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Photocatalytic hydrogen production from water splitting is of auspicious possibility

to resolve the energy shortage and environmental anxieties. In the past decade,

the combination of different carbon-based allotropes with semiconductors of different

structure and unique properties to construct heterojunction, which can improve the

charge separation, light absorption, and steadiness, offer a promising way to achieve

efficient photocatalyst. This review aims to provide an overview of the development for

the carbon nanomaterials (CNMs)-based photocatalysts used for hydrogen production

from water splitting and photocatalytic degradation of organic pollutants in waste water.

The recent progress of CNMs-based heterojunction, including various composite with

graphene, fullerene, carbon quantum dots (CQDs), and carbon nanotubes (CNTs) were

highlighted. Furthermore, a typical model of CNMs-based Z-scheme heterojunction

was also addressed. Finally, a promising perspective on the future development of

CNMs-based photocatalysts have been discussed.
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INTRODUCTION

Photocatalysts facing toward energy crisis and environmental issues have attracted increased
intention as one of the best way for the reduction of toxic contaminants and H2 production
(Hisatomi et al., 2014; Low et al., 2015; Dai et al., 2017; Liu G. et al., 2019). However,
challenges for the photocatalysts remains regarding to the limited light absorption, high charge
recombination, and low quantum yield (Sudhaik et al., 2018). Up to now various photocatalysts
have been developed to resolve these issues, among which carbon-based photocatalysts recently
aroused tremendous interest due to their large surface area, favorable electronic conductivity,
low fabrication cost, and high chemical/thermal stability (Yang et al., 2014; Xia et al., 2017; Ma
et al., 2018). These unique properties make carbon nanomaterials (CNMs) as the most promising
candidate for photocatalysts (Yu et al., 2014).

The most widely used CNMs for the synthesis of photocatalysts, such as graphene (Yu et al.,
2016), carbon nanotubes (CNTs) (Zhang Y. et al., 2019), carbon quantum dots (CQDs) (Li Y. et al.,
2018), fullerene (Song et al., 2017), and graphitic carbon nitride (g-C3N4) (Zhang S. et al., 2019)
have attracted great attention due to their high physiochemical stability, earth abundant, and low
synthesis cost. Moreover, the electronic structure and photocatalytic properties of CNMs could
be adjusted through morphology and interfacial modulation (Xin et al., 2018). Whereas, pristine
CNMs suffer from rapid recombination of electron-hole pair and narrow visible light adsorption.
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One of the best strategy to solve this problem is to construct
heterojunction via assembly of CNMs with semiconductors.
Especially, the modified CNMs-based Z-scheme heterojunction,
resembling the natural photosynthetic model, benefit from
various merits including improved light harvesting, spatially
separated electron and hole sites and strong redox ability (Tong
et al., 2012). Beside the structure modification of the Z-scheme
heterojunction, the introduced CNMs also serve as electron
mediator between two semiconductors, which actually reduce the
resistance and improve the charge separation and stability.

This paper aims to provide an overview of carbon-
based photocatalysts in water splitting for H2 production
as well as degradation of organic pollutants. The properties,
performances, and combinations of different allotropes of carbon
as photocatalysts were discussed. Photocatalytic enhancements
by solid Z-scheme heterojunction were also reviewed.

CARBON-BASED PHOTOCATALYSTS

Graphene as Photocatalyst
Graphene with excellent physical and chemical properties
discovered in 2004, holding sp2-hybridized atoms tightly
assembled into an ordered two-dimensional (2D) honeycomb
construct, offer new opportunities in designing efficient
photocatalytic materials with high stability (Gupta et al., 2019;
Madkour, 2019). Recent demand for the synthesis of metal-
free photocatalysts is on the verge of increase. Gong et al.
successfully obtained graphene/g-C3N4 nanocomposites by
impregnation chemical reduction strategy, which served as
active photocatalysts for H2 production in visible light (Gong
et al., 2018). Moreover, 2D graphene and transition metal
dichalcogenides (TMDCs), have become versatile nanomaterials
for the fast progress of photocatalysts due to their unique
properties in optical, electrical, thermal, and mechanical aspects
(Rosman et al., 2018). One of the works done by Lv et al. that
elaborated graphene composite without noble metal, revealed
that graphene attached to semiconductor surface fabricated
by hydrothermal method can efficiently accommodate and
transport electrons from the excited semiconductor, which not
only hindered charge recombination but also improved charge
transfer, giving rise to high photocatalytic efficiency (Lv et al.,
2012). This work confirmed the significant contribution of
graphene in enhancing the photocatalytic activity. Afterwards,
many graphene-based photocatalysts have been developed.
For example, Quiroz-Cardoso et al. (2019) recently reported
graphene in combination with nickel nanoparticles modified
CdS fibers (Ni/GO-CdS) enhanced the photocatalytic hydrogen
production, which was 6.3 times higher than that of bare
CdS. Considering the superior conductivity and tunable
structure, graphene would be the most promising candidate for
photocatalysts. Design and construction of novel hierarchical
architectures hybridizing with graphene nanostructures would
provide plenty of rooms for photocatalytic application.

CNTs as Photocatalyst
Photocatalytic water-splitting technology based on CNTs-
modified nanomaterials has exhibited great potential for
hydrogen production in view of their low cost and high stability

(Yi et al., 2018). For example, Zheng et al. (2008) has offered
new opportunities for achieving high photocatalytic activity with
high stability. In combination of CNTs with graphene not only
increase reaction sites but also inhibit the recombination of
photo-excited electron-hole pairs (Bhanvase et al., 2017). In
addition, CNTs-based photocatalysts also revealed high activity
on the photocatalytic degradation of organic pollutants due
to π-system or formation of heterojunction. For example,
CNT-modified hierarchical microspheres ZnO enhanced the
visible light adsorption and charge separation process, exhibiting
excellent photocatalytic performance much better than the pure
ZnO for the reduction of the organic molecules in the industrial
effluents (Ahmad et al., 2014). Combination of CNT with other
photocatalysts could enhance the conductivity and facilitate
the charge transfer process during the photocatalytic reaction.
To further improve the performance in future, more efforts
should be made to in-situ synthesize CNT-based composite in
order to strengthen the synergetic interaction between CNT and
other nanostructures.

CQDs as Photocatalyst
CQDs as an emerging and recently developed CNMs provided
well-controlled intrinsic characteristics because of its unique
optical and electrical properties, as well as the special fluorescence
emission feature (Zhang et al., 2017). Since their discovery
in 2004 (Xu et al., 2004), CQDs have been utilized in
various application, including chemical sensor, bioimaging,
nanomedicine, photocatalysts, etc. Particularly, in photocatalytic
application, CQDs showed the most promising potential for
photocatalytic H2 production. Moreover, CQDs can act both as
electron acceptor and donor leading to effective electron and hole
separation, and extensively modify the photo-absorption range of
semiconductor materials with large band gap to visible regions
(Pirsaheb et al., 2018). Wang et al. demonstrated that metal-
doped CQDs combined with CdS nanowires as a co-catalyst
showed much better hydrogen production performance than
the undoped CQDs/CdS composite (Wang Y. et al., 2019). One
more example examined by Wang et al. demonstrated that the
visible-light-sensitive BiVO4 quantum tube (q-BiVO4) decorated
with CQDs displayed outstanding photocatalytic performance,
whose kinetic constants for the degradation of phenol and
rhodamine B (RhB) were 3.0 and 2.4 times higher than those
of the sole q-BiVO4, respectively (Wang G. et al., 2019). Due to
the potential both as electron donor and acceptor, CQD should
be further investigated in the field of photocatalytic application.
Developing novel and facile green synthesis method to fabricate
CQD-based CNMs, especially the metal-free catalysts deserves
more attention.

Fullerene as Photocatalyst
Fullerene (C60) with a close-shell shape consisting of 20
hexagons and 12 pentagons, holding 30 orbital bonding with
60 p-electrons, has been recognized as the most significant
carbon allotropes because of the unique chemical and physical
characteristics (Lindqvist et al., 2014). Besides, C60 is both
an excellent electron acceptor and donor, which facilitate
the functionality of fullerene-based carbon materials in
photocatalytic applications. Encapsulation of fullerene into
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CNTs is super effective technique, pioneered by Smith et al.
(1998), to fabricate heterojunction with unique electronic
characteristics (Rahimi-Nasrabadi et al., 2017). Song et al.
synthesized a novel C60/graphene/g-C3N4 composite with high
hydrogen production efficiency for water splitting (Song et al.,
2017). The synergetic effect between graphene and C60 improved
the transportation and utilization efficiency of photo-generated
electrons and accelerated the separation of photo-generated
electron and hole pairs, thus considerably enhancing the
hydrogen generation ability of g-C3N4. Fullerene and its
derivatives have been widely used in the organic photovoltaic
device, however, their application in photocatalysis for hydrogen
production and organic pollutants degradation is in the infancy.
Until now, most works only focused on the C60, other members
in fullerene family such as C70 and their derivatives should be
pay more attention for photocatalysts in future.

g-C3N4 as Photocatalyst
Recently, the improvement of photocatalytic activity by using
g-C3N4 has turned into a hot research subject because of its
tunable electronic band structure, highly stable physiochemical
properties, simple manufacturing and low cost (Dong et al.,
2016, 2019; Li Y. et al., 2018). Wang J. et al. (2019) fabricated

a 3D flower-like TiO2 hybridized with 2D g-C3N4 nanosheet
through a hydrothermal and calcination process. The resulting
TiO2/g-C3N4 composite exhibited a much enhanced efficiency of
photocatalytic hydrogen production, which is 7.7 and 1.9 times
higher than that of the pure g-C3N4 and TiO2, respectively.
It was reported that the extended visible light adsorption by
g-C3N4 make a contribution to the improved photocatalytic
performance. In addition, the activity of g-C3N4 could also
be improved by doping. Zhou et al. (2019) reported that the
NO removal rate of g-C3N4 could be enhanced by 1.5 times
after Sr doping. Density functional theory (DFT) method is
powerful for systematically depicting the electronic structures
and understanding energy-related mechanism for photocatalytic
reaction. The results revealed that different doping modes of Sr
including intercalation, cavity padding, replacement of triazine
N and bridging N could decrease the band gap of g-C3N4, thus
facilitating the charge transfer process.

HETEROJUNCTION

Many efforts have been made to realize the complete utilization
of photo-excited charge carriers and inhibit recombination of
electron-hole pairs during the photocatalytic process, among

FIGURE 1 | Schematic illustrations of an advanced Z-scheme heterojunction with CNMs as an electron mediator (A) and the direct Z-scheme heterojunction (B).

Modified from Li H. et al. (2015). with copyright permission from John Wiley and Sons, Inc.
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which fabrication of heterojunction is one of the best approach
to improve the charge separation efficiency and reduce the
recombination of the photogenerated electron-hole pairs (Moniz
et al., 2015; Wang et al., 2018). The most commonly-investigated
heterojunction is constructed via two solid semiconductors
and one electron mediator as illustrated in Figure 1, forming
an advanced solid-type Z-scheme configuration. The main
mechanism for Z-scheme heterojunction is inspired by the
natural photosynthesis process. Electrons of photocatalysts I are
recombined with holes in photocatalysts II via electron mediator
under light, which inhibits the recombination of photo-induced
charge carrier and stay their redox property (Bard and Fox, 1995).

In order to improve the conductivity of semiconductor
photocatalysts, CNMs like graphene, fullerene, CNTs and their
derivatives have been widely used in different heterojunction
as an electron mediator to increase the conductivity (Natarajan
et al., 2018). Table 1 summarize several typical carbon-
based photocatalysts. As compared with other carbon-based
heterojunction photocatalysts, graphene exhibits a plenty of
merits such as low cost, large surface area and tunable band
structure (Li X. et al., 2018). Gebreslassie et al. demonstrated
that graphene as an electron mediator can significantly enhance
the photocatalytic activity, which showed 7–15-folds higher H2

production compared with their pristine compounds without
the aid of graphene (Gebreslassie et al., 2019). Similarly, Jiang
et al. synthesized a solid-state Z-scheme Bi2WO6/CNTs/g-C3N4

composite, where CNT acted as an electron mediator (Jiang
et al., 2018). This composite disclosed an outperforming
photocatalytic activity than the pure Bi2WO6 and g-C3N4

for the degradation of 2,4-dibromophenol. Recently, CQDs
have also been used as electron mediator to build solid-
state Z-scheme heterojunction. In 2019, Liu et al. fabricated
a CQD-based Z-scheme heterojunction by bridging TiO2 and
Cd0.5Zn0.5S with CQDs, which exhibits super photocatalytic
activity for H2 evolution (Liu E. et al., 2019). Meanwhile,
Pan et al. constructed a sandwich-type structure, where CQDs
were embedded between CdS and BiOCl (Pan et al., 2018).
The resulting CdS/CQDs/BiOCl heterojunction displayed much
higher photocatalytic activity on the degradation of RhB and
phenol under visible and UV light illumination compared with
BiOCl, CdS/BiOCl, and CQDs/BiOCl.

CONCLUSIONS AND PERSPECTIVES

Carbon-based nanomaterials with low cost and favorable
catalytic performance have been extensively used for
photocatalytic reactions in the fields of energy conversion
and environmental protection. In this review, CNMs such
as graphene, CNTs, CQDs, C60, and g-C3N4, etc. used as
photocatalysts in the application for H2 production from
water splitting and photocatalytic degradation of organic
pollutants in waste water were comprehensively overviewed.

TABLE 1 | Summary of carbon-based photocatalysts.

Photocatalysts Heterojunction type Synthesis method References

PPTA/MWNTs N.A.a Polycondensation Mazrouaa et al., 2019

g-C3N4/graphene/NiFe2O4 Solid state Z-scheme Hydrothermal Gebreslassie et al., 2019

CN/CNT/BWO Solid state Z-scheme N.A. Jiang et al., 2018

Bi2WO6/g-C3N4 Direct Z-scheme Hydrothermal Li M. et al., 2015

ZnO/g-C3N4 Direct Z-scheme Solid state Yu et al., 2015

Cd0.5Zn0.5S/CQD/TiO2 Solid state Z-scheme Hydrothermal Liu E. et al., 2019

Cds/CQDs/BiOCl Solid state Z-scheme Facile-region Pan et al., 2018

Ru/SrTiO3 Z-scheme Hummers method Iwase et al., 2011

SnS2/g-C3N4 Z-scheme Hydrothermal Di et al., 2017

SnO2−x/g-C3N4 Z-scheme Solid-state synthesis He et al., 2015

CdS/SiC Z-scheme Hydrothermal Peng et al., 2015

CdS/graphene N.A. N.A. Li et al., 2011

ZnIn2S4/RGO N.A. Solvothermal Ye et al., 2014

Bi2WO6/graphene N.A. Sonochemical Sun et al., 2014

Graphene/g-C3N4 N.A. Impregnation–chemical reduction Xiang et al., 2011

Nanoparticle/graphene N.A. One-pot solution Lv et al., 2012

TiO2/graphene N.A. Sol gel method Zhang et al., 2010

TiO2/carbon dots N.A. Hydrothermal Wang et al., 2014

CdS/graphene N.A. Hydrothermal Ye et al., 2012

Ta2O5/CNT Schottky heterojunction N.A. Cherevan et al., 2014

Ni/GO-CdS N.A. Photo-deposition Quiroz-Cardoso et al., 2019

La-CNTs/TiO2 N.A. Sol-gel method Tahir, 2019

TiO2/CQD N.A. Green synthesis Sargin et al., 2019

aN.A., Not Available.
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It could be concluded that CNMs exhibit intriguing property
in enhancing the photocatalytic performance of various
photocatalysts. With the rapid development of advanced
technique, various carbon-based Z-scheme heterojunction with
excellent photocatalytic performance have been established.
This type of heterojunction inspired by artificial photosynthesis
method possess many advantages including increased light
harvesting and favorable strong redox capability, which highly
improved the photocatalytic performance compared with the
direct heterojunction. Different type of carbon allotropes are the
good performer as an electron mediator in solid-state Z-scheme
heterojunction while the selection of proper electron mediator
with specific composite to different materials according to
their specific function is challenging and crucial. Obviously
photocatalytic efficiency depends on the type of material.
The development of novel photocatalysts with better catalytic
performance has always been put forward to the frontiers of
nanomaterials and a further understanding of heterojunction
mechanisms are also of great importance to promote the
application of photocatalysts.
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