, which meant that NPA-Al3+ could
perform as a highly selective probe for ClO− via a fluorescence
“turn-off” mechanism.

To further investigate the binding ability and limit
of detection of the NPA-Al3+ complex with ClO−. The
complex sensing capability was studied in detail analysis with
fluorescence titration (Figure 11). Upon addition of ClO−

to the solution containing NPA-Al3+ complex, fluorescent
intensity at 505 nm gradually diminishes, and 40µM of ClO−

could lead to complete fluorescent quenching (Figure 11,
inset). Obviously, the fluorescence intensity of NPA-Al3+

complex depending on the concentration of ClO− was in a
linear manner (Supplementary Figure 11). According to the
fluorescence titration data, the detection limit of NPA-Al3+

complex was determined and be found to 2.34 × 10−8 M
(Supplementary Table 3). Furthermore, fluorescence quenching
in situ also indicated that the occurrence of dissociation of NPA-
Al3+ complex, and the NPA was regenerated upon the addition
of ClO−, which further supported by the verified experiments
as followed. Firstly, the peak at m/z 469.2438 appeared in
ESI–MS spectrum of NPA-Al3+ complex upon addition of
ClO− in CH3OH, which was assignable to [NPA+H+]+ (calcd
m/z 469.2451; Supplementary Figure 12) compared with the
ESI–MS spectrum of NPA itself (Supplementary Figure 13).
Moreover, the UV-vis absorbance and fluorescence spectrum
of NPA-Al3+ complex in the absence and presence of ClO−

were measured (Figure 12), respectively. The result showed
that both of them were almost the same as that of NPA itself.
Lastly, the titration of 1H NMR (Supplementary Figure 14) and
13C NMR (Supplementary Figure 15) were also investigated to
clarify the sensing mechanism. The result displayed that NPA
was regenerated to some extent upon the addition of ClO−

to the NPA-Al3+ complex. The above result implies that the
NPA-Al3+ complex could act as a fluorescent turn-off probe for
ClO− recognition. According to above results, the “off-on-off”
mechanism was achieved with sequence specificity (Al3+ and
ClO−) in CH3OH (Scheme 2). In addition, the results of the
comparison between NPA and those reported sensors (one
fluorescent probe for successively recognition of two different
analytes) were summarized in Supplementary Table 2.

Application as Logic Gate Function
NPA alone displayed very weak fluorescence emission.Maximum
emission at 505 nm appeared after coordination of NPA with the
Al3+. Moreover, when ClO− was added to the above solution,

the emission intensity at 505 nm was quenched. In addition,
the fluorescence “off-on-off” response for Al3+ and ClO− were
carried out (Supplementary Figure 16), and the result showed
that cycle times was more than 5 according to NPA fluorescent
signal upon the alternate addition of Al3+ and ClO−. Due
to the remarkable fluorescence changes of probe NPA in the
presence Al3+ and ClO−, it would be able to construct a two
output combinatorial logic circuit with two signal inputs that
are input 1 (Al3+) and input 2 (ClO−; Figure 13A). Input 1
caused fluorescence enhancement, equivalent to a YES operation,
while input 2 resulted in fluorescence quenching, thereby
enforcement of the NOT gate. In the presence of both inputs,
the quenching (by Input 2) has precedence over the fluorescence
enhancement by Input 1, which was in accordance with the
truth table illustrated in Figure 13B. Hence, by monitoring the
emission maxima at 505 nm by two inputs (Al3+ and ClO−),
a monomolecular circuit displaying an INHIBIT logic function
could be achieved.

CONCLUSION

In conclusion, we had developed a naphthalimide-based sensor
NPA which exhibited a turn-on fluorescence response toward
Al3+ with a bright green fluorescence under UV radiation and
visual color change from yellow to colorless detected by naked-
eye. The binding stoichiometry of NPA with Al3+ was 1:1
confirmed by job’s plot, HRMS and 1H NMR and 13C NMR
titration. The application of NPA for detection and assessing the
existence of Al3+ in real sample was also successfully achieved.
Moreover, NPA-Al3+ complex were further used as a fluorescent
turn-off probe for the detection of ClO− with the detection
as low as 2.34 × 10−8 M. The INHIBIT molecular logic gate
was effectively constructed by the performance of NPA to Al3+

and NPA-Al3+ complex to ClO−. The development of multi-
functional chemosensor for the detection of biological-related
analyst in pure water is our future work.
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