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Double proton transfer plays an important role in biology and chemistry, such as with DNA

base pairs, proteins andmolecular clusters, and direct information about these processes

can be obtained from tunneling splittings. Carboxylic acid dimers are prototypes for

multiple proton transfer, of which the formic acid dimer is the simplest one. Here,

we present efficient quantum dynamics calculations of ground-state and fundamental

excitation tunneling splittings in the formic acid dimer and its deuterium isotopologues.

These are achieved with a multidimensional scheme developed by us, in which the

saddle-point normal coordinates are chosen, the basis functions are customized for the

proton transfer process, and the preconditioned inexact spectral transform method is

used to solve the resultant eigenvalue problem. Our computational results are in excellent

agreement with the most recent experiments (Zhang et al., 2017; Li et al., 2019).

Keywords: tunneling splitting, proton transfer, quantum dynamics, formic acid dimer, normal coordinates

1. INTRODUCTION

Proton transfer plays important roles in various chemical and biological processes (Mayer, 2011;
Weinberg et al., 2012; Layfield and Hammes-Schiffer, 2014; Salamone and Bietti, 2015). Multiple
proton transfer is nearly ubiquitous in living organisms, such as in DNA mutation reactions
(Jacquemin et al., 2014) or enzyme catalysis reactions (Klinman and Kohen, 2013). In particular,
the hydrogen bond is crucial and omnipresent in many chemical and biological reactions, and in
case that more than one hydrogen bond exist, different multiple proton transfer processes along
the corresponding hydrogen bonds would appear, either in a concerted or stepwise way. In this
field, the double proton transfer systems are of extraordinary importance as they can serve as the
template for DNA base pairs (Barnes et al., 2008; Smedarchina et al., 2018). The carboxylic acid
dimers are often used as models for multiple proton concerted transfer (Arabi and Matta, 2011;
Daly et al., 2011; Evangelisti et al., 2012; Feng et al., 2012; Zhou et al., 2019), of which the formic
acid dimer (FAD) is the smallest one. Therefore, the FAD system has long been considered as the
prototype for multiple proton transfer studies (Li et al., 2019). Of course, it should be noted that
a realistic simulation of the proton transfer processes in the real biological environment would
require a more complex model, since such factors as the surrounding water molecules (Cerón-
Carrasco et al., 2010; Cerón-Carrasco and Jacquemin, 2015) and the local electric field (Arabi and
Matta, 2011) have been shown to play important roles.

Tunneling splittings can provide direct information about dynamics of proton transfer, and it
can be detected by high-resolution spectroscopic techniques (Zielke and Suhm, 2007; Daly et al.,
2011; Goroya et al., 2014; MacKenzie et al., 2014; Zhang et al., 2017; Li et al., 2019). As shown
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in Figure 1, hydrogen (protons) in FAD can transfer between
oxygen via tunneling, resulting in vibrational energy level
splitting. Experimentally, Li et al. (2019) have just performed the
most accurate measurement of ground-state tunneling splitting
of FAD with microwave spectroscopy, with the splitting value
reported as 334.9 MHz (0.01117 cm−1). In 2002, Havenith’s
group (Madeja and Havenith, 2002) first successfully employed
high-resolution spectroscopy to measure tunneling splitting
in (DCOOH)2. More recently, Havenith’s group (Ortlieb and
Havenith, 2007) andDuan’s group (Goroya et al., 2014)measured
ground-state tunneling splitting(10) of (HCOOH)2 as 0.0158
and 0.01649 cm−1, respectively. In 2017, Duan’s group (Zhang
et al., 2017) improved their experimental accuracy, getting an
updated 10 of 0.011367(92) cm−1 for (HCOOH)2, and they
also reported a new experimental 10 of 0.00113 cm−1 for
HCOOD-HCOOH. Theoretically, several researchers studied
the tunneling splittings in the FAD system using approximate
methods, such as instanton theory (Mil’nikov et al., 2005;
Smedarchina et al., 2005, 2013; Richardson, 2017) and reduced-
dimensionality quantum dynamics (QD) (Luckhaus, 2006, 2010;
Barnes et al., 2008; Jain and Sibert, 2015; Qu and Bowman,
2016). In 2016, Qu and Bowman successfully constructed a
full-dimensional potential-energy surface (PES) for FAD (Qu
and Bowman, 2016), which provides us the basis for further
dynamical calculations. Based on this PES, two kinds of
dynamical calculations have been reported, which are reduced-
dimensional quantum calculations with the multi-mode method
(Qu and Bowman, 2016) and semiclassical calculations with the
instanton approach by Richardson (Richardson, 2017). However,
the agreement of the reported theoretical values for the ground-
state tunneling splittings with the most recent experiments
(Zhang et al., 2017; Li et al., 2019) is still not satisfactory. The
ground-state tunneling splitting for FAD is very small (only
0.01 cm−1 or so), which causes problems for some approximate
approaches such as diffusion Monte Carlo (Qu and Bowman,
2016), and in some cases the numerical errors may be larger
than the splitting value. In addition, although great efforts have
been made in full-dimensional exact QD calculations (Wu et al.,
2016; Pandey and Poirier, 2019), the full-dimensional exact QD
calculations are still prohibitive for the title 10-atom system.

In this work, we present efficient QD calculations of ground-
state and fundamental excitation tunneling splittings in FAD
using the PES of Bowman’s group (Qu and Bowman, 2016),
and as for the ground-state tunneling splitting, our calculations
yield much better agreement with experiments (Zhang et al.,
2017; Li et al., 2019) than previous theoretical calculations.
These are achieved with a multidimensional scheme developed
by us, in which the saddle-point normal coordinates are chosen
and vibrational modes that are strongly coupled to the proton
transfer are included. The basis functions are customized for the
proton transfer process using the process-oriented basis function
customization (PBFC) strategy proposed by us (Ren and Bian,
2015; Wu et al., 2016), and the preconditioned inexact spectral
transform (PIST) method (Huang and Carrington, 2000; Poirier
and Carrington, 2001, 2002; Ren et al., 2011; Yang et al., 2011)
is used to solve the resultant eigenvalue problem. The main idea
of our PBFC strategy is to customize basis functions for specific

FIGURE 1 | Proton transfer along the isomerization path of formic acid dimer.

chemical processes or those desired states by optimizing and
adjusting the 1D or nD effective potential (EP).

2. METHODS AND COMPUTATIONAL
DETAILS

2.1. Normal Mode Hamiltonian
The exact normal mode Hamiltonian of a non-linear system for
total angular momentum J = 0 reads (Kamarchik et al., 2009)

Ĥ = −
1

2

∑

i=1

∂2

∂Q2
i

+
1

2

∑

α,β

π̂αµαβ π̂β −
1

8

∑

α

µαα + V(Q) (1)

π̂α = −i
∑

k,l

ζα
k,lQk

∂

∂Qi
(2)

where Q denotes a collection of the 3N − 6 normal coordinates,
µαβ is the inverse of the effective moment of inertia tensor,
and ζα

k,l are the Coriolis coupling coefficients. The four terms
are the standard kinetic energy operator, the vibrational angular
momentum (VAM) term, the so-called “Watson” term, and the
potential term in order. As VAM and Watson are inverse with
the moment of inertia, we can neglect them in this 10-atom
system. Therefore, the expression of multidimensional effective
Hamiltonian reads (Ren et al., 2011; Wu, 2016)

Ĥ = −
1

2

M∑

i=1

∂2

∂Q2
i

+ V(Q1, . . . ,QM) (3)

where M is the number of modes included in this calculation.
V(Q1, . . . ,QM) is the EP obtained by customized according the
reaction process or simply minimizing the remaining degrees of
freedom (DOF). The criterion for choosing normal modes will be
discussed later in the article.
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TABLE 1 | Correspondence between the normal modes of the saddle point (SP) and the global minimum (GM).

Saddle point Global minimum Expt.

Mode ω/cm−1 Motiona Mode ω/cm−1
Ŵ
a Coeffb modec

ν/cm−1

1 1355.32i PT 23′ 3232.02 Ag 0.90 1 3,570e

2 79.80 τR 1′ 70.08 Au 0.99 16 69.2c

3 218.58 βR 2′ 167.10 Ag 0.92 9 165f

4 225.75 δR 3′ 170.48 Au 0.99 15 168.47c

5 317.20 δR 5′ 253.96 Bg 0.98 12 242f

6 513.81 νR 4′ 209.11 Ag 0.92 8 194f

7 591.67 βR 6′ 275.43 Bu 0.98 24 268c

8 744.42 βOCO 7′ 692.87 Ag 0.75 7 682h

9 813.83 βOCO 8′ 715.98 Bu 0.94 23 698c

10 1065.35 δCH 11′ 1084.35 Bg 0.96 10 1,060d

11 1078.91 δCH 12′ 1100.26 Au 0.83 13 1033.5e

12 1240.46 νOH 24′ 3326.01 Bu 0.92 17 3,084c

13 1341.34 δOH 9′ 956.00 Bg 0.89 11 –

14 1394.98 βOCH 15′ 1405.97 Bu 0.77 21 1,364c

15 1397.27 βOCH 16′ 1408.36 Ag 0.83 5 1,375d

16 1400.00 δOH 10′ 969.97 Au 0.82 14 922c

17 1403.61 νCO(+) 14′ 1258.45 Bu 0.71 22 1,218c

18 1408.33 νCO(+) 13′ 1255.42 Ag 0.70 6 1,214d

19 1603.78 βOH 17′ 1447.95 Bu 0.85 20 1,454c

20 1691.31 βOH 18′ 1480.88 Ag 0.64 4 1,379g

21 1742.84 νCO(−) 20′ 1779.77 Bu 0.88 19 1,746c

22 1748.51 νCO(−) 19′ 1714.78 Ag 0.78 3 1,670d

23 3101.02 νCH 21′ 3095.24 Ag 1.00 2 2943.8e

24 3106.48 νCH 22′ 3096.71 Bu 0.99 18 2938.5c

aPT means the proton transfer mode, ν is stretch, β is in-plane bend, δ is out-of-plane bend, τ is torsion, R is intermolecular, ± is symmetric or antisymmetric. Γ is the irreps of the C2h

point group used to label the vibrational modes.
bcoeff gives the corresponding dot product of normal mode vectors of the SP and the GM configuration.
cGeorges et al. (2004).
dBertie et al. (1986).
eBaskakov et al. (2006).
fZielke and Suhm (2007).
gLuo et al. (2017).
hXue and Suhm (2009).

For facilitating description of proton tunneling in FAD,
the Hamiltonian is represented in the saddle-point normal
coordinates as the saddle point has the highest symmetry. Normal
mode analysis is performed employing the PES constructed
by Bowman’s group (Qu and Bowman, 2016). We chose
the direction of the saddle point painstakingly to avoid the
symmetrical error caused by the numerical problem. The mass-
scaled normal modes obtained at the saddle point and global
minimum are provided in Table 1, in which the imaginary
frequency Q1 is the reaction coordinate.

2.2. Basis Function Representation
The wave function is expanded by the direct product of 1D
discrete variable representation (DVR) basis functions

9 =

N1∑

i1=1

. . .

NM∑

iM=1

ci1...iM
M
5
j=1

πij (Qj) (4)

where πij (Qj) is the 1D DVR basis function for Qj with basis size
of Nj. The 1D DVR basis functions are obtained by a designed
1D effective Hamiltonian with a unitary transformation from the
truncated eigenfunctions

ĤQj = −
1

2

∂2

∂Q2
j

+ V(Qj) (5)

where V(Qj) is the 1D EP (Li et al., 2011; Ren et al., 2011;
Zhang et al., 2012). The two protons in FAD transfer between the
two equivalent wells results in ground-state tunneling splitting
(Figure 1), and in normal coordinates at the saddle point, Q1 is
identified as the proton transfer reaction coordinate as shown
in Table 1. The PBFC strategy is used to customize the 1D EP
for the proton tunneling process attracting our interest, and
the four 1D EPs used in this work are shown in Figure 2. In
particular, the 1D EP for Q3 is obtained by smoothly connecting
three parts: the central part is yielded by following the steepest
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FIGURE 2 | 1D effective potentials for Qi (i = 1, 6, 3, 8) in formic acid dimer, where Qi is in the mass-rescaled unit.

FIGURE 3 | 1D minimum potentials for Q3 in formic acid dimer, where Q3

is in the mass-rescaled unit.

descending path starting from the saddle point, whereas the
parts on the two sides are produced by minimizing all the
remaining DOF. It is clear that the obtained 1D EP for Q3

is proton-transfer-process oriented, which includes the reactant
and product equilibrium geometries and the transition-state

FIGURE 4 | Magnitudes of the displacement for 24 normal coordinates from

the saddle point to the global minimum, where |1Qi |(i = 1, 2, . . . , 24) is in the

mass-rescaled unit.

geometry. If the EP for Q3 is generated by minimizing all the
remaining DOF, a segmented point or cusp at Q3 = 0 will
appear (see Figure 3), and on the two sides of the cusp the
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relaxed coordinate Q1 has the opposite sign, indicating that it
just describes the well regions but omits the barrier region. In
the following we will show that the coupling between Q1 and Q3

is anti-symmetric, and generally speaking, whenever this kind

FIGURE 5 | Physical descriptions of most important saddle-point normal

modes.

of strong anti-symmetric coupling is encountered, the above
problem would appear. In addition, the 1D EP for the mode Q1

can be obtained in a similar way to that for Q3. The 1D EPs for
the modes Q6 and Q8 are generated from the full-dimensional
PES by minimizing the potential with all the remaining DOF,
respectively, which is in accordance with the spirit of the PBFC
strategy, since the minimum potential is energetically favored
in the process of proton transfer. It should be noted that the
minimal potentials have been shown to give rise to nearly optimal
effective Hamiltonians using the phase space optimizing (PSO)
theory (Poirier and Light, 1999, 2001; Poirier, 2001; Bian and
Poirier, 2003).

Figure 2 shows that the 1D EP for Q1 has a double-well
structure, as does that for Q3, indicating that the Q1 and Q3

modes may be the most important in the study of tunneling
splitting. Furthermore, the elements in the Hamiltonian matrix
we use for this work are the following,

[Ĥ]i1i2...iM , i′1i
′
2...i

′
M

= T
Q1
i1i

′
1
δi2i′2

. . . δiM i′M
+ δi1i′1

T
Q2
i2i

′
2
. . . δiM i′M

+ · · · + δi1i′1
δi2i′2

. . .T
QM

iM i′M

+V(Q1 i1 ,Q2 i2 , . . . ,QM iM )δi1i′1δi2i′2 . . . δiM i′M

(6)

FIGURE 6 | Contour plot of the PES cut along Qi (i = 3, 6, 8, 10) and Q1 by fixing the remaining modes at zero. The potential energy is in cm−1 and Qi is in the

mass-rescaled unit.
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TABLE 2 | Ground-state tunneling splitting for (HCOOH)2, energies in cm−1.

This work Bowmana Richardsonb Sibert (2008)c Sibert (2015)d Došliće

Q1 0.4404 0.44 0.47

Q1,Q6 0.05865 0.16 0.17

Q1,Q3 0.03586

Q1,Q6,Q3 0.01136 0.032 0.037 0.0063 0.0017 0.163

Q1,Q6,Q3,Q8 0.01027 0.037 0.047

Expt. 0.01117f

0.011367(92)g

0.0158(4)h

aQu and Bowman (2016).
bRichardson (2017).
cUse B3LYP/6-31+G(d) for the potential, see (Barnes et al., 2008).
dJain and Sibert (2015).
eUse B3LYP/6-311++G(3df ,3pd) for the potential, see (Matanovi et al., 2008).
fLi et al. (2019).
gZhang et al. (2017).
hOrtlieb and Havenith (2007).

where TQj refers to the kinetic energy matrix in DVRs for Qj,
M = (1, 2, 3, 4).

2.3. Hamiltonian Martix Solution
The essence of the PIST method is to transform the original
H−1 into matrix (H − EI)−1 before the Lanczos algorithm is
applied, such that states close to energy E converge first and fast to
reduce the number of Lanczos iterations needed. In each Lanczos
iteration, the matrix-vector multiplication xi+1 = (H − EI)−1xi
is equivalent to the linear equations (H−EI)xi+1 = xi, which are
solved with the quasi-minimal residual (QMR) algorithm. Wyatt
preconditioner (Wyatt, 1995a,b), P, is employed to improve the
efficiency of the QMR iterative convergence by transforming
the linear equations into P−1(H − EI)xi+1 = P−1xi, as the
matrix P−1(H − EI) is more close to a diagonal matrix. QMR
convergence criteria can be loosened to a certain extent, as the
exact eigenvalues and eigenvectors are given by the Lanczos step.
However, loosening it too much will highly increase the number
of steps for Lanczos iteration, which is much slower than QMR
iteration. The PIST method has also been employed in other
applications (Bian and Poirier, 2004; Li and Bian, 2008; Brandon
and Poirier, 2014; Petty and Poirier, 2014).

3. RESULTS AND DISCUSSION

Proton transfer in FAD is a multidimensional process. In
order to identify important normal coordinates related to the
proton transfer of FAD and incorporate them into the current
multidimensional research, we first inspect the magnitude of
the displacement [|1Qi| (i = 1, . . . , 24)] for each normal
coordinate from the saddle point to the global minimum. As
shown in Figure 4, the |1Qi|s of four modes, modes 1, 3, 6, and 8
(Figure 5), are substantially larger than those of the other modes.
The contour plots of the PES cut along Qi(i = 3, 6, 8, 10) and
Q1 are shown in Figure 6, as seen, the coupling between modes
3 and 1 and that between modes 6 and 1 are extremely strong,

while the coupling between modes 10 and 1 is very small. The
contour plot of the PES cut along Q22 and Q1 is similar to that
along Q3 and Q1, but the coupling between modes 22 and 1 is
much smaller. That confirms the importance ofQ6,Q3,Q8, which
are used as the main mode in the previous work (Barnes et al.,
2008; Jain and Sibert, 2015; Qu and Bowman, 2016; Richardson,
2017). The only replacement may be using Q22 instead of Q8

(Matanovi et al., 2008).
As what written above, for the calculation of ground-state

splitting (10), Q6, Q3, and Q8 are extracted from the 4D
(Q1,Q6,Q3,Q8) model. Converged ground-state splittings are
obtained with the basis set of (NQ1 = 32, NQ6 = 13, NQ3 =

13, NQ8 = 11) which is denoted as (32, 13, 13, 11) for
simplicity. In analyzing the EPs, we find that the coordinate
with |1Qi| ≈ 0 (Figure 4) leaves from 0 only in the region
where the FAD breaks into two monomers. Thus, when making
multidimensional EPs, we relax the modes shown in Figure 4

and keep the others near 0 to make our calculations focus on the
process of isomerization.

Because the theoretical splittings are computedwith the saddle
point coordinates whereas the experiments are measured as a
property of the global minimum, we establish the corresponding
relations between the saddle-point modes and the global
minimum ones to compare our splittings of each mode with
experiment. The relations of the different mode numbers are
shown in Table 1.

The calculated ground-state tunneling splitting results for
(HCOOH)2 are listed in Table 2. As shown, the present 3-4D
results agree well with the experimental measurements, which
are superior to the previous 3-4D results (Qu and Bowman,
2016; Richardson, 2017). The good performance of the present
calculations may be attributed to two reasons. First, the potential
energies used in the calculations of Sibert’s group (Barnes et al.,
2008; Jain and Sibert, 2015) and Došlić’s group (Matanovi et al.,
2008) are only at the B3LYP level and not accurate enough,
and similar problem is also found in the 7D calculation of
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Luckhaus (Luckhaus, 2010) which reported a value of 0.008
cm−1. Second, although we use the same PES as that used
in Bowman’s calculations, we treat the symmetry problem in

FIGURE 7 | Convergence of the tunneling splittings in 3D or 4D calculations.

Basis size is (Q1,Q6,Q3) or (Q1,Q6,Q3,Q8).

calculations with great care and obtain more reliable results.
We find that the symmetry of PES breaks while converting
the coordinate from Cartesian coordinate to normal coordinate.
When the two wells are not in symmetry with each other, the
wave-functions of the doublets that one state splits into will be
independently bonded in one well instead of spreading in both
wells, so the two doublets are broken into two states. Although
this symmetry problem is not obvious in 1D calculation, it does
affect the 2-4D results.

We find that the computer’s numerical precision does affect
the transformation from the Cartesian coordinates to the normal
coordinates, leading to errors, which needs careful treatment
to ensure that the zero elements in the coordinate transfer
matrix are as expected and the PES in normal coordinates is
symmetric. The 4D result is in very good agreement with the
experiments (Zhang et al., 2017; Li et al., 2019), and the 10 in
different basis size varies by around 0.0005 cm−1 (see Figure 7)
which is much smaller than that in Bowman’s calculation of
0.003 cm−1. In addition, the present computational scheme is
efficient. For instance, the calculation with the 4D basis size
of (24, 13, 13, 11) takes only 100 s for the PIST part on
our workstation with Intel Xeon E5645@2.4GHz, and the most
time-consuming part for constructing multidimensional EPs has
been parallelized.

We also use the same scheme to calculate the ground-
state tunneling splitting of various deuterium isotopologues,
and the results for DCOOH-HCOOH (DCOOH)2, HCOOD-
HCOOH and (HCOOD)2 are presented in Table 3. As can be
seen, the ground-state tunneling splittings of the four deuterium
isotopologues are smaller than that of (HCOOH)2, meaning
that substituting the hydrogen atoms with the deuterium atom
would slow down the tunneling. In particular, for the 4D results,
the calculated splitting for DCOOH-HCOOH and HCOOD-
HCOOH are 0.00988 and 0.00123 cm−1, respectively, which
is in very good agreement with the experimental values of
0.01106 cm−1 (Li et al., 2019) and 0.00113 cm−1 (Zhang
et al., 2017). As for (DCOOH)2, the present calculated ratio
of the tunneling splitting for (HCOOH)2/(DCOOH)2 of 1.25
is in excellent agreement with the experimental value of 1.21
(Ortlieb and Havenith, 2007). The calculated tunneling splitting
of (HCOOD)2 is 0.000284 cm−1, which is consistent with
the reported theoretical results of 0.00022 cm−1 (Smedarchina
et al., 2005) and 0.00021 cm−1 (Richardson, 2017) based on the

TABLE 3 | Ground-state tunneling splitting for the deuterium isotopologues, energies in cm−1.

DCOOH-HCOOH DCOOH-DCOOH HCOOD-HCOOH HCOOD-HCOOD

This work This work Bowmana This work This work Richardsonb

Q1 0.427 0.414 0.41 0.0956 0.0190 0.017

Q1,Q6 0.0580 0.0537 0.15 0.0106 0.00182 0.0043

Q1,Q3 0.0327 0.0342 0.00724 0.00122

Q1,Q6,Q3 0.0107 0.00871 0.028 0.00141 0.000286

Q1,Q6,Q3,Q8 0.00988 0.00767 0.00123 0.000284

Expt. 0.01106c 0.00113d <0.00067d

aQu and Bowman (2016).
bQuantum dynamics calculations, see (Richardson, 2017).
cLi et al. (2019).
dZhang et al. (2017).

Frontiers in Chemistry | www.frontiersin.org 7 October 2019 | Volume 7 | Article 676

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Liu et al. Double Proton Transfer in FAD

instanton method; unfortunately, there has been no available
experimental data, and further experimental studies are desired.

The doublets of splittings are assigned according to the
nodal structure of wave function probability density against

FIGURE 8 | Wave function probability density for the ground state (A),

fundamentals Q3 (B), Q6 (C), and Q8 (D) against each coordinate with the

other coordinates integrated over in the 4D (Q1,Q6,Q3,Q8 ) calculation.

Top and bottom panels of (A–D) correspond to lower and upper doublets

of respective tunneling splittings.

each coordinate, with the other coordinates integrated over.
As illustrated in Figure 8 concerning a 4D (Q1,Q6,Q3,Q8)
calculation, Figures 8A–D is the wave function probability
density curve of the energy doublets of splittings for the ground
state, fundamentals (Q6,Q3,Q8), respectively. There are two
potential wells separated by a barrier along Q3 (Figure 2);
considering that the ZPE of Q3 is about 90 cm−1, the wave-
functions of Q3 are divided into the two wells. The number of
nodes in wave function of vibrational state ofQ3(ν = n) is 2n+1,
whereas this number of single-well modes like Q3 or Q8 is n.

One can notice that in Table 4, the effect of the vibrational
excitation in mode Q3 is significantly larger than that in mode
Q6 and Q8, though the Q6 has larger displacement and higher
frequency. This selective can be found in many systems such as
malonaldehyde (Wu et al., 2016). The reason may be that in the
tunneling dynamic, the reaction path does not go through the
saddle point. For the two global minimums of FAD, Q6 and Q8

are nearly the same, while Q3 has a significant change. Which
means that when the protons transfer below the barrier the other
atoms will have movement along the mode Q3 but not along Q6

and Q8.
In addition, we perform a series of 2D calculations for (Q1,Q3)

with a basis size up to (48,31); the results are also listed inTable 2.
The smaller 10 indicates that Q3 does play the second important
role in the tunneling; however, being 3 times higher than 10 in
3D mode shows that Q6 still shows significant influence to the
calculation. For both the 2D cases, we also checked the ratios of
16/10 and 13/10. The results are 16/10 ≈ 4.5, 13/10 ≈ 7.0.
Our testing calculation using mode (Q1,Q3,Q8) with a basis size
of (24,13,11) gives the result 16/10 ≈ 4.4, far from 1.0, which
shows that ignoring Q3 will affect both the ground state and
fundamental excitation tunneling splitting and also reconfirms
that Q3 plays a more important role than Q6 in the tunneling
splitting of FAD.

4. SUMMARY

Using a multidimensional scheme developed by us, we achieve
much better agreement with experiments than those reported in
previous theoretical calculations for the ground-state tunneling

TABLE 4 | Ratio of splitting for mode-specific fundamental excitation, relative to the ground state.

Frequency 1i/10

Mode ωi(cm
−1)a this work This work Sibertb Sibertc Luckhausd Došliće Nakamuraf

(3D) (4D) (2008) (2015)

Q3 172.66 8.23 8.48 10 11 9 8.95 11

Q6 206.28 1.40 0.96 1.1 4.7 1 0.56 0.74

Q8 672.79 0.97 1 1.35

aResults from this work (4D).
bBarnes et al. (2008).
cJain and Sibert (2015).
dLuckhaus (2010).
eMatanovi et al. (2008).
fResults in (DCOOH)2, see Mil’nikov et al. (2005).
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splitting in FAD. The obtained ground-state tunneling splitting
of 0.010 cm−1 is in excellent agreement with the most recent
experimental values of 0.011 cm−1. This is achieved with a 4-
dimensional PBFC-PIST theoretical scheme, in which the saddle-
point normal coordinates are chosen, the basis functions are
customized for the proton transfer process, and the PIST method
is used to solve the resultant eigenvalue problem. Our scheme is
also used to study the ground-state tunneling splittings of various
deuterium isotopologues of FAD, and the obtained results are in
very good agreement with experiment.

The roles of various vibrational modes in the process of
proton transfer are also studied, and our analysis and calculations
indicate that the Q3 and Q6 are strongly coupled to the proton
transfer process, whereasQ3 plays a more important role thanQ6

in the tunneling dynamics. The present work demonstrates the
feasibility of our multidimensional PBFC-PIST scheme, which
may be extended to the study of multiple proton transfer
dynamics in even larger molecular systems or using more
complex models, although in the latter case further refinements
are required to take into account such factors as the solvent effects

by including several explicit water molecules into the model
(Cerón-Carrasco et al., 2010).
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