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Optical sensors based on single-walled carbon nanotubes (SWCNTs) demonstrate

tradeoffs that limit their use in in vivo and in vitro environments. Sensor characteristics

are primarily governed by the non-covalent wrapping used to suspend the hydrophobic

SWCNTs in aqueous solutions, and we herein review the advantages and disadvantages

of several of these different wrappings. Sensors based on surfactant wrappings can

show enhanced quantum efficiency, high stability, scalability, and diminished selectivity.

Conversely, sensors based on synthetic and bio-polymer wrappings tend to show lower

quantum efficiency, stability, and scalability, while demonstrating improved selectivity.

Major efforts have focused on optimizing sensors based on DNA wrappings, which have

intermediate properties that can be improved through synthetic modifications. Although

SWCNT sensors have, to date, been mainly engineered using empirical approaches,

herein we highlight alternative techniques based on iterative screening that offer a more

guided approach to tuning sensor properties. These more rational techniques can yield

new combinations that incorporate the advantages of the diverse nanotube wrappings

available to create high performance optical sensors.

Keywords: optical biosensing, near-infrared sensors, single-walled carbon nanotubes (SWCNTs or SWNTs),

molecular recognition, selectivity, fluorescence brightness, non-covalent solubilization

1. INTRODUCTION

Optical sensors use light as a means of contactless detection for real-time sensing. Distinct optical
signals from a single device enables multimodal detection of several analytes simultaneously, a
feature that is especially advantageous for remote in vivo biosensing applications. Fluorescence-
based optical sensors require two elements for operation: a molecular recognition element that
selectively interacts with the analyte of interest and an optical transducer, such as a fluorophore,
that converts this interaction into a measurable optical signal.

As described in several reviews (Boghossian et al., 2011; Liu et al., 2011; Kruss et al.,
2013; Pan et al., 2017), single-walled carbon nanotubes (SWCNTs) are among the most
promising fluorescence-based transducers for biosensing applications. They are one-dimensional
nanostructures with optoelectronic properties that are tuned by tube diameter as a result of
quantum confinement. Conceptualized as cylindrically rolled sheets of graphene, SWCNTs exist
with various diameters, and they can be either metallic, semi-metallic, or semiconducting,
depending on the direction the sheet is rolled. In 2002, O’Connell et al. demonstrated that
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GRAPHICAL ABSTRACT | Schematic illustrating the tradeoffs between quantum yield and selectivity for various non-covalent surface functionalizations.

semiconducting forms of SWCNTs dispersed in aqueous
solutions emit photoluminescence at near-infrared (near-IR)
wavelengths (O’Connell et al., 2002). This emission lies within the
optical transparency window for biological material (Boghossian
et al., 2011) which, when coupled with the nanotube’s
indefinite photostability and capabilities for single-molecule
detection, makes SWCNTs attractive for in vivo continuous
monitoring applications.

The use of SWCNTs as fluorescent transducers requires
surface functionalization to impart optical stability and
molecular recognition. Non-functionalized SWCNTs are
inherently hydrophobic and exhibit a strong tendency to
aggregate into bundles in aqueous solutions. Since most
SWCNT preparations contain metallic nanotubes, these bundles
contribute to the fluorescence quenching of semiconducting
SWCNTs through the non-radiative exciton decay channels
within the bundle (O’Connell et al., 2002; Maeda et al., 2004).
Therefore, the bundles need to be exfoliated to generate
individually suspended nanotubes in a liquid phase for
most practical applications (Coleman, 2009). Specifically,
this suspension allows the semi-conducting nanotubes to
fluoresce in the near-IR. In addition to enabling solubilization
and fluorescence, surface functionalization can also modify
the nanotube surface to promote selective interactions with
particular analytes of interest (Figure 1). The underlying
mechanism for this selectivity depends on the wrapping and
remains an ongoing area of research for many wrappings (Jeng
et al., 2006; Hertel et al., 2010; Bisker et al., 2016; Polo and Kruss,
2016; Antonucci et al., 2017; Kruss et al., 2017; Mann et al., 2017;
Zubkovs et al., 2017; Gillen et al., 2018; Wu et al., 2018; Lambert
et al., 2019).

Since covalent functionalization of the nanotube surface

is known to strongly affect, or even diminish, the nanotube

fluorescence, non-covalent modifications are typically used for
creating optical sensors. The most common approach for non-

covalently separating SWCNT bundles is liquid-phase exfoliation

and stabilization (Coleman, 2009). This approach typically
involves using forced dispersion (with sonication, for example)
in the presence of wrappings, such as surfactants, synthetic
polymers, oligonucleotides, and proteins that can stabilize the
suspended SWCNTs (Figure 2). In addition to improving the

solubility of the SWCNTs, these wrappings can also impart
secondary characteristics, such as enhanced bio-compatibility
and improved molecular sensitivity, overcoming problems
associated with the chemical inertness of raw SWCNTs
(Saifuddin et al., 2013).

In this review, we present an overview of several key
methods used for the non-covalent functionalization of
SWCNTs. Beginning with surfactant-coated SWCNTs, we
progress toward the use of biomolecules to suspend nanotubes,
highlighting key advantages and disadvantages associated with
each wrapping. Finally, we conclude with a consideration
of new approaches aimed at overcoming some of the
limitations of both surfactant- and biomolecule-suspended
SWCNTs. These examples highlight emerging methods to
selectively engineer improved SWCNT-based optical sensors in
complex environments.

2. SURFACTANT-COATED SWCNTS

Surfactant-coated SWCNTs represent a standard comparative
benchmark for nanotube suspensions, particularly with respect
to achieving scalable wrapping procedures and the high
quantum yields necessary for optical sensing. Historically,
the first reported suspensions of individual SWCNTs were
achieved using an aqueous surfactant, sodium dodecylsulfate
(SDS) (O’Connell et al., 2001, 2002; Bachilo et al., 2002).
The resulting isolation of the nanotubes from surrounding
bundles greatly improved the optical resolution of the absorbance
spectra. Additionally, the authors were able to characterize
the direct band gap of individual semiconducting SWCNTs
with fluorescence spectroscopy (Bachilo et al., 2002; O’Connell
et al., 2002), which was first hypothesized in the early 1990s
(Dresselhaus et al., 1992; Hamada et al., 1992; Saito et al., 1992)
and previously detected using Raman and STEM (Wildoer et al.,
1998; Kataura et al., 1999).

To prevent re-bundling and obtain a thermodynamically
stable suspension, the strong cohesion energy of the isolated
tubes (∼120 kT nm−1) must be compensated by either tube-
solvent, or in the case of surfactant-suspended SWCNTs,
tube-surfactant interactions (Angelikopoulos and Bock, 2012).
However, SWCNT suspensions often exist in a kinetically
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FIGURE 1 | Schematic representation of the various wrappings used to

suspend SWCNTs. Different wrappings can alter the quantum yield and

specificity of the complexes.

meta-stable state. Kinetic stabilization does not fully overcome
the cohesion energy of the tubes; instead the surfactant
creates a repulsive force between the tubes that reduces
the likelihood of forming tube-tube contacts, hence slowing
aggregation (Angelikopoulos and Bock, 2012). Similar to the
interactions in the kinetic stabilization of colloids (Tummala
and Striolo, 2008, 2009; Angelikopoulos and Bock, 2012; Kato
et al., 2012; Oh et al., 2013). Previous studies hypothesized
that the individual nanotubes are encased in the hydrophobic
interiors of the micelle. The hydrophilic part of the surfactant
molecules is believed to face outwards, creating a cylindrical
micelle and a repulsive force between the nanotubes that
renders a thermodynamically meta-stable suspension (Figure 3)
(Angelikopoulos and Bock, 2008, 2012).

The use of surfactants to suspend SWCNTs has since
expanded to include other anionic, cationic, and non-ionic
surfactants (Hirsch, 2002; Wenseleers et al., 2004; Crochet
et al., 2007; Haggenmueller et al., 2008; Blanch et al.,
2010; Bergler et al., 2016; Nonoguchi et al., 2018), such as
sodium cholate (SC), sodium deoxycholate (SDOC), sodium
dodecylbenzenesulfonate (SDBS), lithium dodecyl sulfate (LDS),
Triton X-100, and pluronic F127. Depending on the surfactant,
high-quality dispersions can be achieved with large populations
of individualized nanotubes (Coleman, 2009) and SWCNT
concentrations >1 mg/mL. However, different surfactants have
been found to vary greatly in the degree of dispersion and
stability of the resulting suspensions. This variation is, in
part, attributed to the interactions between the surfactant and
nanotube, which result in the formation of different structures
with varying degrees of surface coverage (Matarredona et al.,

2003). In addition to cylindrical micelle SWCNT encapsulation,
as was proposed for the SDS-suspended SWCNTs, two additional
configurations include (Angelikopoulos and Bock, 2012; Xin
et al., 2013) (i) Langmuir-type (random molecular adsorption)
layers and (ii) adsorbed spherical and hemispherical micelles
(Islam et al., 2003; Vo et al., 2016; Vo and Papavassiliou, 2017)
(Figure 3A). The latter, spherical and hemispherical micelle
formation, is adopted only by strong amphiphiles that prefer
higher curvature aggregates. This formation of hemimicellar
aggregates on the surface of the SWCNTs typically involves
adsorption of the surfactant onto the nanotube followed by the
self-assembly of the molecules, which is enabled by diffusion
along the nanotube surface (Vo et al., 2016). In contrast, the
former, random adsorption of the surfactant on the SWCNT
surface, is adopted by weakly amphiphilic molecules [such
as flavin mononucleotides (FMN)] and bile acid surfactants
(including SC and SDOC) where adsorption is competitive, i.e.,
follows a Langmuir isotherm (Angelikopoulos and Bock, 2010,
2012; Tummala et al., 2010; Bergler et al., 2016; Xu et al., 2017).

According to both experiment and simulation, the degree
of exposed SWCNT surface coverage following adsorption
of surfactant molecules under all three regimes is largely
dependent on surfactant concentration (Matarredona et al.,
2003). Indeed, Wang et al. (2004) have shown that for
Triton-X, the optimal surfactant dispersion concentration
is different from the critical micelle concentration (CMC)
and results from competition between maximizing surfactant
adsorption on the nanotube surface and micelle-mediated
depletion interactions between adjacent SWCNT bundles.
Moreover, previous reports have shown vast differences
in the maximum relative solubility of SWCNT complexes
using the same surfactant, with an apparent dependence
on the processing method and conditions. For example,
suspensions made with SDBS can have maximum SWCNT
concentrations of 20 mg/mL (Islam et al., 2003) or no more
than ∼0.01 mg/mL (Moore et al., 2003), depending on the
dispersion approach.

Another factor believed to impact the stability of surfactant-
dispersed SWCNTs is the ζ -potential.When surfactantmolecules
adsorb onto the surface of SWCNTs, the surfactant counter-
ion (commonly Na+ or Li+) is dissociated from the hydrophilic
head group of the surfactant. These counter-ions are spatially
separated from the tail group of the molecular ions, arranging
in a diffuse cloud that acts as a multi-pole. As a result,
surfactant-suspended nanotubes appear, from a distance, to
carry an effective charge associated with this double layer,
which is denoted as the ζ -potential (Coleman, 2009). This
potential is equivalent to the electrostatic potential measured
at the edge of the layer at the bound surfactant tail groups,
and it acts as a repulsive interaction potential between
neighboring SWCNTs. In a study by Sun et al. (2008), the
dispersion quality of six surfactant molecules was tested. Each
of the dispersion-quality metrics were found to scale well
with the measured ζ -potential of the dispersion, with SDS
suspending better than both SDBS and SC, corresponding
to ζ -potential values of −70.0, −68.8, and −48.8 mV,
respectively. These findings indicate that the dispersion quality
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FIGURE 2 | Chemical structures of the various dispersants discussed in this review. Surfactant molecules (top box) (A) Sodium Dodecylsulfate (SDS); (B) Sodium

Cholate (SC); (C) Sodium Deoxycholate (SDOC); (D) Sodium Dodecylbenzenesulfonate (SDBS); (E) Lithium Dodecylsulfate (LDS); (F) Triton X-100; (G) Pluronic F127;

and oligonucleotide-derived molecules (bottom box); (H) Deoxyribo Nucleic Acid (DNA); (I) Locked Nucleic Acid (LNA); (J) Peptide Nucleic Acid (PNA).

of surfactant-SWCNTs may be controlled by the magnitude of
the electrostatic repulsive forces between the coated SWCNTs
(White et al., 2007; Sun et al., 2008), a property that can
be tuned in order to improve the long-term stability of
these solutions.

Given the dependence of maximum dispersion concentration
and stability on surfactant type, we focus the remainder of
our discussion on the four most commonly used surfactants
for SWCNT suspension, SC, SDOC, SDS, and SDBS. These
surfactants have been shown to achieve stable dispersions
with suspension efficiencies above 40% (Haggenmueller et al.,
2008). Despite the similar structures of SC and SDOC, which
only differ by a hydroxy group, SDOC shows a marked
increase in suspension yield (+17%). In addition to dispersion
efficiency, the resolution of the optical absorption spectrum
can be used to determine differences in the quality of
SWCNT suspensions. Distinct absorption peaks are observed
for both SC and SDOC, while SDS and SDBS show much
broader peaks. In instances where SWCNTs are not effectively
exfoliated, the van der Waals interactions between aggregated
nanotubes result in broad, weak absorption peaks (Antonucci
et al., 2017). This observation therefore suggests that SC and
SDOC can generally yield more monodisperse SWCNTs under

the studied preparation conditions. On the other hand, the
broader peaks observed for SDS and SDBS indicate that these
surfactants do not effectively de-bundle the nanotubes, resulting
in a poorer dispersion quality despite the apparently high
suspension yields.

In addition to their high dispersion efficiencies, these
surfactants also benefit from a number of additional advantages.
Compared to most biopolymers, these wrappings yield SWCNT
suspensions that are relatively cheap and stable, and the
preparation procedures are scalable enough to produce large
volumes of monodisperse SWCNTs, which is an important
consideration for the industrialization of nanotube sensors.
Furthermore, surfactant-suspended SWCNTs typically exhibit
much larger suspension (Coleman, 2009) and quantum yield
values (Haggenmueller et al., 2008) compared to both protein-
and DNA-suspended SWCNTs. The increased fluorescence
intensity is attributed, in part, to the increased surface coverage
of the surfactant on the SWCNT surface. The increased coverage
results in higher levels of oxygen and water shielding, which
has been shown to decrease nanotube fluorescence (Zheng et al.,
2017), thereby leading to brighter SWCNT complexes. This
increase in brightness is particularly important for biosensing
applications, where penetration depth and sensor sensitivity have
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FIGURE 3 | Conformations of non-selective wrappings on SWCNT surface. (A) A schematic representation of the various mechanisms by which surfactant molecules

interact and disperse SWCNTs. (i) Cylindrical micelle encapsulation; (ii) Hemimicellar adsorption; and (iii) Random adsorption. Reprinted with permission from Yurekli

et al. (2004). Copyright © 2004, American Chemical Society. (B) Free energy landscape of (GT)7-SWCNT hybrid at room temperature. Representative conformations

for each local minimum are displayed. The sugar-phosphate backbone is depicted in orange, and bases are shown in green. Reprinted with permission from Johnson

et al. (2009). Copyright © 2009, American Chemical Society.

been linked to quantum yield (Yum et al., 2013; Bonis-O’Donnell
et al., 2017, 2019; Beyene et al., 2018).

Toxicity is an additional metric when considering surfactant-
suspended SWCNTs for in vitro and in vivo biosensing
applications. Surfactants allow SWCNTs to disperse in water, the
universal and biological solvent, permitting researchers to flexibly
carry out a variety of environmental, biocompatibility, and
safety analyses (Coleman, 2009). However, certain surfactants,
such as SDS and SDBS, are known to be cytotoxic to cells
even at concentrations as low as 0.05 mg ml−1 (Dong et al.,
2008), and similar effects have been observed for nanotubes
suspended with these surfactants (Dong et al., 2008, 2009). In
studies performed by Dong et al. (2008) and Dong et al. (2009),
neither the proliferation nor viability of the cells was affected
by pristine SWCNTs in the absence of surfactant. Furthermore,
conjugates of SWCNTs suspended with various concentrations
of SC also showed no negative impact on cell viability and
growth, and proliferation was comparable to that of untreated
cells. The observed cytotoxicity of the nanotube-surfactant
conjugates was therefore believed to be driven by the inherent
cytotoxicity of the surfactant in the suspension (Dong et al.,
2008, 2009). These studies illustrate the importance surfactant
selection in overcoming challenges in toxicity. Although issues
such as toxicity can be mitigated through appropriate selection
of surfactant type and concentration, surfactant-suspended
SWCNTs are limited for biosensing applications due to their
lack of inherent selectivity. As a result, current efforts focus
on the use of alternative wrappings to suspend SWCNTs,
including biopolymers, such as single-stranded DNA (ssDNA)
and proteins.

3. BIOPOLYMER-SUSPENDED SWCNTS

DNA is one of the most extensively studied wrappings for
optical sensing applications based on Raman, fluorescence, and
absorption spectroscopies (Zheng et al., 2003a; Heller et al., 2006;
Enyashin et al., 2007; Zhang et al., 2011; Bansal et al., 2013;
Kupis-Rozmysłowicz et al., 2016; Wu et al., 2018). The non-
covalent functionalization of ssDNA is based on π-stacking of
the aromatic nucleotide bases with the sp2-hybridized side-wall
of carbon nanotubes (Zheng et al., 2003a). This arrangement
exposes the negatively charged sugar-phosphate backbone of
the DNA, which is hydrophilic and easily solvated, toward the
water, enabling suspension of the DNA-SWCNT complexes in
aqueous solutions (Zheng et al., 2003a). These favorable side-
wall-DNA and DNA-water interactions yield suspensions that
are facile and stable at room temperature for several months
(Zheng et al., 2003a). Work carried out by Zheng et al. (2003a)
showed that almost any ssDNA sequence could be used to
successfully suspend SWCNTs in the presence of a denaturant
and mild sonication. Although atomic force microscopy (AFM)
measurements and simulations show DNA to helically self-
assemble around the SWCNT (Zheng et al., 2003a,b), the final
binding structure has been shown to be sequence-dependent,
and short ssDNA strands may also assume other configurations
on the nanotube surface (Zheng et al., 2003a; Johnson et al.,
2008, 2009) (Figure 3B). The sparser surface coverage of the
DNA compared to surfactants such as SC exposes a larger
carbon surface to water, resulting in a decrease in the intensity
and emission energy of the SWCNT fluorescence. For example,
the (7,5) chirality undergoes a bathochromic shift of 17.6 meV

Frontiers in Chemistry | www.frontiersin.org 5 September 2019 | Volume 7 | Article 612

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Gillen and Boghossian Molecular Recognition Using Sustainable Wrappings

(15.6 nm) when wrapped in ssDNA instead of SC due to the
greater water accessibility of the DNAwrapping and the resulting
increase in the local dielectric constant at the nanotube surface
(Jeng et al., 2006; Li and Shi, 2014). Such changes in the local
dielectric have been shown to yield an expected fluorescence shift
in SWCNT emission peaks (Choi and Strano, 2007).

In addition to the facile suspension procedure and stable
assembly, ssDNA benefits from additional features ideal for
scale-up sensor design. DNA-wrapped SWCNT suspensions
can be further concentrated to achieve dispersion yields as
high as 4 mg ml−1 (Zheng et al., 2003a). Additionally, the
nearly limitless variability in sequence length and composition,
as well as the well-established chemistries available for DNA
functionalization, make ssDNA an incredibly malleable polymer
for tuning the characteristics of the suspended SWCNTs. For
example, Zheng et al. modified DNA-SWCNTs at one end with
biotin that was used for immobilization onto streptavidin-coated
beads (Zheng et al., 2003a). This study demonstrates one of
many biochemical approaches for controlling DNA-SWCNT
behavior by specifically engineering DNA-SWCNT complexes.
Furthermore, both sequence length and base composition has
been shown to impact the interaction potential of ssDNA with
the surface of SWCNTs (Zheng et al., 2003a; Safaee et al.,
2019), which has also recently been shown to vary with SWCNT
chirality (Jena et al., 2017; Safaee et al., 2019).

The ability of DNA to form chirality-specific interactions
has been exploited for a variety of applications, most notably,
chirality separation. Chirality separation is key for multi-modal
sensing applications where each chirality selectively responds to
a distinct analyte in a solution mixture. Following separation, the
individual chiralities can each be functionalized with a wrapping
that selectively responds to a particular analyte of interest,
and the analyte is detected by monitoring the corresponding
wavelength. Many separation mechanisms have been devised
(Chattopadhyay et al., 2003; Krupke et al., 2003, 2004; Zheng
et al., 2003a,b; Heller et al., 2004; Strano et al., 2004; Huang
et al., 2005; Lustig et al., 2005; Arnold et al., 2006; Peng
et al., 2006; Zheng and Semke, 2007; Tu and Zheng, 2008;
Tu et al., 2009; Zhang et al., 2015) with varying degrees of
success; however, a facile approach for scalable, complete and
total fractionation into all the single chiralities remains elusive.
Aqueous two-phase polymer (ATP) separation (Khripin et al.,
2013; Ao et al., 2014, 2016; Ao and Zheng, 2015; Subbaiyan
et al., 2015) has emerged at the forefront of methods currently
employed in chirality separation. Briefly, an ATP system consists
of two separate, but permeable, water phases of slightly different
compositions that is created by polymer phase separation (Ao
et al., 2016). Studies have shown that the partitioning of DNA-
SWCNT complexes has a strong dependence on both the DNA
sequence and SWCNT structure (i.e., chirality) (Ao et al., 2014).
Moreover, this partitioning can be modulated by changing the
polymer compositions of the two phases in order to rescale
the hydration energies. For example, the addition of dextran
(DX) to a poly-(ethylene glycol)/polyacrylamide (PEG/PAM)
system pulls down DNA-SWCNTs from the top to the bottom
phase (due to increased hydrophilicity) while the addition
of poly(vinylpyrrolidone) (PVP) has the opposite effect. The

effectiveness of this method was demonstrated in work carried
out by Ao et al. (Khripin et al., 2013; Ao et al., 2014, 2016; Ao
and Zheng, 2015), where over 300 DNA sequences were screened
using ATP separation techniques, resulting in the isolation of 23
different chiralities.

Aside from their chirality specificity and selectivity, different
DNA lengths and sequences have also shown preferences toward
molecular recognition with certain analytes (Figure 4). Small
nucleotide and microRNA sequences are promising biomarkers
for a variety of pathologies, including cancer (Harvey et al. ,
2017). However, current methods of detection are complex and
time-consuming, leading to difficulties in their implementation
for point-of-care diagnostics. An advantage of DNA-SWCNT
optical sensors is the ability to engineer selectivity toward target
oligonucleotides by taking advantage of DNA’s natural preference
for specific complementary base pairing. Many studies have
demonstrated the use of DNA-SWCNTs to quantitatively detect
a range of both microRNA and DNA sequences (Jeng et al.,
2006, 2010; Bansal et al., 2013; Harvey et al. , 2017). Work
carried out by Jeng et al. and Harvey et al. have shown that
these fluorescence-based sensors are even capable of detecting
single nucleotide polymorphisms (SNPs) (Jeng et al., 2010) and
can be multiplexed to detect several sequences simultaneously
(Harvey et al. , 2017). In the study by Jeng et al., the addition
of complementary DNA is believed to increase the surface
coverage of the SWCNT upon hybridization, resulting in a
decrease in the effective dielectric constant of the surrounding
SWCNT environment and a shifting of the SWCNT fluorescence
peak. Similarly, Harvey et al. propose an underlying mechanism
based on changes in dielectric constant and electrostatic charge,
which can modulate SWCNT emission wavelengths upon
hybridization. The fluorescence shifting observed in both studies
in response to complementary hybridization is particularly
advantageous for detecting diseases, such as heart and kidney
disease, as well as various cancers, which can be associated
with different combinations of specific microRNA sequences
(Etheridge et al., 2011; Hayes et al., 2014; Mishra, 2014; Bertoli
et al., 2015; Wang et al., 2016; Hamam et al. , 2017).

In addition to detecting hybridization, DNA-SWCNTs can
also be engineered to detect a variety of other molecules,
including neurotransmitters, sugars, and peptides (Xu et al., 2007;
Kruss et al., 2017; Landry et al., 2017; Bisker et al., 2018), though
the underlying mechanism of these sensors remains an ongoing
area of research (Bisker et al., 2015; Ulissi et al., 2015). While
certain DNA-SWCNT sensors are based on oligonucleotides that
act as molecular sieves, like the (AT)15-SWCNT sensors designed
to detect NO (Zhang et al., 2011), an alternative approach is
based on displacement or conformational changes of the DNA
wrapping (Heller et al., 2006; Landry et al., 2014, 2017; Salem
et al., 2017; Beyene et al., 2018; Gillen et al., 2018). Early studies
in this area screened libraries of molecules of interest against
SWCNTs suspended using several different DNA sequences by
monitoring the changes in the fluorescence emission of these
sensors upon addition of the analyte. Through this approach,
researchers were able to identify particular sequences with
an enhanced affinity to certain chemicals, such as (AT)15
toward nitric oxide (NO) (Zhang et al., 2011) (Figure 4B) and
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FIGURE 4 | Non-specific interactions of polymer wrappings on SWCNT surface. (A) Common mechanisms of interaction between small molecules and

polymer-wrapped SWCNTs. (B) The optical response of (AT)15 DNA oligonucleotide-wrapped SWCNT [(AT)15-SWCNT] upon exposure to NO. A side schematic view

of one of the several binding structures of (AT)15-SCWNT simulated from a HyperChem simulation package. Bases of the DNA stack on the sidewall of the SWCNT,

and the sugar-phosphate backbone extends away from the surface. Adapted with permission from Zhang et al. (2011). Copyright © 2011, American Chemical

Society. (C) Schematic of the fluorescent turn-on sensor for dopamine. Adapted with permission from Kruss et al. (2014). Copyright © 2006, American Chemical

Society. (D) Schematic illustration for NO detection using SWCNT-polymer hybrids, highlighting the mechanism for near-IR fluorescence bleaching by NO with

SWCNT-DAP-dextran complexes. PL = photoluminescence. Reprinted with permission from Kim et al. (2009). Copyright © 2009, Nature Publishing Group. (E) A

synthetic polymer with an alternating hydrophobic-and-hydrophilic sequence adopting a specific conformation when adsorbed to the nanotube. The polymer is

pinned in place to create a favored recognition site for the molecules of interest, leading to either a wavelength or intensity change in SWCNT fluorescence. Adapted

with permission from Zhang et al. (2013). Copyright © 2013, Nature Publishing Group.

(GT)15 toward catecholamines (Zhang et al., 2011; Kruss et al.,
2017; Mann et al., 2017) (Figure 4C). Further studies have
demonstrated that DNA length can also be used to tune the
fluorescence properties of DNA-SWCNT hybrids, offering a new
approach to controlling the behavior of these sensors (Jena et al.,
2017; Beyene et al., 2018).

Recent studies carried out by Landry et al. and Lee et al. have
shown that DNA aptamers on SWCNT scaffolds can be used
to detect certain biologically relevant proteins (Landry et al.,

2017; Lee et al., 2018). This label-free fluorescence detection
offers many advantages over conventional immunological
analytical methods, such as enzyme-linked immunosorbent
assays (ELISA) or mass spectroscopy, which lack temporal
resolution for real-time quantification of protein levels.
Furthermore, this method obviates cumbersome purification
and labeling steps typically required by more classical
approaches. Both RAP1 and HIV-1 (Landry et al., 2017)
and platelet-derived growth factor (PDGF) (Lee et al., 2018) were
successfully detected using DNA aptamer-SWCNT complexes.
Moreover, the RAP1 and HIV-1 sensors were also reported
to selectively respond to their target proteins in molecularly
complex environments, such as crude, unpurified cell lysates
(Landry et al., 2017).

Although DNA-SWCNTs have shown improved selectivity
toward small molecules compared to surfactant-SWCNTs
(Zhang et al., 2013), they still lag behind their protein- and
peptide-based counterparts, which offer exceptional molecular
recognition. Proteins are capable of not only differentiating
between molecularly similar targets, but also different chiralities
of the same molecule. For example, whereas proteins, such
as glucose oxidase (GOX) selectively interact with D-glucose
(Zubkovs et al., 2017), sensors based on the (GT)15 DNA
wrapping interact with a family of catecholamines (Kruss et al.,
2014, 2017; Mann et al., 2017). Although glucose sensors based
on DNA-SWCNTs have also been developed, these sensors
ultimately require the addition of GOX for specificity due
to the structural similarities of competing sugar molecules.
Furthermore, the underlying sensing mechanisms for protein-
based sensors are often more clearly identifiable. Their sensing
mechanisms are quite diverse, varying from protein charge-
transfer (Barone and Strano, 2006; Zubkovs et al., 2017) to
exciton quenching due to protein conformational changes (Yoon
et al., 2011), both of which have been shown to alter the SWCNT
fluorescence intensity.

Protein-based wrappings, however, suffer from their own
disadvantages; a lack of precise control during the protein
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immobilization process, for example, can result in unfavorable
orientations that limit access to the active site (Mohamad
et al., 2015). Similarly, structural rearrangements may occur
that inhibit, or in some cases destroy, the bioactivity of these
molecules (Saifuddin et al., 2013; Antonucci et al., 2017). In
addition, protein-based wrappings exhibit limited dispersion
efficiency, which has been shown to depend on the protein
and is generally less efficient than DNA- and surfactant-based
suspensions. Several methods of functionalization have been
proposed (Huang et al., 2002; Jiang et al., 2004; Gao and
Kyratzis, 2008; Saifuddin et al., 2013; Antonucci et al., 2017) and
used to create sensors based on Luciferase-suspended SWCNTs
(Kim et al., 2010), AnnexinV-suspended SWCNTs (Neves et al.,
2013), and anti-uPA-suspended SWCNTs (Williams et al., 2018),
for example. However, these sensors require an intermediate
linker or wrapping for stability, as opposed to the non-
specific adsorption possible with GOX. In fact, other protein-
based glucose sensors, such as those based on glucose-binding
protein (Yoon et al., 2011; Yum et al., 2013), typically require
more complex conjugative chemistries compared to GOX,
highlighting the importance of understanding the underlying
protein mechanism when determining the most appropriate
method for functionalization. Although these intermediate
wrappings can improve solubilization and help maintain protein
structure and function on the SWCNT surface, more complex
functionalization procedures with multiple conjugation steps
could limit the scalability of the sensors.

Irrespective of the improved selectivity offered by DNA
and especially protein-suspended SWCNTs, these sensors suffer
from relatively low quantum yields compared to surfactant-
suspended nanotubes (Haggenmueller et al., 2008). The low
intensities restrict the depth at which these biosensors can be
implanted for use in vivo and in vitro. Moreover, studies have
shown that both protein- and DNA-SWCNTs are sensitive to
local variations in pH (Nepal and Geckeler, 2006; Antonucci
et al., 2017) and ionic strength (Heller et al., 2006; Holt
et al., 2012; Salem et al., 2017; Gillen et al., 2018). The latter
poses additional challenges for biosensing applications, as these
ions are often involved in biological signaling pathways (such
as Ca2+ in dopamine regulation). Therefore, fluctuations in
local concentrations throughout the day would compromise the
sensing capabilities of the DNA-SWCNT complexes.

4. POLYMER ENGINEERING OF SWCNT
SENSOR SPECIFICITY

The tradeoffs between surfactant-suspended SWCNTs and
biopolymer-suspended SWCNTs have encouraged researchers to
seek an alternative means of detection based on synthetic or
bioengineered polymers.Xeno nucleic acids (XNAs), for example,
have recently been engineered to improve the sensing capabilities
of DNA-SWCNTs in ionically complex systems (Gillen et al.,
2018). XNAs are synthetic alternatives to naturally occurring
DNA and RNA that typically benefit from greater resistivity
against nuclease degradation. Due to their modularity, nucleic
acids can be readily adjusted using a variety of chemical

modifications (Pinheiro and Holliger, 2012; Pinheiro et al., 2013;
Ghosh and Chakrabarti, 2016; Ma et al., 2016), and XNAs can
contain modifications to either the nucleobase, phosphate, or
sugar in an otherwise native oligonucleotide sequence (Pinheiro
et al., 2013; Pinheiro and Holliger, 2014; Anosova et al., 2016).
Although XNAs were initially developed to emulate the DNA
replication processes found in nature, these synthetic oligomers
were quickly realized for their advantages in in vivo stability
and specificity (Wang et al., 2005; Pinheiro and Holliger, 2014;
Taylor et al., 2014; Ma et al., 2016). Larger base modifications
can result in altered physico-chemical properties, such as a
tendency to adopt non-standard helical conformations, but
certain chemical modifications to the N7 (in purines) or C5 (in
pyrimidines), sites that extend into themajor DNA groove, can be
reasonably tolerated without significant steric impact (Pinheiro
and Holliger, 2012). Backbone modifications can also alter the
physico-chemical properties of oligonucleotides. One example is
peptide nucleic acid (PNA), where the sugar phosphate backbone
is substituted with aminoethylgylcine. This substitution results in
a charge-neutral polymer that is capable of strong canonical base
pairing. The type and extent of the modification depends on the
intended application. For example, locked nucleic acid (LNA) can
greatly improve the stability of SWCNT sensors in the presence
of high ionic concentrations (Gillen et al., 2018). Previous studies
showed that salt cations can alter the DNA conformation on
the nanotube surface, changing the emission wavelengths (Heller
et al., 2006; Salem et al., 2017; Gillen et al., 2018). Since the added
methyl bridge in the backbone of LNA increases the rigidity
of the polymer, LNA exhibits increased conformation stability
in the presence of fluctuating salt concentrations. By modifying
25% of the sequence with a “locked” base, bioengineered sensors
based on LNA have been shown to withstand over two orders of
magnitude higher salt concentrations without any perturbations
in fluorescence. These complexes offer a strong promise for use
in ionically complex media, such as blood or urine, without
compromising the biocompatibility or nearly inexhaustible
sequence space offered by oligonucleotide wrappings. The added
chemical modifications also carry untapped potential for further
narrowing selectivity through bio-conjugative chemistries that
are specific to functional groups in the desired target.

Similarly, recent work by Chio et al. has employed the
use of peptoids, N-substituted glycine polymers, to serve
as protein molecular recognition elements for SWCNT-based
sensors (Chio et al., 2019). These peptoids draw inspiration from
biological peptides, with the benefit of greater resistivity against
protease degradation (Anosova et al., 2016). The tunability
of these sequence-defined synthetic polymers enables greater
chemical diversity by providing a larger monomer space of
primary amines (Sun and Zuckermann, 2013). Although the
stability of the peptoid wrapping on the nanotube surface was
shown to vary depending on composition, length, charge and
polarity, Chio et al. demonstrated that these sensors could
be used to engineer a selective sensor for the fluorescence
detection of the lectin protein, wheat germ agglutinin (WGA)
(Chio et al., 2019).

In addition to peptoids and oligonucleotide derivatives, purely
synthetic heteropolymers have also been used to augment sensor
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properties. One such platform uses Corona Phase Molecular
Recognition (CoPhMoRe) and relies on SWCNT-adsorbed
heteropolymers to template preferential recognition sites for
target analytes. The final structures adopted by the polymer on
the surface control the selectivity of the sensor toward a target.
Though the mechanism for modulating SWCNT fluorescence in
response to binding is likely analyte- and polymer-specific, its
precise characterization remains an area of active research (Bisker
et al., 2015; Ulissi et al., 2015). Typically, the heteropolymers
employed contain both hydrophobic and hydrophilic segments.
The former interacts with the SWCNT surface, while the latter
extends into solution to suspend the complex in aqueous
solutions. CoPhMoRe-based sensors have been developed to
detect neurotransmitters (Kruss et al., 2013; Zhang et al., 2013;
Landry et al., 2014), vitamins (Zhang et al., 2013), and steroids
(Zhang et al., 2013), as well as small molecules, such as NO
and H2O2 (Kim et al., 2009; Iverson et al., 2013; Giraldo et al.,
2015) (Figure 4).

Furthering the development of these sensors, Bisker et al.
(2016) extended the capabilities of CoPhMoRe sensors to
detect larger macromolecules, such as proteins. A variant
of a CoPhMoRe screening approach was used to identify
polymeric wrappings that could be used to create synthetic,
non-biological antibody analogs capable of recognizing biological
macromolecules. This approach yielded a selective sensor
for fibrinogen based on dipalmitoyl-phosphatidylethanolamine
(DPPE)-PEG (5 kDa)-suspended SWCNTs. This sensor was
capable of detecting fibrinogen in a competitive binding assay
in the presence of albumin, which can passivate the sensor
by binding to non-specific binding sites (Bisker et al., 2016).
This observation suggests that CoPhMoRe is more likely due
to a combination of factors related to both the specific corona
phase formed by the polymer-SWCNT complex and the unique
elongated conformation of the fibrinogen protein, rather than
sensing mechanisms based on aggregation, molecular weight, or
protein hydrophobicity.

5. CONCLUSIONS AND FUTURE
PERSPECTIVE

Since the first reported aqueous suspension of individual
SWCNTs with surfactant (O’Connell et al., 2001, 2002; Bachilo
et al., 2002), SWCNTs have been suspended using a variety
of natural and synthetic wrappings. Polymer wrappings in
particular have served the dual purpose of both solubilizing
SWCNTs and regulating the selectivity of SWCNTs toward
specific analytes in biological media. As a result, polymers

such as DNA have become standard wrappings for optical
SWCNT-based biosensing, and recent efforts have focused
on modifying these polymers to improve the quantum
yield, stability, scalability, and selectivity of these sensors.
However, with the exception of protein-based wrappings and
complementary DNA-strand hybridization, the nature of the
selectivity of polymer wrappings toward specific analytes
remains unclear. As a result, most DNA and synthetic polymer-
based SWCNT sensors are empirically engineered through

random library screening and selection. These techniques
evaluate the responsivity of several different polymer-wrapped
SWCNTs against a variety of analytes, and the polymer-analyte
combinations that yield relatively strong fluorescence responses
are used to identify suitable polymer wrappings for SWCNT-
based sensing (Zhang et al., 2011, 2013). Though this approach
has been quite successful in identifying wrappings that can
trigger a fluorescence response toward particular analytes, the
sensors often show compromised selectivity. Moreover, the
polymer wrappings also yield sensors with lower stability and
brightness compared to surfactant wrappings.

Studies for new SWCNT optical sensors thus far screen, at
most, tens of polymers at a given time (Zhang et al., 2011,
2013), meaning they have only explored a small fraction of
the near-infinite polymer sequence space. One approach to
overcoming the current limitations of SWCNT sensors is to
screen larger polymer libraries in order to increase the chances of
identifying a polymer-analyte combination with more favorable
sensing properties. An alternative approach to addressing this
challenge is to implement more guided techniques, such as
directed evolution (Arnold, 1997). Directed evolution uses an
iterative approach to improving the properties of materials
that lack a defined structure-function relationship. Though the
technique is conventionally used to engineer proteins, it was
recently applied to engineer DNA wrappings that were shown
to improve the quantum yield of an optical SWCNT-based
sensor (Lambert et al., 2019). Combined with computational
methods, such guided approaches can be used to identify trends
between polymer sequence and sensor properties, with the
goal of ultimately understanding the underlying mechanism for
selectivity and designing molecular probes in a rational and
predictive manner.
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