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Density, detonation property, and sensitivity may be the most valued features

when evaluating an energetic material. By reasoning structure–property relationships,

a nitro-free planar energetic material with high nitrogen and oxygen content,

7-hydroxy-difurazano[3,4-b:3′,4′-f ]furoxano[3′′,4′′-d]azepine (4), was synthesized using

a unique and facile approach. The structure was fully characterized by IR and NMR

spectra, elemental analysis, differential scanning calorimetry (DSC), and single-crystal

X-ray diffraction. The expected properties of 4, including a high density of 1.92 g

cm−3, high detonation velocity of 8,875m s−1, and low mechanical sensitivities (impact

sensitivity, 21 J and friction sensitivity, >360N), confirm our strategy. Interestingly,

the single-crystal structures of 4 reveal expected face-to-face and edge-to-face

π-interactions in the crystal stacking. The remarkable differences in crystal stacking of 4

provide unequivocal evidence that face-to-face π-π interactions contribute significantly

to closer assembly and higher density.

Keywords: energetic materials, detonation performances, N-heterocycles, π-interactions, crystal structure

INTRODUCTION

At the early stages of energetic materials, chemists mainly focused on designing
and synthesizing the polynitro compounds, such as 1,3,5-trinitro-1,3,5-triazinane
(RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,
12-hexaazaisowurtzitane (CL-20), and octanitrocubane (ONC) (Badgujar et al., 2008;
Klapötke, 2012). Nitro group has been playing a critical role in the developing of energetic
materials since nitroglycerin (NG) and 2,4,6-trinitrotoluene (TNT) were widely used for
the purpose of military and civilization. The contributions of nitro group primarily consist
of enhancing the oxygen balance and density, leading to an increase in the detonation
performances. Although the detonation performances of nitro compounds increase greatly
as the increasing number of nitro groups, the synthesis is becoming more difficulty due to
multiple steps. More than that, compounds with an excess of nitro groups always exhibit
high sensitivities and low thermal decomposition temperatures arising from their congested
molecule structures (Vishnevskiy et al., 2017). Along with growing concerns about the safety
issues, more considerable effort has been devoted to pursuing the highly insensitive high-energy
materials (Klapötke and Witkowski, 2016; Tian et al., 2017; Wang Y. et al., 2018). In most cases,
effects of the amounts of nitro groups on sensitivity, density and oxygen balance always are
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contradictory, which makes the design and synthesis of new
superior HEDMs an interesting and formidable challenge (Gao
and Shreeve, 2011; Li et al., 2013; Wang P. C. et al., 2018).

From a molecular design perspective, detonation
performances including detonation velocity and pressure are
highly dependent on the density, heat of formation and oxygen
balance, which are directly determined by the composition and
structure of the compound. Therefore, energetic compounds
featuring high density, positive heat of formation, and good
oxygen balance but containing no nitro group are also likely
to exhibit both superior denotation performances and low
sensitivities. Thus, searching for nitro-free energetic compounds
with these features may become a promising strategy to generate
new insensitive high-energy materials.

Nitrogen- and oxygen-containing heterocycles based on
furazan (Sheremetev et al., 1998; Huang et al., 2012; Zhai et al.,
2015b), furoxan (Fischer et al., 2014a; He et al., 2018; Liu et al.,
2018; Khakimov et al., 2019), triazole N-oxides (Dippold and
Klapötke, 2013; Zhang et al., 2013) and tetrazoleN-oxide (Fischer
et al., 2012; He et al., 2016) are promising compounds that fulfill
above-mentioned requirements. Not only does the high nitrogen
increases the heat of formation due to inherently C–N and N–N
bonds, the oxygen of N–O bonds contained in the heterocycles
also serves the same function as nitro groups do. Especially, the
N-hydroxy has been shown to usually result in an increased
density, and oxygen balance, but also lower its sensitivity due
to forming hydrogen bonds. However, the majority of nitro-free
heterocyclic compounds, such as C-C bonded molecules usually
result in a lower density (Figure 1A) (Fischer et al., 2014b; Zhai
et al., 2015a). Recently it has been observed by Shreeve group
that energetic materials with parallel face-to-face crystal stacking
are found to show higher densities and relative low sensitivities
because of π-stacked interaction and free interlayer sliding (Yin
et al., 2016; Liu et al., 2019). This type is strikingly represented
by fused energetic compounds (Figure 1B) (Thottempudi et al.,
2014; Tang et al., 2017; Hu et al., 2018; Wang et al., 2019).

Based on the analysis above, we are aimed at designing
and synthesizing high-performance insensitive materials
that have the following structure characteristics: (1) a near-
perfect planar molecular being able to form face-to-face
stacking to achieve a high density; (2) high nitrogen and
oxygen content leading to high heat of formation and good
oxygen balance; (3) no nitro within it to achieve a low
sensitivity. With these in mind, we were interested in some
furazan/furoxan-based planar compounds containing N-
hydroxy group. Recently, new cyclic planar azepine/oxepine
compounds containing furazan/furoxan fragment, such
as difurazano[3,4-b:3′,4′-f ]furoxano[3′′,4′′-d]oxepine, 7H-
difurazano[3,4-b:3′,4′-f ]furoxano[3′′,4′′’-d]azepine, etc., were
synthesized by Russian researchers and our group (Stepanov
et al., 2012; Zhou et al., 2012). The fascinating structures
and promising properties attracted our attention to the 7-
hydroxy-difurazano[3,4-b:3′,4′-f ]furoxano[3′′,4′′-d]azepine (4),
which is expected to higher density and oxygen balance due
to introduction of N- hydroxy. Herein, we now report the
results on the ingenious synthesis, full characterization, energetic
properties of 4.

MATERIALS AND METHODS

Caution: While we have experienced no difficulties in syntheses
and characterization of these materials, proper protective
measures should be used. Manipulations must be carried out in
a hood behind a safety shield. Eye protection and leather gloves
must be worn.

General Methods
The reagents were available commercially and were used as
purchased without further purification. 1H, 13C, and 15N
NMR spectra were recorded on 500 MHz (Bruker AVANCE
500) nuclear magnetic resonance spectrometers by using
[D6]DMSO as solvent. The decomposition points (onset)
were obtained on a differential scanning calorimeter (TA
Instruments Company, Model DSC-Q200) at a flow rate
of 50mL min−1. About 0.3mg of the sample was sealed in
aluminum pans for DSC at a rate of 5◦C min−1. Infrared
spectra were obtained from KBr pellets on a Nicolet NEXUS870
Infrared spectrometer in the range of 4,000–400 cm−1.
Elemental analyses (C, H, and N) were performed on a
VARI-El-3 elementary analysis instrument. The impact
and friction sensitivities were determined following the
BAMmethod.

Computational Details
All quantum chemical calculations were carried out using the
Gaussian 09 (Revision A.02) program package (Frisch et al.,
2009) and visualized by GaussView 5.08 (Dennington and
Millam, 2009). The enthalpies (H◦) and free energies (G◦)
were calculated using the complete basis set method (CBS-
4M) based on X-ray diffraction data, in order to obtain
accurate (Ochterski et al., 1996; Montgomery et al., 2000). The
enthalpies of the gas-phase species were estimated according
to the atomization energy method (Curtiss et al., 1997).
The solid state enthalpy of formation can be estimated by
subtracting the heats of sublimation from gas phase heats
of formation. The heat of sublimation can be estimated
with Trouton’s rule (Westwell et al., 1995) according to
Equation 1, where T represents either the melting point or
the decomposition temperature when no melting occurs prior
to decomposition:

1Hsub = 188/Jmol−1K−1
×T (1)

Crystallographic Measurements
Single-crystal X-ray diffraction data were collected with on a
Bruker SMART Apex II CCD X-ray diffractometer equipped
with a graphite-monochromatized MoKα radiation (λ =

0.71073 Å). The structures were solved either with SHELXS-97
(Sheldrick, 1997a), refined with SHELXL-97 (Sheldrick, 1997b).
The full-matrix least-squares refinement on F2 included atomic
coordinates and anisotropic thermal parameters for all non-
H atoms. The H atoms were found and refined. CCDC-
1911348 (for 4·MeOH), and−1911347 (for 4·H2O) contain
the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
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FIGURE 1 | Nitro-free C-C bonded (A), and fused (B) compounds consisting of nitrogen- and oxygen-containing heterocycles.

Crystallographic Data Center via www.ccdc.cam.ac.uk/data_
request/cif.

Synthesis
Compounds 2 was prepared were prepared with a high yield
according to the literature procedure (Tsyshevsky et al., 2015).

7H-difurazano[3,4-b:3′,4′-f ]furoxano[3′′,4′′-d]azepine
(3): 3,4-Bis(3-nitrofurazan-4-yl)furoxan (3.1 g, 10 mmol)
is dissolved in 50mL of CH3CN at 10◦C, to which 0.65 g
(10 mmol) of 50% hydroxylamine solution was added
dropwise within 30min. After stirred for 2 h, the solvent
was removed under reduced pressure, and the resident was
recrystallized from ethanol/H2O (v/v = 1:1), 1.59 g (67.6%)
colorless crystals of 3 were obtained. DSC (5◦C min−1):
227.8◦C (m.p.), 273.9◦C (onset); IR (KBr): ṽ = 3293, 3215,
3113, 3080, 2976, 2817, 2705, 1655, 1633, 1615, 1572, 1553,
1492, 1462, 1443, 1393, 1359, 1225, 1152, 1062, 996, 970,
897, 879, 820, 781, 717 cm−1; 1H NMR ([D6]DMSO, 500
MHz, 25◦C, TMS): δ = 12.56 (s, H, NH) ppm; 13C NMR
([D6]DMSO, 125 MHz, 25◦C, TMS): δ = 152.44, 151.99, 145.60,
138.10, 135.83, 106.40 ppm; elemental analysis calcd (%) for
C6HN7O4: C 30.65, H 0.43, N 41.70; found, C 30.77, H 0.39,
N 40.92.

7-Hydroxy-difurazano[3,4-b:3′,4′-f ]furoxano[3′′,4′′-d]
azepine (4): 3,4-Bis(3-nitrofurazan-4-yl)furoxan (3.1 g, 10
mmol) is dissolved in 15mL of CH3CN, to which 0.65 g (10
mmol) of 50% hydroxylamine solution was added dropwise
within 30min at −10◦C. After 1 h the precipitate was filtered
and air-dried to yield 4 (1.12 g, 44.7%) as a light yellow solid.
DSC (5◦C min−1): 160.6◦C (onset); IR (KBr): ṽ = 3282, 2087,
2454, 1658, 1637, 1608, 1588, 1555, 1528, 1482, 1440, 1395,
1355,1173, 1054, 996, 969, 939, 851, 797, 736 cm−1; 1H NMR
([D6]DMSO, 500 MHz, 25◦C, TMS): δ = 7.81 (s, OH) ppm; 13C
NMR ([D6]DMSO, 125 MHz, 25◦C, TMS): δ = 155.08, 154.68,
144.98, 135.72, 133.66, 105.96 ppm; 15N NMR ([D6]DMSO,
50.6 MHz, 25◦C, MeNO2): δ = −25.2, −8.7, −5.6, −3.1, 32.0,

−32.7 −253.3 ppm; elemental analysis calcd (%) for C6HN7O5:
C 28.70, H 0.40, N 39.04; found, C 28.31, H 0.45, N 38.64.

RESULTS AND DISCUSSION

Synthesis
The synthetic pathway to 4 is shown in Figure 2. 3,4-Bis(3-
nitrofurazan-4-yl)furoxan (2) was readily prepared according
to a known procedure (Tsyshevsky et al., 2015). We initially
intended to prepare 4 by treatment of acetonitrile solution of 2
with 50% aqueous NH2OH undergoing an amino-substitution
annulation at the temperature higher than 5◦C. However, what
amazed us was that the product separated from the reaction
solution ultimately proved to be 7H-difurazano[3,4-b:3′,4′-
f ]furoxano[3′′,4′′-d]azepine (3). Many attempts to synthesize
the title compound performed in other various solvents (THF,
MeOH, DMF, acetone, and ethyl acetate) also failed. On the
flip side, the unexpected product 3 may indicate the success of
amino-substitution annulation between 2 and NH2OH, which
led us to believe that the title compound 4 was likely to have
formed as an intermediate. Not unexpectedly, a new compound,
i.e., 4, was detected immediately by thin layer chromatography
when NH2OH aqueous was added, but it disappears quickly as
the reactionwent on. The reasonmight be due toN-OH reactivity
of 4. Therefore, in order to effectively control the cyclization
reaction and easily isolate 4 from the reaction mixture, low
temperature and minimal amount of CH3CN are employed
during the reaction. Fortunately, 4 was successfully obtained
and easily isolated by filtering, and no 3 was detected in the
reaction mixture.

Spectroscopy
The structure of 4was investigated by IR and NMR spectroscopy,
elemental analysis, and X-ray diffraction. The 1HNMR spectrum
exhibits one sharp single peak at 7.81 ppm for the N-
hydroxy groups (Figure S1). As expected, six different signals
for the chemically different carbon atoms were observed
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FIGURE 2 | The interesting reaction toward 4.

FIGURE 3 | 15N spectrum of compound 4 in [D6]DMSO.

in the 13C NMR spectrum (Figure S2). Among them, the
furoxan exhibits two resonances at 105.96 and 144.98 ppm
for the carbon bonded to N–oxide and the other carbon,
respectively. The residual four resonances at 155.08, 154.68,
135.72, and 133.66 ppm were assigned to the furazan carbons.
In addition, the 15N NMR spectrum is shown in Figure 3.
The signal of N-OH can be assigned to the resonance peak
at highest field (δ≈-253.3 ppm). And the nitrogen resonances
of furazan and furoxan observed at shifts of −25.2 (N2),
−8.7 (N3), −5.6 (N4), −3.1(N5), 32.0 (N6), and 32.7 (N7)

ppm were also successfully assigned based on assigned based
on the literatures, and confirmed by GIAO NMR calculation
(Knijn et al., 2010).

Single-Crystal X-Ray Structure Analysis
Many attempts to cultivate the single crystals of 4 for XRD
were performed, and single crystals 4·MeOH and 4·H2O were
obtained by slow evaporation of methanol solutions and acetone
aqueous at room temperature, respectively. Crystallographic data
and parameters are given in Table S1.
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FIGURE 4 | Single-crystal X-ray structures of 4·MeOH (A) and 4·H2O (B).

FIGURE 5 | (A) Parallel face-to-face arrangements within 4·MeOH. (B) Hydrogen-bonding interactions between MeOH and adjacent 4. (C) Layered three-dimensional

packing of 4·MeOH. (D) Edge-to-face π-π interactions within 4·H2O. (E) Zigzag-shaped two-dimensional sheet within 4·H2O. (F) Three-dimensional packing of

4·H2O.

4·MeOH crystallizes in the orthorhombic space group Pna21
with four formula units in the unit cell. Surprisingly, though
the crystals contain one methanol molecule, it still has a
remarkable high calculated density of 1.887 g cm−3 at 296K. The
furoxan ring and the furazan rings in 4 are completely in one
plane with the dihedral angle of 0◦, including the N-hydroxy

group (Figure 4A). The average distances of C–N and N–O
bonds within the furoxan/furazan rings are 1.31 Å and 1.39 Å,
respectively, which are all in the range of formal C–N and N–
O single and double bonds (C–N: 1.47 Å, 1.22 Å; N–O: 1.46
Å, 1.21 Å) (Allen et al., 1987). The bond lengths of C1–N7
(1.37 Å) and C6–N7 (1.35Å) are slightly longer than the C–N
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TABLE 1 | Physical and energetic properties of 4 compared with polynitro

compounds TNT, TATB, RDX, and FOX-7.

4 TNT TATB RDX FOX-7

Formula C6HN7O5 C7H5N3O6 C6H6N6O6 C3H6N6O6 C2H4N4O4

M/g mol−1 251.1 227.1 258.1 222.1 148.1

IS/J[a] 21 15 >40 7.4 24.7

FS/N[b] >360 >360 >360 120 >360

N + O/%[c] 70.9 60.7 69.7 81.0 81.1

Ω (CO)/%[d]
−9.5 −24.6 −18.6 0 0

Tdec/
◦C[e] 160.6 295 360 210 220

ρ/g cm−3[f] 1.92 1.65 1.94 1.80 1.88

1fH/kJ mol−1[g] 714.6 −55.5 −105.8 86.3 −188.9

P/GPa[h] 35.0 21.1 30.0 35.1 35.9

vD/m s−1[i] 8,875 7,017 7,982 8,823 9,000

[a] Impact sensitivity.
[b]Friction sensitivity.
[c]Nitrogen and oxygen content.
[d]Oxygen balance assuming the formation of CO.
[e]Thermal decomposition temperature.
[f ]Gas pycnometer (25◦C).
[g]Calculated enthalpy of formation.
[h]Detonation pressure.
[i]Detonation velocity.

distances of furoxan/furazan rings, but significantly shorter than
the distance of the C–N single bond. Additional, the O5–N7
bond length (1.39 Å) of the N-hydroxy group is comparable with
the O–N distances in the furoxan/furazan ring. These findings
support the presence of a delocalized large π-system in the
seven-membered azepine ring of 4. As expected, the face-to-face
stacking between the flat molecules provides key driving force
to form lamellate one-dimensional molecular chain (Figure 5A).
The distances between the molecules of was measured to be 3.12
Å, and distinctly shorter than typical parameters of aromatic face-
to-face π-interactions (<4.00 Å). The dihedral angle is exactly
0◦, which further confirms parallel face-to-face arrangements.
Finally, the hydrogen-bonding interactions (Figure 5B) between
MeOH molecules and adjacent 4 molecules further drives the
adjacent chains forming a three-dimensional layer assembly
(Figure 5C).

4·H2O crystallizes in the same space group as 4·MeOH with
four formula units in the unit cell and a density of 1.797 g cm−3 at
293K. However, the most striking difference between the crystal
structures 4·MeOH and 4·H2O is observed in their molecular
conformation of 4. The molecule in 4·H2O is distinctly twisted
rather than a flat configuration, which are not consistent with
our assumption about its packing pattern (Figure 4B). Both the
dihedral angles between furoxan ring and the furazan rings are
8.5◦, and the dihedral angle between two furazan rings reaches
15.7◦. After indepth analysis of the crystal structure, we found
that each oxygen atom (O1) of N-hydroxy group is intensively
involved in an interaction with the π-electrons of the overlying
seven-membered azepine ring, which leads to a zigzag-shaped
one-dimensional chain (Figures 5D,E). The contact distances
between O1 and the carbon atoms in azepine ring are in the
range from 2.91 to 3.12 Å. And the distance between O1 and
azepine ring plane is 2.51 Å, indicating an intense edge-to-face π-
π interactions. All water molecules in 4·H2O perform a bridging

connection functions by the formation of numerous hydrogen
bonds. Each 4 molecules interacted with three surrounding
water molecules through three significant hydrogen bonds [O1i-
H1Ai

···O6i: 2.629(163.2) Å; O6–H6B···O5ii: 2.969(139.3) Å; O6–
H6A···N1iii: 3.026(170.7) Å. Symmetry codes: i:−1/2+ x, 3/2–y,
z; ii: 1–x, 2–y, −1/2+z; iii: 1–x, 2–y, ½ + z] to form a 2D wave-
like layer structure. However, hydrogen bonds do not participate
in forming the 3D structure, and the non-coplanar structure
of 4 also indicates no face-to-face π-interactions between the
layers. In fact, it is the interaction between oxygen atom (O1) of
N-hydroxy group and the π-electrons of the azepine ring that
further assembles to form to 3D structure (Figure 5F). Hence,
stacking differences of 4·MeOH and 4·H2O provide unequivocal
evidence that face-to-face π-π interactions of planar molecule
contribute significantly to closer assembly and higher density.

Physical and Energetic Properties
The physical and energetic properties of 4 are summarized in
Table 1. It should be noted that dried 4 do not absorb water from
the air. The density of 4 was measured by using a gas pycnometer
and found to be 1.92 g cm−3, which is expected based on the
high density (1.887 g cm−3) of 4·MeOH. Compared with those
polynitro compounds, such as TNT, triaminotrinitrobenzene
(TATB), RDX, and 1,1-diamino-2,2-dinitroethene (FOX-7), the
remarkable high density of 4 confirms the strategy that nitro-
free flat heterocycles molecules also could achieve high density.
As expected, 4 shows a fairly low impact sensitivity (21 J) and
friction sensitivity (>360N), which are much superior to those
of TNT and RDX, comparable to FOX-7, but higher than
typical insensitivity explosives TATB. Deriving from one furoxan
and two furazan rings, 4 has much higher positive heats of
formation (714.6 kJ mol−1) than those of TNT, TATB, RDX,
and FOX-7. Though 4 does not has nitro group within the
molecular structure, it has a good oxygen balance (Ω (CO) =

−9.5%) compared with those of TNT and TATB. However, the
thermal decomposition temperature of 4 is slightly low with
the onset decomposition temperature at 160.6◦C, as shown in
Figure S3. The detonation properties of 4 were evaluated by
using the EXPLO5 6.04 program (Sućeska, 2017). The calculated
detonation velocity and detonation pressure of 4 are 8,875m
s−1 and 35.0 GPa, respectively, which are much superior to
those of TNT (vD = 7,017m s−1, P = 21.1 GPa) and TATB
(vD = 7,982m s−1, P = 30 GPa). The detonation performances
of 4 are comparable to those of RDX (vD = 8,823m s−1, P =

35.1 GPa), but slightly lower that than that of FOX-7 (vD =

9,000m s−1, P = 35.9 GPa). Noteworthy, these performances
make it as one of promising insensitive material with good
detonation performances.

CONCLUSIONS

A unique and facile approach to the nitro-free planar
energetic compound 7-hydroxy-difurazano[3,4-b:3′,4′-
f]furoxano[3′′,4′′-d]azepine (4) was presented. Interestingly, 4
and 7H-difurazano[3,4-b:3′,4′-f ]furoxano[3′′,4′′-d]azepine (3)
could be obtained only by controlling the reaction temperature,
respectively. As expected, flat molecule structure with high
nitrogen and oxygen content endow 4 high measured density
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(ρ = 1.92 g cm−3), high detonation properties (vD = 8,875m
s−1, P = 35.0 GPa), and distinctly low sensitivities (IS: 21 J;
FS > 360N), which are good consistent with our design
concept. The single-crystal X-ray structure of 4·MeOH
and 4·H2O revealed the face-to-face stacking as well as
edge-to-face arrangement, respectively. It is the face-to-
face and edge-to-face assembly that plays a pivotal role in
molecular density and sensitivity, and illustrate structure–
property relationships. The intriguing properties of 4

provide an optional path to develop new high-performing
insensitive materials.
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