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LiNi0.5Mn1.5O4 (LNMO) is a potential cathode material for lithium-ion batteries with

outstanding energy density and high voltage plateau (>4.7 V). However, the interfacial

side reaction between LNMO and the liquid electrolyte seriously causes capacity fading

during cycling at the high voltage. Here, p-toluenesulfonyl isocyanate (PTSI) is used as

the electrolyte additive to overcome the above problem of LNMO. The results show that

the specific capacity of LNMO/Li cell with 0.5 wt.% PTSI at the first cycle is effectively

enhanced by 36.0 mAh/g and has better cycling performance than that without PTSI at

4.98 V. Also, a stable solid electrolyte interface (SEI) film derived from PTSI is generated

on the electrode surface, which could alleviate the strike of hydrofluoric acid (HF) caused

by electrolyte decomposition. These results are explained by the molecular structure of

PTSI, which contains SO3. The S=O groups can delocalize the nitrogen nucleus to block

the reactivity of PF5.

Keywords: lithium ion battery, LiNi0.5Mn1.5O4, p-toluenesulfonyl isocyanate, solid electrolyte interface, electrolyte

additive

INTRODUCTION

Over the past few years, the high energy and power density capability of lithium-ion batteries (LIBs)
have been interested extremely, due to potential applications in electric vehicles (EVs), hybrid
electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs) (Taracson and Armand,
2001; Armand and Tarascon, 2008; Ji et al., 2011; Kim et al., 2012). In order to improve the energy
density and power density of batteries, a large number of Li compounds (e.g., olivine-typematerials,
silicates, Mn-rich, and Ni-rich layered materials) have been studied by researchers all over the
world (Chen et al., 2014; Zhang et al., 2014; He et al., 2015a,b; Panchal et al., 2017; Chan et al.,
2018; Li et al., 2018; Qiu et al., 2018). Spinel LiNi0.5Mn1.5O4 (LNMO) is a promising material to
replace layered LiCoO2 as a cathode for high power density LIBs (Carlier et al., 2003; Su et al.,
2017; Sun et al., 2018). LNMO has an high charge-discharge platform (>4.7V) and outstanding
cycling stability (Wang F. et al., 2017). Unfortunately, the high charging voltage (∼4.7V) is higher
than the stable voltage of LiPF6-based electrolyte, resulting in rapid oxidation decomposition of the
electrolyte and unnecessary secondary reactions at the LNMO/electrolyte interface (Li et al., 2013;
Deng et al., 2017; Ma et al., 2019). Furthermore, hydrofluoric acid (HF) derives from hydrolysis
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of LiPF6-based electrolyte, which can dissolveMn3+ from LNMO
(Xiao et al., 2017). The Mn3+ dissolution into the electrolyte
causes a cracking solid electrolyte interface (SEI) and reduces
rapidly specific capacity, so the LNMO cell exhibits poor cycling
peculiarity (Liu et al., 2017; Mou et al., 2018).

One way is to make electrolyte additives form a stable SEI film
on the cathode, which inhibits LNMO electrode interface erosion
and electrolyte decomposition, scavenging type to capture HF
(Haregewoin et al., 2016; Wang et al., in press). As the strong acid
produced from LiPF6 is considered the initiator which induces
the cleavage and polymerization of cyclic carbonate under high
voltage conditions, many researchers are trying to add some
oxidation-resistant solvents, for example, sulfones (Hilbig et al.,
2017; Su et al., 2017), nitriles (Abu-Lebdeh and Davidson, 2009)
and fluoro solvents (Kim et al., 2017). However, when adding the
oxidation-resistant solvents there are new problems, including
a decrease of conductivity, an increase of viscosity and poor
compatibility. Hence, a number of suitable functional additives,
such as (pentafluorophenyl) diphenylphosphine (PFPDPP)
(Bolloju et al., 2019), dimethyl phenylphosphonite (DMPP)
(Mai et al., 2015), tris (trimethylsilyl) phosphite (TMSP)
(Wang et al., 2016), triethyl borate (TEB) (Chen et al., 2017),
lithium bisoxalatodifluorophosphate (LiBODFP) (Yang et al.,
2019), and so on, have been developed to perform better
of LIBs under high voltage. As previously reported (Wang
R. H. et al., 2015), p-toluenesulfonyl isocyanate (PTSI) has
excellent physical and chemical properties because of SO3 and
S=O groups. What’s more, the lowest unoccupied molecular
orbital (LUMO) (−0.2469 Ha) occupied by PTSI is lower
than that by vinylene carbonate (VC, LUMO = −0.2274 Ha)
(Xu, 2004; Wu et al., 2012).

In this work, PTSI will be used as an additive for LiPF6-based
electrolyte. The main direction of the experiment is to study
the SEI film generated between electrolyte and LNMO electrode
surface. We hope the PTSI can form a stable SEI film, suppress
the corrosion of LNMO electrode by HF, reduce the formation
of other products, and improve the circulation ability of LNMO
battery at high voltage.

EXPERIMENTAL

Preparation of the Electrolyte
The basic electrolyte (Jiangxi Youli New Materials Co., Ltd.,
China) was a 1M (M = mol/L) ethylene carbonate (EC)/ethyl
carbonate (EMC)/diethyl carbonate (DEC) LiPF6-based
electrolyte in 1:1:1 configuration. The desired concentration
0.5 wt.% of PTSI additive was achieved by dissolving the
corresponding amount of PTSI in the base electrolyte and
stirring for 5min in an argon-filled glovebox, and the oxygen
and water content were <1 ppm. The supernatant was measured
using a Karl Fischer 831 Coulometer (Metrohm) for H2O and
Karl Fischer 798 GPT Titrino (Metrohm) for HF, respectively.

Electrochemical Characterization
LNMO electrodes were prepared from 80 wt.% LNMO powder,
10 wt.% carbon black, and 10 wt.% poly vinylidene fluoride
(PVDF). N-methyl pyrrolidinone (NMP) was then added and

ground evenly. Next, spread the mixture slurry evenly on the thin
aluminum foil and vacuum dry at 120◦C for 12 h. The 10mm
diameter electrode disc was then perforated from the coated foil.
The LNMO/Li of 2,032 coins were assembled in argon filled ball
cases with 2,400 Celgard dividers.

Electrochemical impedance spectroscopies (EIS) of LNMO/Li
cells after 1 cycle, 2 cycles, and 3 cycles at 4.98V were recorded by
an electrochemical workstation (CHI660E, Chenhua, Shanghai),
and the open-circuit voltages of the cells were set as the
initial potential. The frequency range of LNMO/Li cells was
10,000∼0.01Hz. Cyclic voltammetry (CV) was detected by an
electrochemical workstation with five cycles at a sweep rate
of 0.1 mV s−1.

Surface Detections of the LNMO Electrode
LNMO/Li cells after cycles were disassembled. First, the LNMO
electrode was washed three times with high-purity DMC, and
then transferred to a vacuum drying box at 45◦C and placed in it
for 4 h. The microstructure and morphology of LNMO electrode
were recorded by scanning electron microscope (SEM). The
surface morphology of LNMO electrode was detected though the
transmission electron microscopy (TEM). X-ray photoelectron
spectroscopy (XPS) was used to analyze the composition of
chemical elements on the surface of LNMO electrode.

RESULTS AND DISCUSSION

Cycling Performance Analyses
It can be clearly seen that the discharge specific capacity
of LNMO/Li cell with 0.5 wt.% PTSI was higher than that
without additives at the first cycle from in Figure 1. From in
Figures 1A,B, the discharge specific capacity of LNMO/Li cell
with additional PTSI reached 143.8 mAh/g, while the discharge
specific capacity of the cell without additive is only 107.6 mAh/g.
It can be concluded that PTSI additive could improve the initial
discharge specific capacity of LNMO/Li cell. What’s more, the
specific capacity of LNMO/Li cell with 0.5 wt.% PTSI added after
40 cycles was much higher than that of LNMO/Li cell without
additive. This also reflected that PTSI can indeed improve the
specific capacity of LNMO/Li cell and provide a new scheme for
improving the energy density of LIBs. In addition, the coulomb
efficiency of the battery was constantly improved maintained
a high level, as shown in Figure 1C. The coulomb efficiency
of LNMO/Li cell without additives is 96% at the 40th cycle,
while LNMO/Li cell with 0.5 wt.% PTSI added reached 99%.
This indicated that the PISI additive can improve the coulomb
efficiency during the charging/discharging cycle of LNMO/Li cell.

Impedance Analysis
In order to explore the interface impedance of SEI film between
electrolyte and LNMO electrode, EIS of LNMO/Li cells with
0.5 wt.% PTSI and with no additive were recorded, as shown
in Figure 2. In impedance spectroscopy, the semicircular high
frequency region represents the migration of lithium ions
through the interface at the surface of the LNMO electrode,
and the center frequency range of the semicircle corresponds
to the charge transfer process (Zhao et al., 2018). The results
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FIGURE 1 | (A,B) Cycling performance of LNMO/Li cells at different cycles with no additive and with 0.5 wt.% PTSI additive in a voltage range of 3.0–4.98 V; (C)

Coulombic efficiency of LNMO/Li cells with no additive and with 0.5 wt.% PTSI.

FIGURE 2 | Impedance spectrum of LNMO/Li cells: (A) after 1 cycle; (B) the first three cycles with 0.5 wt.% PTSI; (C) the first three cycles with no additive.

FIGURE 3 | CVs of Li/LNMO cell with no additive (A) and with 0.5 wt.% PTSI (B), at a sweep rate of 0.1mV s−1.

show that the interfacial impedance of LNMO electrode with
0.5 wt.% PTSI additive is significantly lower than that of LNMO
electrode with no additive, suggesting that the surface of the
LNMO electrode with 0.5 wt.% PTSI is improved. What is
more, the two semicircles in the impedance spectra with 0.5
wt.% PTSI are significantly reduced compared with those with
no additive. As the number of cycles increases, the impedance
change of LNMO electrode with the addition of PTSI is much
smaller than that of the LNMO electrode with no additive. In
the lithiation/delithiation process, the surface layer impedance
reduction and charge transfer will reduce ohmic polarization and
activation polarization, which also confirms the above superior
cyclic performance of the LNMO/Li cells with 0.5 wt.% PTSI.

CV Measurements
In order to better understand the effect of the additive PTSI
on the LNMO cell, the battery was subjected to the CV
measurements at a sweep rate of 0.1mV s−1 at 25◦C, and the
results are shown in Figure 3. It can be seen from the figure that
there is a major redox peak at around 4.7V, which corresponds
to the redox process of Ni2+ and Ni4+(Talyosef et al., 2005).
According to the comparison of Figures 3A,B, the peak current
of the Li/LNMO cell to which 0.5 wt.% of PTSI was added is
significantly larger than the peak current of the Li/LNMO cell
without additives. In addition, the potential difference between
the two peaks in the CV diagram of the LNMO cell to which
PTSI was added is small, and as the number of cycles increases,
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the coincidence degree of the CV measurements pattern of the
LNMO cells to which the PTSI was added is higher, indicating
that the addition of PTSI makes the circulation of the LNMO cell
more stable.

SEM and TEM Analyses
To further study the effect of additive PTSI on the performance
of LNMO electrode, SEM tests were carried out on the fresh
electrode and the cycled LNMO electrode, as shown in Figure 4.
The surface of the fresh electrode is very smooth and clean,
without sediments, while the cycled LNMO electrodes show very
different surface morphology. Compared to the fresh LNMO
electrode, the surface of LNMO electrode with no additive is
not smooth, which is coated with thick materials. Therefore,
it increases the surface area, leading to an interface reaction
that affects the transport of Li+ through the electrode. In
contrast, the surface of the cycled LNMO electrode with 0.5
wt.% PTSI shows smooth and flat, forming thin materials on
the surface. The relatively low viscosity of the additive PTSI
improves permeability of electrolytes to LNMO electrode (Wang
R. et al., 2015). Meanwhile, the reduction potential of PTSI
was higher than carbonate solvents, which hinders the solvent
decomposition in LiPF6-based electrolyte.

In addition, in order to better describe the effect of additive
PTSI on LNMO electrode, the corresponding TEM images of
LNMO electrode after 40 cycles were obtained in Figure 5. It
can be clearly seen that the LNMO electrode with 0.5 wt.%
PTSI has a relatively clear layer boundary, which is the SEI film
(∼3 nm) generated on the surface of the electrode. The film is
dense and uniform, which can effectively protect the LNMO
electrode. However, a very uneven and thick SEI film (∼12 nm)
is generated on the LNMO electrode with no additive, which will

slow down the transfer of Li+ between electrolyte and electrode.
It markedly indicates that the decomposition of electrolyte, as
well as the electrode erosion from the electrolyte with no additive,
is more serious.

XPS Analysis
In order to verify the specific elements of surface layer about
fresh electrode, non-additive electrode and the electrode with 0.5
wt.% PTSI after 40 cycles were detected by XPS in Figure 6. The
C 1s spectra have four main peaks: C-C bond from the carbon
black (284.1 eV), C-H bond roots in lithium alkyl carbonates
(R-CH2OCO2-Li) and PVDF (286.0 eV), C=O bond belongs to
lithium alkyl carbonates (R-CH2OCO2-Li) and polycarbonates
(287.6 eV), and Li2CO3 (290.1 eV) (Funabiki et al., 1997; Levi
et al., 2000; Dedryvere et al., 2010; An et al., 2016; Wang R.
H. et al., 2015). It can be seen that the strength of Li2CO3

on the surface of LNMO electrode with 0.5 wt.% PTSI is
significantly weaker than that on the surface of LNMO electrode
with no additive, indicating the inhibitory effect of PTSI on
electrolyte decomposition.

The O 1s spectrum displays five different peaks, including C-
O peak (532.8 eV), Mn-O bond (529.7 eV), Li2CO3 (531.8 eV),
C=O bond (532.4 eV), and C-O-C bond in lithium alkyl
carbonates (R-CH2OCO2-Li) (533.8 eV) (Dedryvère et al., 2005;
Bae et al., 2014; Wang et al., 2016). After PTSI was added,
the C=O bond energy intensity increased, indicating that the
polarization of EC and DEC solvents is effectively inhibited. In
addition, Li2CO3 peak with no additive is stronger. That is, there
are many inorganic decomposition products on the surface of the
LNMO electrode with no additive.

In the F 1s spectrum, there is a significant difference between
the two electrodes after cycling in different electrolytes. The

FIGURE 4 | SEM images of LNMO electrodes with different electrolytes after 40 cycles: (a,d) fresh, (b,e) with no additive, and (c,f) with 0.5 wt.% PTSI.
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FIGURE 5 | TEM images of LNMO electrodes after 40 cycles: (a–c) no additive and (d–f) with 0.5 wt.% PTSI.

FIGURE 6 | XPS survey spectra of LNMO electrode with 0.5 wt.% PTSI and with no additive after 40 cycles.

peak strength of LiF (684.5 eV) and PVDF (687.7 eV) with
0.5 wt.% PTSI was significantly lower than that with no
additive (Park et al., 2010; Zhou et al., 2011), indicating that
there are few inorganic products on the electrode surface.
When LiF content in the SEI film increasing, it will cause

erosion to the electrode and inhibit the transport of Li ions.
Hence, the impedance of LNMO electrode surface will increase
accordingly. So, the SEI film generated by PTSI enhances the
electrical charge transfer channel between LNMO electrode
and electrolyte.
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FIGURE 7 | Schematic illustration of the effect of the electrolyte without and with PTSI additives on the LNMO cathode surface.

In the Mn 2p spectrum, there are three main characteristic
peaks, which belong to Mn3+ (641.7 eV), Mn4+ (642.9 eV), and
Mn 2p1/2 (653.6 eV) (Treuil et al., 1999). It is found that the
Mn3+ peak strength of no additive electrolyte is lower than that
of PTSI additive electrolyte, suggesting that HF causes the erosion
of LNMO electrode surface.

In conclusion, SEM, TEM, and XPS indicate that the SEI film
of LNMO electrode with 0.5 wt.% PTSI is thinner than that of
LNMO electrode with no additive. The optimization of SEI film
can greatly promote the transport of Li+ to a large extent and
inhibit the oxidation decomposition of electrolyte, which can
prevent the product from damaging the electrode.

The Proposed Mechanism for
LNMO/Electrolyte Interface Film
According to the above analysis, a schematic diagram of SEI
film formation on the surface of LNMO electrode is obtained, as
shown in Figure 7. Compared with the alkyl carbonic (Li2CO3

and ROCO2Li) generated by EC, the decomposition products
(Li2SO3, Li2S, and ROSO2Li) formed by the additive PTSI are
relatively more stable, which inhibits HF to corrode the surface
of LNMO electrode and reduces interface impedance (Wang R.
et al., 2017). Therefore, the diffusion of Li+ across the surface of
LNMO was enhanced.

PF5 acted as a catalyst for the oxidation and corrosion of
electrolyte, and could guide the reaction path of electrolyte to
HF and H2O (Sloop et al., 2003). What’s more, PF5 decomposed
into EC and DEC. The open-loop reaction of EC was catalyzed
by PF5, which leads to the polymerization of the reaction to
produce polyethylene carbonate (PEC) and polyethylene oxide
(PEO) similar products. As PF5 lack electrons, PTSI contains
many electrons, including the S=O group, which caused the
nitrogen nucleus to be delocalized and the weak base to be sited as
inhibiting PF5 reactivity (Wu et al., 2012;Wang R. H. et al., 2015).
The HF generated and LiF formed from LiPF6 will be inhibited.
The SEI film formed on the surface of the LNMO electrode can
reduce the interfacial resistance between LNMO and electrolyte.

What’s more, PTSI played an important role in the
development of SEI film, which successfully prevented HF
from passing through the modified film to corrode the LNMO
electrode. By reducing the reaction between PF5 and electrolyte,
the content of LiF in the SEI film was reduced and the formation

of HF was inhibited. The results show that PTSI can significantly
inhibit the degree of oxidative decomposition of carbonate
solvent during LNMO/Li cell cycle. It is concluded that PTSI is
used as electrolyte additive for LNMO electrode at a high range
voltage of 3.0–4.98 V.

CONCLUSIONS

In this work, we report a electrolyte based on 1M LiPF6
EC/EMC/DEC (1:1 by wt.%) with 0.5 wt.% PTSI for LNMO/Li.
Electrochemical tests, EIS, CV, SEM, TEM, and XPS display
that the decomposition of carbonate solvent has been inhibited
and a dense SEI film on the electrode surface is formed. The
electrolyte using PTSI as a non-aqueous electrolyte additive has
good electrochemical stability at high voltages 4.98V. The SEI
film generated from PTSI is a stable protective layer, which
inhibits HF erosion and reduces the interface resistance. As a
result, LNMO/Li cells show excellent cycling performance.
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