Impact Factor 3.782 | CiteScore 3.51
More on impact ›

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Chem. | doi: 10.3389/fchem.2019.00645

Structures of Pb-BHA complexes adsorbed on scheelite surface

 Haisheng Han1*, Zhao Wei1, Yuehua Hu1, Wei Sun1, Ruolin Wang1, Wenjuan Sun2, Yangge Zhu3, Bicheng Li3 and Zhenguo Song3
  • 1Central South University, China
  • 2University of South China, China
  • 3Beijing General Research Institute of Mining and Metallurgy, China

Previous studies have shown that Pb-BHA complexes (lead complexes of benzohydroxamic acid) have better collecting ability and can be used in flotation experiments with BHA acting as a collector and lead ions acting as activators. However, the structures of Pb-BHA complexes adsorbed on a mineral surface remain unclear. In this work, the adsorption behavior of Pb-BHA complexes on the scheelite surface was studied by flotation experiments and adsorption capacity measurements, and the structures of the adsorbed Pb-BHA complexes were determined using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The adsorption capacity results showed that more BHA was adsorbed on the scheelite surface in Pb-BHA flotation, and the XPS and TOF-SIMS analysis showed that the species of Pb-BHA complexes adsorbed on the scheelite surface were similar in activation flotation and Pb-BHA flotation. Therefore, the different contents of the complexes on the scheelite surface were responsible for the flotation behavior. XPS and TOF-SIMS showed that BHA combined with lead ions to form complexes with different structures, such as five- and four-membered ring structures. Structure fragment inference based on the measurements indicated that lead ions formed monomer complexes with two BHAs, and that lead hydroxide polymers with a certain degree of polymerization bonded with oxygen atoms in the complexes. The Pb-BHA complexes combine with oxygen atoms on the scheelite surface to form an adsorbate, rendering the surface hydrophobic.

Keywords: Pb-BHA complexes, Adsorption capacity, XPS, ToF-SIMS, Structure fragment

Received: 27 Jun 2019; Accepted: 09 Sep 2019.

Copyright: © 2019 Han, Wei, Hu, Sun, Wang, Sun, Zhu, Li and Song. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Prof. Haisheng Han, Central South University, Changsha, China, hanhai5086@csu.edu.cn