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S100A9 is a potential therapeutic target for various disease including prostate cancer,

colorectal cancer, and Alzheimer’s disease. However, the sparsity of atomic level data,

such as protein-protein interaction of S100A9 with RAGE, TLR4/MD2, or CD147

(EMMPRIN) hinders the rational drug design of S100A9 inhibitors. Herein we first report

predictive models of S100A9 inhibitory effect by applying machine learning classifiers on

2D-molecular descriptors. The models were optimized through feature selectors as well

as classifiers to produce the top eight random forest models with robust predictability and

high cost-effectiveness. Notably, optimal feature sets were obtained after the reduction

of 2,798 features into dozens of features with the chopping of fingerprint bits. Moreover,

the high efficiency of compact feature sets allowed us to further screen a large-scale

dataset (over 6,000,000 compounds) within a week. Through a consensus vote of the

top models, 46 hits (hit rate= 0.000713%) were identified as potential S100A9 inhibitors.

We expect that our models will facilitate the drug discovery process by providing high

predictive power as well as cost-reduction ability and give insights into designing novel

drugs targeting S100A9.

Keywords: S100,machine learning, random forest, ligand-based virtual screening, feature selection, classification,

consensus vote, Alzheimer’s disease

INTRODUCTION

Drug R&D is currently facing a productivity crisis to overcome low productivity as well as high
risk/high return in the context of economics (Scannell et al., 2012; Mullard, 2014; Mignani et al.,
2016; Bendtsen et al., 2017). In order to develop an efficient and cost-effective R&D process
(Bendtsen et al., 2017), computing and simulations have decreased the traditional resource demand
for drug R&D (Kapetanovic, 2008; Bendtsen et al., 2017). In particular, an early stage of drug
discovery involves virtual screening (VS) to identify therapeutic targets or hit compounds (Walters
et al., 1998; Bajorath, 2002; Oprea and Matter, 2004; Shoichet, 2004). Successful VS depends on
the predictive power of predictors and the quality of the virtual library and dataset used. When
the 3D-structure of a molecular target is available, structure-based virtual screening (SBVS) is
considered prior to ligand-based virtual screening (LBVS) or SBVS/LBVS in combination due to
an easy understanding of the predictive (atomic level) model and empirical evidence on bioactive
conformation as well as the activity resulting from interaction between a target and a compound
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(Lavecchia and Di Giovanni, 2013; Sliwoski et al., 2014; Gadhe
et al., 2015; Lavecchia, 2015; Jang et al., 2018; Lee et al., 2018;
Yadav et al., 2018). Recently, the conceptual advance of drug
targeting from “single target” to “protein-protein interactions
(PPI),” it is unsatisfactory to obtain atomic level confidence of a
novel druggable target with only partial structural information. It
is therefore very difficult for researchers to propose a druggable
binding site of a new molecular target for drug design without
the background science or evidence. Therefore, when promising
drug targets have insufficient information or when multiple
targets need to be considered together, LBVS is commonly used,
where the known active small molecules are used as screening
templates. With improvement in the volume, quality, velocity,
and accessibility of molecular data, versatile machine learning
(ML) algorithms like support vector machine (SVM) (Cortes and
Vapnik, 1995), Naïve Bayes (NB) (Domingos and Pazzani, 1997),
decision tree (DT) (Breiman, 2017), and ensemble methods,
such as random forest (RF) (Breiman, 2001) have contributed to
the improvement of LBVS predictors (Geppert et al., 2010; Lo
et al., 2018). With these advances, we can expect a diversity of
training data like the heterogeneous property of activity index (or
assay methods) and structural diversity beyond the congenericity
of active compounds. In the case of classification models,
selection methods for molecular descriptors (selectors) as well as
classification algorithms (classifiers) decide the predictive power
and coverage of models (Melville et al., 2009). Therefore, it is
natural that multiple trials on various combinations of learning
methods and feature sets coupled with raw dataset can facilitate
the best performance of classifiers (Stahura and Bajorath, 2005;
Domingos, 2012).

The S100 protein family is one of the challengeable drug
target candidates (Donato, 2001; Ryckman et al., 2003). They are
low molecular weight (ca. 100 amino acids) proteins with high
similarity within the subfamily, and comprise two metal-binding
EF-hands and a hinge. Due to their biophysical properties,
they tend to form protein complexes (e.g., heterodimer like
S100A8/S100A9, homodimer like S100B/S100B Donato, 1999),
ligand-protein complex like S100A/RAGE complex (Yatime et al.,
2016) rather than remaining as a single protein in a cell.
Therefore, in the spite of many biological and pathological
studies on several S100A9-mediated diseases, such as prostate
cancer (Hermani et al., 2005), colorectal cancer (Kim et al.,
2009), Alzheimer’s disease (Horvath et al., 2015), and other
neurodegenerative disorders (Gruden et al., 2017; Iashchishyn
et al., 2018), atomic level knowledge is limited for SBVS or
structure-based drug design of S100A9 inhibitors. Notably,
the characterization of S100A9 complex has been updated,
such as the hydrophobic binding of V-RAGE domain into
S100A9 homodimer (Chang et al., 2016), V-RAGE domain into
S100A9/S100A12 heterodimer (Katte and Yu, 2018) following
the first X-ray report (Itou et al., 2002). However, the small
molecule, CHAPS of the reports is a detergent (for protein
stabilization or solubilizing) rather than a drug inducing
functional change of S100A9. In addition, the SPR measurement
of Q-compounds recently produces the question, whether the
inhibition of Q-compounds is non-specific or specific (Björk
et al., 2009; Yoshioka et al., 2016; Pelletier et al., 2018).

Therefore, a ligand-based model can is required to compensate
current insufficient characterization for targeting S100A9. For
the purpose, maximum collection of the available data and
selection of the most relevant features should be considered.
Very delightfully, competitive inhibitors binding to S100A9 in
the presence of the target receptors, such as RAGE, TLR4/MD2,
and EMMPRIN (CD147) were reported in three patents
(Fritzson et al., 2014; Wellmar et al., 2015, 2016). However, the
patents proposed neither a druggable binding site nor different
interaction mode between the target receptors. In other words,
despite the presence of the inhibitors, no reliable predictive
model has been reported to identify novel S100A9 inhibitors.

Based on the S100A9 competitive inhibitors of the patents,
we present herein, the first predictive models using multi-
scaffolds of competitive inhibitors (binding to the complex of
S100A9 with rhRAGE/Fc, TLR4/MD2, or rhCD147/Fc) as a
training set. For the purpose, highly efficient feature sets was
considered in this study. Even though the input data matrix
consisting of a low number of rows (data points/compounds)
and a large number of columns (features) is never special in
2D/3D-QSAR or classification models built from limited and
insufficient biological data (Guyon and Elisseeff, 2003; Muegge
and Oloff, 2006), data processing (filtering, suitability, scaling)
and feature selection were considered to remove irrelevant and
redundant data (Liu, 2004; Yu and Liu, 2004). Adding a few
other features to a sufficient number of features often leads to
an exponential increase in prediction time and expense (Koller
and Sahami, 1996; Liu and Yu, 2005), and whenever a large
screening library is generated, feature generation of the library
can be a practical burden. Further, because more irrelevant
features hinder classifiers from identifying a correct classifying
function (Dash and Liu, 1997), the feature optimization process
is essential to increase the learning accuracy of the classifier
and to escape the curse of dimensionality that emerge in a
consequence of high dimensionality (Bellman, 1966). In addition,
versatile machine learning models were built resulting from 5
× 4 × 3 trials: (1) five IC50 thresholds between activeness and
inactiveness, (2) four feature selectors, and (3) three classifiers,
thereby resulting in comprehensive validation of 60 models. The
overall workflow depicted in Figure 1 was designed to select
the optimal classification models with the best predictive ability
and efficiency. In particular, we tried to gain a golden triangle
between cost-effectiveness, speed, and accuracy. For this purpose,
compact feature selection was critical for more than six million
library screening showing the original data matrix of six million
compounds (rows)× ca. 3,000 features (columns).

ALGORITHMS AND METHODS

Datasets
Through patent searching, S100 inhibitors and their respective
IC50 values were collected from three different patents. In the
patents, even though the inhibitory effect on every complex
(the binding complex of S100A9 with hRAGE/Fc, TLR4/MD2,
or hCD147/Fc) was measured through the change of resonance
units (RU) in surface plasmon resonance (SPR) (Fritzson et al.,
2014), IC50 was calculated through the AlphaScreen assay of
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FIGURE 1 | Workflow depicting the process of the top classification model development.

several concentrations in only biotinylated hS100A9 complex
with rhRAGE-Fc (Fritzson et al., 2014; Wellmar et al., 2015,
2016). Therefore, the predicted inhibitory effect of our model
means competitive inhibition of S100A9-RAGE in this study. The
assaymethod for IC50 was identical in the three patents. The total
number of molecules collected was 266: 115 compounds from
WO2011184234A1, 97 compounds from WO2011177367A1,
and 54 compounds from WO2012042172A1. The three distinct
scaffolds led to the structural diversity of the dataset which was
confirmed through the principal component analysis (PCA) of

patent molecules (Figure 2). To investigate a more reasonable
decision boundary between the activity and inactivity of the
inhibitory effect on S100A9, five datasets (SET01, SET02,
SET03, SET04, and SET05) were generated with different
thresholds of activity (respectively 4, 3, 2, 1, and 11.4µM
of IC50). Insufficient numbers of inactive molecules were
compensated by decoys from the DUD-E database (Mysinger
et al., 2012), in order to obtain the same size for each
dataset (N = 402), with a ratio of 66.17% (N = 266)
patent molecules and 33.83% (N = 136) inactive decoy
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FIGURE 2 | Three-dimensional principal component analysis(PCA) of hits and patent molecules. Patent 1, Patent 2, and Patent 3 refers to WO2015177367A1,

WO2014184234A1, and WO2016042172A1.

molecules (see Table S1 and Datasheet 1 in Supplementary
Materials for SMILES information of the dataset). The activity
property was converted to a binominal value according to
the threshold of each set for a dichotomous classification.
In particular, the activity threshold of 11.4µM in SET05 is
the highest IC50 value among patent molecules, thus making
every patent molecule active, and every decoy molecule inactive
in SET05.

Descriptor and Fingerprint Calculation
Useful descriptors provide a better understanding of the
molecules, and are widely used to construct models to

predict certain molecular properties (Glover and Kochenberger,
2006). In our study, 2,798 features were generated using
PaDEL-Descriptor ver. 2.21 (PaDEL-Descriptor, Pharmaceutical
Data Exploration Laboratory) (Yap, 2011). All kinds of 1D
and 2D descriptors were calculated to produce 1,444 features.
The remaining features are from three kinds of fingerprints:
MACCSFP, 166 bits; PubChemFP, 881 bits; SubstructureFP,
307 bits.

Dimensionality Reduction
To avoid the curse of dimensionality and to enhance the
efficiency of the overall predicting process, we applied several
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TABLE 1 | The number of features.

Initial

features

Low-variance

filter

Low-variance filter and

high-correlation filter

1D/2D descriptors 1,444 1,218 1,017

Fingerprints 1,354 855 855

MACCSFP 166 147 147

PubChemFP 881 598 598

SubstructureFP 307 110 110

Total 2,798 2,073 1,872

The numbers of descriptors and bits of fingerprints generated initially, and the selected

numbers of features after the removal of unnecessary features by certain filtration methods

are listed. Note that each bit of a fingerprint was considered as a single feature.

strategies to greatly reduce the number of features. Notably,
each bit of fingerprint was considered as a single feature in our
study; thus, the optimal feature set comprises hybrid fingerprints
and descriptors after the feature reduction process. By removing
irrelevant bits from the original intact fingerprint, a hybrid
fingerprint can achieve increased prediction accuracy as well
as reduced computational cost (Williams, 2006; Nisius and
Bajorath, 2009, 2010; Singla et al., 2013; Smieja and Warszycki,
2016; Warszycki et al., 2017).

Low-Variance Filter and High-Correlation Filter
In our pre-processing step, we applied two steps of filtering:
the low-variance filter and the high-correlation filter. First, to
avoid redundancy, features with low variance were removed
after normalization. Among 2,797 features, 724 columns with
zero variance were removed (Table 1) to obtain a small feature
set without reducing the prediction performance. Second, the
correlation between two random variables was ranked to
obtain Kendall’s Tau-a coefficient matrix. Features with strong
dependency (τ > 0.9) were removed to ensure maximum
dissimilarity between features (Ding and Peng, 2005). Here, 201
columns were removed, leaving 1,872 independent features that
were de-normalized for further processing (Table 1).

Correlation-Based Feature Subset Selection
In addition to the correlation filter, we used a correlation-based
feature subset selection method (Hall, 1999) to obtain a compact
number of features. Merit, composed of Pearson’s correlation
formula, is used to evaluate the correlation-based feature
selection (CFS) algorithm. To determine subsets containing
features that are highly correlated with the class but are
uncorrelated with each other, the following merit is calculated
along a search:

Merits =
krcf

√

k+ k(k− 1)rff

(1)

where Merits is the heuristic merit of subset S containing k
features, rcf is the average correlation with the class, and rff
is the average inter-correlation. The subset with the highest
merit is selected to obtain features with high predictive ability
and low redundancy. Various search algorithms are applicable

for improving the efficiency of feature selection (FS) methods.
Herein we applied four different search algorithms: best first,
genetic search, particle swarm optimization search, and subset
size forward selection. To assess the effectiveness of the FS
methods, two measurable indexes were selected: the rate of
feature reduction and the merit of the best subset found. All
calculations were performed in Weka software packages (Weka
Environment for Knowledge Analysis ver. 3.6, The University of
Waikato, Hamilton, New Zealand) (Hall et al., 2009).

Best First (BF)
Best first search is one of general algorithms for exploiting
heuristic information to reduce search times. The general strategy
assesses the merit of every candidate feature set exposed during
the search, and then continues exploration along the direction
of the highest merit (Kohavi and John, 1997). In our study, the
search was terminated when an improved node was not found in
the last 5 expansions. Also, backtracking was applied to reduce
the size of the search space and to allow the algorithm to move
toward a more promising subset (Freuder, 1988). Because the
running times for the backward search starting from the full
set of features could render the approach infeasible, especially if
there are many features, forward selection was applied here to
achieve cost-effectiveness.

Genetic Search (GS)
The genetic algorithm was first introduced by John Holland
(Holland, 1992), and David Goldberg presented an application
in 1989 (Goldberg, 1989) that triggered a wide variety of
modifications and developments to genetic algorithms (Glover
and Kochenberger, 2006). Genetic algorithms derive their name
from the fact that they are inspired by the mechanism of natural
selection, where the fittest individuals survive to the following
generations (Man et al., 1996). Although the searchmethod using
genetic theory may result in higher computational costs than
other methods, such as best first, it remains popular, because it
is relatively insensitive to noise and is well-suited for problems
where little knowledge is provided (Vafaie and De Jong, 1992). In
this study, the total number of generations was 20, with 20 feature
subsets in each generation. The probability of crossover and the
mutation rate were set to 0.6 and 0.33, respectively.

Particle Swarm Optimization Search (PSO)
Particle swarm optimization (PSO), suggested by Kennedy and
Eberhart in 1995 (Eberhart and Kennedy, 1995), is based on
social-psychological principles. Because only a few lines of code
and primitive mathematical operators are required, this method
has been proved to be highly efficient for application to numerous
areas (Shi, 2001). Herein we utilized the geometric particle swarm
optimization (GPSO) (Moraglio et al., 2007), where a convex
combination was applied to update the positions of particles. In
GPSO, three convex weights w1, w2, and w3 are employed, where
w1, w2, w3 > 0 and w1+w2+w3 = 1. The function of GPSO can
be defined as:

xi = CX
(

(xi,w1) ,
(

ĝ,w2

)

,
(

x̂i,w3

))
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where ĝ is the global optimum and x̂i is the local optimum. Each
convex weight represents the inertia weight (w1), social weight
(w2), and individual weight (w3), which were set to 0.33, 0.33,
and 0.34, respectively in our study. The number of particles in the
search space and the number of populations in each generation
were both set to 20.

Subset Size Forward Selection (SSFS)
Subset size forward selection (SSFS) is an extension of linear
forward selection. Through this method, a compact feature set
can be obtained from large-scale features with a relatively small
number of instances (Gutlein et al., 2009). The optimal size
was determined through 5-fold cross-validation with fixed-set
linear forward selection, resulting in a reduced error compared
to searching in a single training and test set. The number of
top-ranked features forming a search space was set to 50.

Machine Learning Classifiers
After selecting the optimal feature sets, three different classifiers
(decision tee, random forest, and naïve Bayes) were applied to
develop and determine the best classification model for S100
inhibitors. All ML processes and calculations were performed
using the KNIME software.

Decision Tree (DT)
The decision tree classifier is a simple and widely comprehensive
method that can be constructed relatively quickly compared to
other well-known classifiers (Kotsiantis et al., 2007). The scalable
parallelizable induction of decision trees (SPRINT) (Shafer et al.,
1996), a modified form of the well-known C4.5 (Quinlan, 2014),
was applied in this study so that the model can take a large-
scale database as an input. The Gini index was measured to
determine the root node, which is the best feature that divides
the dataset. To avoid overfitting problems, we applied both pre-
pruning and post-pruning strategies. For post-pruning process,
minimum descriptor length (MDL) pruning was applied here
(Rissanen, 1978).

Random Forest (RF)
Random forest (Breiman, 2001) was developed by introducing
bootstrap aggregating to decision tree. Trees are built with
randomly sampled features to form a forest, and the most voted
tree is selected as the optimal classifier. This ensemble learning
method can handle high-dimensional data with numerous
features. In addition, it is less susceptible to noise and builds
a robust model, often outperforming other classifiers (Verikas
et al., 2011; Khuri et al., 2017). In this study, features were
evaluated based on the information gain ratio to obtain the
best splits.

Naïve Bayes
Along with decision trees, naïve Bayes is one of the most
popular machine learning methods for classification models.
Unlike the canonical Bayesian method, naïve Bayes assumes that
all features are independent of each other. Although this “naïve”
assumption rarely fits in practice, it has been verified to perform
reasonably well in various situations, without the requirement of
independence between features (Domingos and Pazzani, 1997).

TABLE 2 | The optimized parameters for random forest models and the AUC of

ROC values of test set prediction.

Applied

feature selector

Dataset maxDeptha numTreesb AUC of ROC

BF SET01 5 52 0.971

SET02 6 42 0.961

SET03 10 215 0.956

SET04 10 203 0.912

SET05 2 15 1

GS SET01 3 82 0.932

SET02 10 164 0.935

SET03 10 112 0.948

SET04 6 105 0.867

SET05 3 36 1

PSOS SET01 8 76 0.952

SET02 5 45 0.915

SET03 9 185 0.952

SET04 10 84 0.882

SET05 4 13 1

SSFS SET01 7 97 0.967

SET02 6 59 0.966

SET03 9 236 0.963

SET04 8 245 0.896

SET05 2 50 1

None SET01 5 25 0.954

SET02 7 96 0.941

SET03 7 124 0.949

SET04 7 60 0.872

SET05 5 79 1

This occurs because the strong false assumption may lead to
reduced overfitting (Domingos, 2012). Another advantage of this
method is its simplicity and low computational cost (Kotsiantis
et al., 2007), which allows one to search in very large databases
with high efficiency.

Parameter Optimization
To achieve the best performance, several parameters were
optimized prior to the development of predictive models. For
each optimization, 10-fold cross-validation was performed with
the training set (65% of the original dataset), where the optimal
parameters exhibiting the largest area under the curve (AUC) of
receiver operating characteristics (ROC) curves were exported to
construct the model. The optimized parameters and AUC values
are listed in Table 2.

Model Validation
To assess the prediction performance of the models, two
validation methods were employed: (i) evaluation by test set
(35% of the original dataset) and (ii) 10-fold cross-validation
of the training set. The AUC of ROC curve and the Matthews
correlation coefficient (MCC) were calculated to obtain the top
models among every combination of feature selectors and ML
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TABLE 3 | The number of molecules from eMolecules database in each subset.

Subset Number of molecules

Subset01–subset09 100,000

Subset10–subset18 200,000

Subset19–subset32 250,000

Subset33 247,184

Total 6,447,184

classifiers. The MCC value can be defined as:

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

,

where TP, TN, FP, and FN refers to true positive, true negative,
false positive, and false negative.

In silico Screening of the eMolecules
Database
Over past decade, large drug discovery companies have been
actively applying high-throughput screening (HTS) to search
potent hit molecules (Stahura and Bajorath, 2004; Reddy et al.,
2007). However, HTS often demands prior validation and
preparation time as well as great expense and facilities. To aid
or complement HTS, the VS method should have the ability to
select only a small number of potent molecules from a huge
database. Thus, the top models that we have chosen previously
were further evaluated by in silico screening of a large-scale
dataset (N = 6,447,184) from the eMolecules database (http://
www.emolecules.com/).

Screening Library
eMolecules provides almost eight million unique compound
structures along with the information of vendors of the respective
molecules assembled from more than 150 suppliers and
manufacturers (Williams, 2008). Many studies have successfully
discovered potential hits by screening molecules from this
database (Bisignano et al., 2015; Lenselink et al., 2016; Shehata
et al., 2016). In our study, 6,447,184 molecules were collected for
screening, and split into 33 subsets in order to reduce computing
(memory) burdens (Table 3). Features of each subset molecules
could be generated based on the optimal features of the top
models. First, the upper class of necessary descriptors were
calculated, because only the upper class of descriptors can be
selected rather than each single feature in PaDEL-Descriptor.
Then, using KNIME software, the features needed were chosen
to generate the exact same kind of feature set, which was used in
top model building.

Prediction and Identification of Hits
Each subset with each respective feature set was then used as an
input to the random forest predictor, which was built through
the learning of patent molecules. Then, the predictor was used
to assign possibility as S100A9 inhibitors among the screened
molecules. Only molecules with a higher probability than 0.9
of being active than were selected. Overlapped molecules from

TABLE 4 | The number of selected features after each FS method.

BF GS PSO SSFS

SET05 51 852 591 47

SET01 37 940 552 29

SET02 50 751 602 23

SET03 66 741 600 24

SET04 70 667 610 28

the consensus of eight top models were collected to obtain the
final hits.

Prediction of ADME Properties
Since poor pharmacokinetic profiles and high potential of toxicity
are one of the main reasons of failure in drug development, it
is crucial to consider such absorption, distribution, metabolism,
excretion (ADME) properties in advance to encourage further
assays and clinical trials of final hits. Thus, we predicted several
drug-likeness and ADME properties of hit molecules using the
QikProp module of Maestro 11.4 (Schrodinger Release 2017-
4: QikProp, Schrödinger, LLC, New York, NY, 2017). QikProp
computes pharmaceutically relevant properties of molecules
to help eliminate those with unsatisfactory ADMET profiles.
Here, we generated computational properties to ensure the
drug-likeness of hits, including molecular weight (MW), LogP,
hydrogen bond donor, hydrogen bond acceptor, number of N and
O, polar surface area (PSA), and violation of Lipinski’s rule of five
as well as Jorgensen’s rule of three. Also, the apparent Caco-2 cell
permeability and MDCK cell permeability was also calculated to
investigate intestinal absorption and oral absorption abilities.

RESULTS AND DISCUSSION

Reasonable Compression of Features for
Predictive Models
In order to compare the performances before and after FS,
we could consider predictive power and cost-effectiveness. The
efficiency of each feature selection method was evaluated by
calculating two measurements: the rate of feature reduction, and
the merit.

Feature Reduction
Feature reduction can play an important role in model building
due to its ability to greatly reduce computational burden and to
increase classification accuracy. Herein the cost-reducing effect
of each FS method was evaluated through feature reduction
ability. After two serial filtrations which removed 926 features
from 2,798 original features, we applied CFS with four different
search methods to further obtain a compact and optimal feature
sets. The reduction ability of each FS method was evaluated
and compared to determine optimal approaches. The selected
number of features after each FS method is presented in Table 4.
The rates of feature reduction are also shown in Figure 3, which
are the number of excluded features divided by the number of
features before CFS.

Frontiers in Chemistry | www.frontiersin.org 7 November 2019 | Volume 7 | Article 779

http://www.emolecules.com/
http://www.emolecules.com/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Lee et al. ML-Based Predictive Models for S100A9

FIGURE 3 | The rates of feature reduction. The reduction rate is the ratio between the number of features removed after FS method and the original number of

features before FS method.

As shown in Table 4 and Figure 3, BF and SSFS excluded
most of the features with over 96% removal in all five datasets.
However, a relatively high number of features remained after GS
or PSO, and especially, GS showed the least consistency between
subsets (49.786%∼64.37%). When comparing between BF and
SSFS, the actual number of features is less through SSFS than
BF, yet the rates of reduction are similar. In SET03, the number
of features remaining after SSFS was 36.36% (N = 24) of that
after BF (N = 66). Thus, SSFS is expected to achieve the greatest
effectiveness regarding cost reduction, and since the number of
features selected is also small enough in BF, it is also expected to
have a high efficiency similar to SSFS. The composition of each
feature set is shown in Figure 4. See Table S2 in Supplementary
Materials for detailed information of the selected features. Due

to the large number of original features, autocorrelation (e.g.,

ATS, AATS, ATSC), Pubchem fingerprint (e.g., PubchemFPxxx),
and atom type electrotopological state (e.g., SpMax1_Bhm)
could also show the highest relative frequency ratio among 63
descriptor types of 2,798 original features. In addition, with the

three type descriptors, burden modified eigenvalues, molecular
linear free energy relation, path count, MACCS fingerprint, and
substructure fingerprint were commonly chosen through four FS
methods. Because fragmented fingerprints and burden modified
eigenvalues have relatively large number of original features
(96–489 features), molecular linear free energy relation (with 6
features) and path count (with 22 features) are more impact per
feature than other descriptors but the descriptors could not exist
in every subset (5 subsets× 4 FS method).

Merit
The predictive performance of a model strongly depends on the
usefulness of the features. After feature selection, the remaining
features may not fully represent the original features. Therefore,
the merit of a feature set is measured as shown in Figure 5

to determine which FS method produce the best discriminative
ability for model building. Despite this ability, the merit value
itself does not consider the size of the dataset and a standard of a
“high enough” merit value cannot be defined. Only a comparison
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FIGURE 4 | The composition of each feature set. The number of each kind of descriptor and fingerprint bit after each FS method is shown here. SET0N refers to the

different IC50 threshold (SET01:4µM; SET02:3µM; SET03:2µM; SET04:1µM; SET05:11.4µM). Note that the maximum value of horizontal axis of the graph differs

between each FS method.
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between methods with the same dataset is valid and therefore, as
described later, we further examined the effects on classification
accuracy. A general observation is that the merit improved with
an increase in the activity threshold.When every compound from
a same resource is classified into the same class, it seems that the
merit value tends to be enhanced, as shown in Figure 5, where
the merit was the highest in SET05 among all datasets. Themerits
of BF and SSFS were higher than those of GS and PSO in every
dataset, although they decreased rapidly (0.917–0.395 and 0.903–
0.31, respectively) as the range of activity narrowed. GS and PSO
selected feature sets with relatively poor merits, lower than 0.3
in every dataset, and almost near to zero in SET04. The results
indicate that BF and SSFS achieve efficiency as well as enhance
the predictive ability of the model, whereas GS and PSO barely
improve the prediction ability.

Evaluation of Classification Performance
To assess the performance of the classification models, two
validation approaches, external validation using the test set (35%
of initial dataset) and internal 10-fold cross-validation, were used
to acquire the AUC of ROC curve and MCC. Effectiveness of 5×
3× 4 models: (1) five type activity thresholds between activeness
and inactiveness, (2) three FS methods (selectors), and (3) four
ML methods (classifiers) were evaluated. The 60 models were
also compared with the models without a CFS process as control
groups to evaluate the effectiveness of FS on the classification
performance. Mean values of measurements in each dataset
were calculated to better focus on the comparison between FS
methods. The control group, where FS was not treated, is labeled
as “none.” Every dataset used in all models contain identical
molecules but differently assigned activity.

AUC of ROC
The AUC values of ROC curve of each model are illustrated
in Figure 6. Generally, AUC declined as the IC50 threshold
narrowed. Nevertheless, the RF models produced the highest
AUC values in all combinations of activity thresholds and the FS
methods in both external test set validation and 10-fold cross-
validation. On the other hand, the AUC values were dramatically
reduced as the activity threshold narrowed in NB or DT models,
especially when built without feature selection process. This
indicates that RF models have the most robust predictive ability
among classifiers, showing a constantly high AUC ranging from
0.859 to 1 and from 0.839 to 1 in test set validation and
cross-validation, respectively. Regarding FS methods, BF or SSFS
exhibited relatively higher AUC than PSO or GS, as well as
none (without CFS methodology). In addition, they produced
the highest AUC when built with the RF classifier. The NB
models appears to get the largest benefit from BF and SSFS
methods, achieving substantial increase compared to the model
without CFS process. However, GS or PSO methods could not
greatly enhance the AUC values of NB models, producing only
a slight increase compared to the model built without them,
especially when the activity threshold was low. This suggests
that RF models built with BF or SSFS feature selection methods
have strong possibility to be the optimal model and exhibit the
greatest robustness.

MCC
In general, the MCC values exhibited similar tendencies to
the AUC (Figure 7). Here also, RF achieved the highest MCC
for every combination except for the cross-validation result of
models applying GS or no feature selector with SET04. The
overall MCC values of RF classifier with other datasets except
for SET04 were reasonably high, ranging from 0.693 to 0.984 in
external test set validation, and from 0.721 to 0.994 in 10-fold
cross-validation. Among FS methods, BF and SSFS also achieved
the best performance for all combinations. In particular, they
exhibited enhanced MCC values when combined with the RF
classifier. On the other hand, the NB classifier with the GS or PSO
feature selector exhibited considerably lower values compared to
other methods, and a rapid decline could be seen as the IC50
threshold narrowed. Even when combined with BF or SSFS, the
NBmodels resulted in relatively lowMCC compared to the RF or
DT models.

In summary, “RF classifier + BF selector” or “RF classifier +
SSFS selector” under their optimal hyperparameters presented
the best predictive ability. Obviously, RF was more distinguished
than other classifiers with a robust performance in all IC50
thresholds. BF and SSFS enhanced the classification performance,
obtaining higher AUC and MCC values than other selectors.
It is thus observed that the IC50 activity threshold has non-
negligible influences on prediction performance. As the threshold
narrowed, the accuracy and MCC values declined without any
exception, implying the toughness of distinguishing between
patent molecules with low IC50 values. Nevertheless, models
built with low activity threshold may lead to the discovery of
highly potent molecules selectively. Among all IC50 thresholds
(SET01 to SET05), 1µM (SET04) was excluded to generate the
Top models: four IC50 activity thresholds (11.4, 4, 3, and 2µM)
and two feature selectors (BF and SSFS) under the optimal RF
classifier. Through the consensus vote of the top 8 models,
potential S100A9 inhibitors could be obtained.

Quality, Cost, and Effectiveness of Screening Hits
Ligand-based virtual screening was performed using a large-scale
dataset (N = 6,447,184) derived from the eMolecules database.
We finally obtained 46 potential S100A9 inhibitors through
unanimous votes from top models (hit rate = 0.000713%).
The 2D structures of hits are presented in Table S3. Notably,
the prediction probabilities of selected hits were similarly high
compared with patent molecules, ranging from 0.902 to 1 with
little differential between models (Figure 8). In order to qualify
the hit compounds, their structure novelty also was evaluated.
For this purpose, the Tanimoto similarity between each hit
compound and the nearest neighbor was presented (Table 5).

In the view of structural novelty, our virtual screening
could certainly guarantee similarity, such as the level of recent
generative model-based de novo design (Popova et al., 2018). Our
hits not only retain the structural diversity of active molecules,
but also exhibit differentiation from patents, thereby suggesting
our models’ ability to elicit novel S100A9 inhibitors (Figure 2).
Furthermore, our model is economical in the view of cost. The
overall screening process including feature generation of the 6M
size library took ca. 161 h under 1 CPU and 8 GB memory
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FIGURE 5 | The merits of feature sets after feature selection method in each dataset with different IC50 threshold.

FIGURE 6 | Heat-map depicting the AUC of ROC curve of the classification models.
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FIGURE 7 | Heat-map depicting the MCC of the classification models.

FIGURE 8 | Prediction probability of top 8 models on patent molecules, decoy molecules, and hits. Each label of horizontal axis represents each top random forest

model. The FS method and the dataset (SET0N) used in the model is indicated as “FS method_N”. For example, SSFS_3 refers to the random forest model built with

the feature set chosen by SSFS with dataset SET03. *Note that every patent molecules were considered as active in BF_5 and SSFS_5.

condition for being to show 40 times faster than the screening
using S100A9 docking models in the same computing resource.
It proved strong cost-reduction ability and efficiency enough to
apply to the real-world drug R&D.

In sequence, binding mode of the hit compounds was
compared with known S100A9 inhibitors, 266 dataset under in-
house docking model. For the docking simulations, homodimer
of the mutant S100A9 (C3S) was gain from PDB 5I8N code
(Chang et al., 2016). The S100A9 inhibitors were docked to
S100A9-RAGE V dining domain to share the common region

surrounded by Glu52 (at the hinge between H2 and H3),
Arg85 (at H4), and Trp88 (at H4) in Figures S1–S3. 46 hit
compounds also presented similar binding modes: (1) pi-pi or
pi-cation interaction with residues at H4 (e.g., Trp88, Arg85)
or (2) hydrogen bonding with hinge (e.g., Glu52 or Asn55) in
Figures S4, S5 to add promising evidence of the hit compounds.
Finally, since poor pharmacokinetic profiles and high potential
toxicity are likely to fail in clinical trials, it is also crucial
to predict such properties in advance to encourage further in
vivo validation of hit molecules. We calculated the molecular
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TABLE 5 | Drug-likeness, ADME parameters prediction for 46 hits using QikProp and their Tanimoto similarity between the nearest neighbor.

Molecule

index

MWa LogPo/wb dHBc aHBd No.

N&Oe

PSAf Lo5g Jo3h Caco2i MDCKj Simk

1 438.81 4.64 2 5.25 6 83.28 0 1 883.32 6500.64 0.723

2 447.52 1.88 1 10.25 8 110.03 0 0 169.49 217.42 0.733

3 475.58 2.45 1 10.25 8 107.08 0 0 212.80 254.04 0.725

4 459.55 3.35 2 9 7 109.44 0 1 252.94 277.07 0.709

5 357.35 2.21 1 6.5 6 79.76 0 0 662.83 1251.4 0.803

6 475.54 2.06 2 12 10 152.60 0 0 74.61 50.07 0.686

7 369.37 2.66 2 5.5 7 112.07 0 0 123.62 120.63 0.823

8 489.56 2.35 2 12 10 152.60 0 1 74.59 50.05 0.685

9 463.57 2.06 3 9.5 9 138.29 0 0 31.69 26.88 0.763

10 399.25 2.08 1.25 7.75 7 102.73 0 0 310.52 651.41 0.831

11 394.81 2.23 1.25 7.75 7 102.66 0 0 338.55 628.45 0.757

12 376.82 1.93 1.25 7.75 7 103.25 0 0 371.75 355.25 0.767

13 394.81 2.10 1.25 7.75 7 103.88 0 0 336.23 499.24 0.757

14 449.54 2.32 3 9.5 9 134.36 0 0 78.22 41.92 0.711

15 463.57 2.57 2 9.75 8 110.80 0 0 245.98 297.80 0.708

16 396.39 3.56 1.25 5.25 6 93.24 0 1 414.29 1915.26 0.727

17 378.42 0.73 3 10 8 136.31 0 0 55.49 35.38 0.747

18 408.45 0.61 2 11.75 10 140.34 0 0 89.51 46.28 0.738

19 388.46 2.35 2 6.5 7 120.67 0 0 135.00 195.05 0.633

20 392.47 3.46 2 5.25 6 88.54 0 0 274.13 938.46 0.663

21 379.41 0.81 3 9.25 8 135.31 0 0 48.47 31.86 0.833

22 488.49 4.53 1 8.7 8 90.37 0 2 1243.59 3476.5 0.697

23 374.43 3.01 2.25 5.75 6 96.24 0 0 317.78 825.75 0.718

24 376.86 2.93 2.25 5.75 6 95.44 0 0 309.55 1326.69 0.721

25 376.86 2.92 2.25 5.75 6 95.45 0 0 344.43 1241.09 0.721

26 360.41 2.61 2.25 5.75 6 94.32 0 0 309.07 1006.01 0.721

27 424.44 3.73 2.25 5.75 6 98.39 0 0 240.41 1826.54 0.704

28 410.41 3.34 2.25 5.75 6 94.30 0 0 309.14 2445.21 0.706

29 394.81 1.97 1.25 7.75 7 101.41 0 0 336.23 484.57 0.757

30 397.52 2.51 2 8 6 90.69 0 0 823.95 875.59 0.753

31 378.46 2.15 2 7.7 7 110.06 0 0 286.99 254.97 0.776

32 382.82 2.67 1 6.75 8 111.06 0 0 226.09 236.12 0.783

33 427.46 0.74 1 11 10 129.95 0 0 146.33 120.44 0.747

34 410.41 2.18 2 9 7 115.79 0 0 223.42 411.72 0.744

35 410.41 2.15 2 9 7 116.40 0 0 182.76 361.39 0.744

36 357.79 1.93 2 7 6 92.65 0 0 276.14 510.66 0.828

37 357.79 1.93 2 7 6 93.28 0 0 259.64 489.39 0.828

38 357.79 1.86 2 7 6 93.79 0 0 240.46 428.65 0.828

39 371.81 2.37 1 7.5 6 81.06 0 0 544.41 1089.44 0.780

40 374.43 3.67 1.25 5.75 6 84.30 0 1 922.94 2328.24 0.750

41 370.79 1.97 2 6.5 7 111.17 0 0 122.26 206.45 0.759

42 399.87 3.14 1 7.5 6 82.38 0 0 625.21 1265.93 0.791

43 412.80 2.35 1.25 7.75 7 101.92 0 0 323.45 793.95 0.757

44 398.40 4.57 2 4.5 6 80.90 0 1 1275.28 3912.14 0.671

45 379.42 2.24 2 8.5 6 101.90 0 0 319.42 418.38 0.759

46 348.39 0.82 2 9.5 7 114.57 0 0 141.61 101.70 0.783

Standard

valuel
130.0

–725.0

−2.0

–6.5

0.0

–6.0

2.0

–20.0

2–15 7.0

–200.0

Maximum

is 4

Maximum

is 3

<25 poor,

>500 great

<25 poor,

>500 great

aMolecular weight.
bOctanol/water partition coefficient.
cNumber of HB donors.
dNumber of HB acceptors.
eNumber of N and O atoms.
fPolar surface area.
gNumber of violation of Lipinski’s rule of five.
hNumber of violation of Jorgensen’s rule of five.
iApparent Caco-2 cell permeability (nm/s).
jApparent MDCK cell permeability (nm/s).
kTanimoto coefficient of the entry between the nearest neighbor among 266 active molecules from patents.
lStandard values from 95% of known drugs based on results of Qikprop.
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parameters regarding drug-likeness and ADME properties to
ensure that the hit compounds are suitable for further drug
development processes (Table 5). Hopefully, all predicted values
of 46 molecules are within the acceptable range. Neither
Lipinski’s rule of five nor Jorgensen’s rule of three was violated
by almost all hits. Even though we did not implement any
physicochemical predictor into our model, the physicochemical
property of the dataset could be transferred into screening
hits through a structure-property relationship. If our model
can be linked with a powerful inverse design model, we can
expect our model can also provide powerful predictability with
a physicochemical property range.

CONCLUSION

In summary, through extensive validation of 60 models built
from multi-scaffold ligand information, we optimized the
machine learning classifier as well as the feature selector to obtain
highly predictive classification models for identifying S100A9
inhibitors. Unlike many other reports employing only several
kinds of descriptors or a whole bits of fingerprint, we combined
various kinds of descriptors with a hybrid fingerprint to generate
a compact and effective feature set. Ultimately, this high efficiency
allowed us to further obtain 47 hits from over six million
compounds through the consensus vote of models within a
week, indicating the high cost-reduction ability of the models. In
addition, our study is the first example of reasonable classification
models for S100A9 inhibitors. Regarding the clinical importance
of S100A9, as well as the difficulty of generating models for its
unique characteristics, we expect that our study will further aid
in developing the first S100A9 agents and guide new paths of
curing diverse diseases, including Alzheimer’s disease and other
neurodegenerative diseases.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

AUTHOR CONTRIBUTIONS

MK and S-YL conceived and designed the study at their grant
based research projects. Under the designed study, SK and JL
built their models, validated them and acquired in-silico hits
through their models. MK and JL wrote the manuscript. MK and
SP revised the manuscript. All the authors read and approved the
final manuscript.

FUNDING

This study was supported by the Basic Science Research
Program of the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science,
and Technology (No. 2017R1E1A1A01076642), by a
grant of the Korea Health Technology R&D Project
through the Korea Health Industry Development Institute
(KHIDI), funded by the Ministry for Health and Welfare,
Korea (HI14C1135).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2019.00779/full#supplementary-material

DataSheet 1 | The 2D-structure of Dataset in Table S1.

REFERENCES

Bajorath, J. (2002). Integration of virtual and high-throughput screening.Nat. Rev.

Drug Discov. 1:882. doi: 10.1038/nrd941

Bellman, R. (1966). Dynamic programming. Science 153, 34–37.

doi: 10.1126/science.153.3731.34

Bendtsen, C., Degasperi, A., Ahlberg, E., and Carlsson, L. (2017). Improving

machine learning in early drug discovery. Ann. Math. Artif. Intell. 81, 155–166.

doi: 10.1007/s10472-017-9541-2

Bisignano, P., Burford, N. T., Shang, Y., Marlow, B., Livingston, K. E., Fenton,

A. M., et al. (2015). Ligand-based discovery of a new scaffold for allosteric

modulation of the µ-opioid receptor. J. Chem. Inf. Model. 55, 1836–1843.

doi: 10.1021/acs.jcim.5b00388

Björk, P., Björk, A., Vogl, T., Stenström, M., Liberg, D., Olsson, A., et al.

(2009). Identification of human S100A9 as a novel target for treatment of

autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol.

7:e1000097. doi: 10.1371/journal.pbio.1000097

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.

doi: 10.1023/A:1010933404324

Breiman, L. (2017). Classification and Regression Trees. Ogden, UT: Routledge.

Chang, C. C., Khan, I., Tsai, K. L., Li, H., Yang, L. W., Chou, R. H., et al.

(2016). Blocking the interaction between S100A9 and RAGE V domain

using CHAPS molecule: a novel route to drug development against cell

proliferation. Biochim. Biophys. Acta 1864:1558. doi: 10.1016/j.bbapap.2016.

08.008

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,

273–297. doi: 10.1007/BF00994018

Dash, M., and Liu, H. (1997). Feature selection for classification. Intell. Data Anal.

1, 131–156. doi: 10.3233/IDA-1997-1302

Ding, C., and Peng, H. (2005). Minimum redundancy feature selection from

microarray gene expression data. J. Bioinform. Comput. Biol. 3, 185–205.

doi: 10.1142/S0219720005001004

Domingos, P., and Pazzani, M. (1997). On the optimality of the simple

Bayesian classifier under zero-one loss. Mach. Learn. 29, 103–130.

doi: 10.1023/A:1007413511361

Domingos, P. M. (2012). A few useful things to know about machine learning.

Commun. ACM 55, 78–87. doi: 10.1145/2347736.2347755

Donato, R. (1999). Functional roles of S100 proteins, calcium-binding

proteins of the EF-hand type. Biochim. Biophys. Acta 1450, 191–231.

doi: 10.1016/S0167-4889(99)00058-0

Donato, R. (2001). S100: a multigenic family of calcium-modulated proteins

of the EF-hand type with intracellular and extracellular functional roles.

Int. J. Biochem. Cell Biol. 33, 637–668. doi: 10.1016/S1357-2725(01)0

0046-2

Eberhart, R., and Kennedy, J. (1995). “A new optimizer using particle swarm

theory,” inMHS’95. Proceedings of the Sixth International Symposium on Micro

Machine and Human Science (Nagoya: IEEE), 39–43.

Freuder, E. C. (1988). “Backtrack-free and backtrack-bounded search,” in Search

in Artificial Intelligence, eds L. Kanal and V. Kumar (New York, NY: Springer),

343–369. doi: 10.1007/978-1-4613-8788-6_10

Frontiers in Chemistry | www.frontiersin.org 14 November 2019 | Volume 7 | Article 779

https://www.frontiersin.org/articles/10.3389/fchem.2019.00779/full#supplementary-material
https://doi.org/10.1038/nrd941
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1007/s10472-017-9541-2
https://doi.org/10.1021/acs.jcim.5b00388
https://doi.org/10.1371/journal.pbio.1000097
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.bbapap.2016.08.008
https://doi.org/10.1007/BF00994018
https://doi.org/10.3233/IDA-1997-1302
https://doi.org/10.1142/S0219720005001004
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1016/S0167-4889(99)00058-0
https://doi.org/10.1016/S1357-2725(01)00046-2
https://doi.org/10.1007/978-1-4613-8788-6_10
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Lee et al. ML-Based Predictive Models for S100A9

Fritzson, I., Liberg, D., East, S., Mackinnon, C., and Prevost, N. (2014). N-

(heteroaryl)-Sulfonamide Derivatives Useful as S100-Inhibitors. U.S. Patent

No 9,873,687,2018.

Gadhe, C. G., Lee, E., and Kim, M.-H. (2015). Finding new scaffolds of JAK3

inhibitors in public database: 3D-QSARmodels & shape-based screening.Arch.

Pharm. Res. 38, 2008–2019. doi: 10.1007/s12272-015-0607-6

Geppert, H., Vogt, M., and Bajorath, J. (2010). Current trends in ligand-

based virtual screening: molecular representations, data mining methods,

new application areas, and performance evaluation. J. Chem. Inf. Model. 50,

205–216. doi: 10.1021/ci900419k

Glover, F. W., and Kochenberger, G. A. (2006). Handbook of Metaheuristics.

Springer US.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Gruden, M. A., Davydova, T. V., Kudrin, V. S., Wang, C., Narkevich,

V. B., Morozova-Roche, L. A., et al. (2017). S100A9 protein aggregates

boost hippocampal glutamate modifying monoaminergic neurochemistry: a

glutamate antibody sensitive outcome on Alzheimer-like memory decline. ACS

Chem. Neurosci. 9, 568–577. doi: 10.1021/acschemneuro.7b00379

Gutlein, M., Frank, E., Hall, M., and Karwath, A. (2009). “Large-scale

attribute selection using wrappers,” in 2009 IEEE Symposium on

Computational Intelligence and Data Mining (Nashville, TN: IEEE), 332–339.

doi: 10.1109/CIDM.2009.4938668

Guyon, I., and Elisseeff, A. (2003). An introduction to variable and feature

selection. J. Mach. Learn. Res. 3, 1157–1182. doi: 10.1162/153244303322753616

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.

(2009). The WEKA data mining software: an update. ACM SIGKDD Explor.

Newsl. 11, 10–18. doi: 10.1145/1656274.1656278

Hall, M. A. (1999). Correlation-Based Feature Selection for Machine Learning

(Ph.D. thesis). The University of Waikato. Hamilton, New Zealand.

Hermani, A., Hess, J., De Servi, B., Medunjanin, S., Grobholz, R., Trojan,

L., et al. (2005). Calcium-binding proteins S100A8 and S100A9 as novel

diagnostic markers in human prostate cancer. Clin. Cancer Res. 11, 5146–5152.

doi: 10.1158/1078-0432.CCR-05-0352

Holland, J. H. (1992).Adaptation in Natural and Artificial Systems: An Introductory

Analysis With Applications to Biology, Control, and Artificial Intelligence.

Cambridge, MA: MIT Press.

Horvath, I., Jia, X., Johansson, P., Wang, C., Moskalenko, R., Steinau, A., et al.

(2015). Pro-inflammatory S100A9 protein as a robust biomarker differentiating

early stages of cognitive impairment in Alzheimer’s disease. ACS Chem.

Neurosci. 7, 34–39. doi: 10.1021/acschemneuro.5b00265

Iashchishyn, I. A., Gruden, M. A., Moskalenko, R. A., Davydova, T. V., Wang, C.,

Sewell, R. D., et al. (2018). Intranasally administered S100A9 amyloids induced

cellular stress, amyloid seeding, and behavioral impairment in aged mice. ACS

Chem. Neurosci. 9, 1338–1348. doi: 10.1021/acschemneuro.7b00512

Itou, H., Yao, M., Fujita, I., Watanabe, N., Suzuki, M., Nishihira, J.,

et al. (2002). The crystal structure of human MRP14 (S100A9), a Ca2+-
dependent regulator protein in inflammatory process. J. Mol. Biol. 316:265.

doi: 10.1006/jmbi.2001.5340

Jang, C., Yadav, D. K., Subedi, L., Venkatesan, R., Venkanna, A., Afzal, S.,

et al. (2018). Identification of novel acetylcholinesterase inhibitors designed by

pharmacophore-based virtual screening, molecular docking and bioassay. Sci.

Rep. 8:14921. doi: 10.1038/s41598-018-33354-6

Kapetanovic, I. (2008). Computer-aided drug discovery and development

(CADDD): in silico-chemico-biological approach. Chem. Biol. Interact. 171,

165–176. doi: 10.1016/j.cbi.2006.12.006

Katte, R., and Yu, C. (2018). Blocking the interaction between S100A9 protein

and RAGE V domain using S100A12 protein. PLoS ONE 13:e0198767.

doi: 10.1371/journal.pone.0198767

Khuri, N., Zur, A. A., Wittwer, M. B., Lin, L., Yee, S. W., Sali, A., et al. (2017).

Computational discovery and experimental validation of inhibitors of the

human intestinal transporter OATP2B1. J. Chem. Inf. Model. 57, 1402–1413.

doi: 10.1021/acs.jcim.6b00720

Kim, H.-J., Kang, H. J., Lee, H., Lee, S.-T., Yu, M.-H., Kim, H., et al. (2009).

Identification of S100A8 and S100A9 as serological markers for colorectal

cancer. J. Proteome Res. 8, 1368–1379. doi: 10.1021/pr8007573

Kohavi, R., and John, G. H. (1997). Wrappers for feature subset selection. Artif.

Intell. 97, 273–324. doi: 10.1016/S0004-3702(97)00043-X

Koller, D., and Sahami, M. (1996). Toward Optimal Feature Selection. Stanford,

CA: Stanford InfoLab.

Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). Supervised machine

learning: A review of classification techniques. Emerg. Artif. Intell. Appl.

Comput. Eng. 160, 3–24. doi: 10.1007/s10462-007-9052-3

Lavecchia, A. (2015). Machine-learning approaches in drug discovery:

methods and applications. Drug Discov. Today 20, 318–331.

doi: 10.1016/j.drudis.2014.10.012

Lavecchia, A., and Di Giovanni, C. (2013). Virtual screening strategies

in drug discovery: a critical review. Curr. Med. Chem. 20, 2839–2860.

doi: 10.2174/09298673113209990001

Lee, J., Cho, S., and Kim, M.-H. (2018). Discovery of CNS-like D3R-selective

antagonists using 3D pharmacophore guided virtual screening. Molecules

23:2452. doi: 10.3390/molecules23102452

Lenselink, E. B., Beuming, T., van Veen, C., Massink, A., Sherman, W., van

Vlijmen, H. W., et al. (2016). In search of novel ligands using a structure-based

approach: a case study on the adenosine A 2A receptor. J. Comput. Aided Mol.

Des. 30, 863–874. doi: 10.1007/s10822-016-9963-7

Liu, H., and Yu, L. (2005). Toward integrating feature selection algorithms for

classification and clustering. IEEE Trans. Knowl. Data Eng. 17, 491–502.

doi: 10.1109/TKDE.2005.66

Liu, Y. (2004). A comparative study on feature selection methods for drug

discovery. J. Chem. Inf. Comput. Sci. 44, 1823–1828. doi: 10.1021/ci049875d

Lo, Y.-C., Rensi, S. E., Torng, W., and Altman, R. B. (2018). Machine learning

in chemoinformatics and drug discovery. Drug Discov. Today 23, 1538–1546.

doi: 10.1016/j.drudis.2018.05.010

Man, K.-F., Tang, K.-S., and Kwong, S. (1996). Genetic algorithms: concepts and

applications [in engineering design]. IEEE Trans. Ind. Electron. 43, 519–534.

doi: 10.1109/41.538609

Melville, J. L., Burke, E. K., and Hirst, J. D. (2009). Machine learning in

virtual screening. Comb. Chem. High Throughput Screen. 12, 332–343.

doi: 10.2174/138620709788167980

Mignani, S., Huber, S., Tomas, H., Rodrigues, J., and Majoral, J.-P. (2016). Why

and how have drug discovery strategies in pharma changed? What are the new

mindsets? Drug Discov. Today 21, 239–249. doi: 10.1016/j.drudis.2015.09.007

Moraglio, A., Di Chio, C., and Poli, R. (2007). “Geometric particle swarm

optimisation,” in European Conference on Genetic Programming (Springer),

125–136. doi: 10.1007/978-3-540-71605-1_12

Muegge, I., and Oloff, S. (2006). Advances in virtual screening.Drug Discov. Today

3, 405–411. doi: 10.1016/j.ddtec.2006.12.002

Mullard, A. (2014). New drugs cost US $2.6 billion to develop. Nat. Rev. Drug

Discov. 13:877. doi: 10.1038/nrd4507

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory

of useful decoys, enhanced (DUD-E): better ligands and decoys for better

benchmarking. J. Med. Chem. 55, 6582–6594. doi: 10.1021/jm300687e

Nisius, B., and Bajorath, J. (2009). Molecular fingerprint recombination:

generating hybrid fingerprints for similarity searching from different

fingerprint types. ChemMedChem 4, 1859–1863. doi: 10.1002/cmdc.

200900243

Nisius, B., and Bajorath, J. (2010). Reduction and recombination of fingerprints of

different design increase compound recall and the structural diversity of hits.

Chem. Biol. Drug Des. 75, 152–160. doi: 10.1111/j.1747-0285.2009.00930.x

Oprea, T. I., and Matter, H. (2004). Integrating virtual screening in lead discovery.

Curr. Opin. Chem. Biol. 8, 349–358. doi: 10.1016/j.cbpa.2004.06.008

Pelletier, M., Simard, J. C., Girard, D., and Tessier, P. A. (2018). Quinoline-3-

carboxamides such as tasquinimod are not specific inhibitors of S100A9. Blood

Adv. 2:1170. doi: 10.1182/bloodadvances.2018016667

Popova, M., Isayev, O., and Tropsha, A. (2018). Deep reinforcement learning for

de novo drug design. Sci. Adv. 4:eaap7885. doi: 10.1126/sciadv.aap7885

Quinlan, J. R. (2014). C4.5: Programs for Machine Learning. San Mateo, CA:

Elsevier.

Reddy, A. S., Pati, S. P., Kumar, P. P., Pradeep, H., and Sastry, G. N. (2007). Virtual

screening in drug discovery-a computational perspective. Curr. Protein Peptide

Sci. 8, 329–351. doi: 10.2174/138920307781369427

Rissanen, J. (1978). Modeling by shortest data description. Automatica 14,

465–471. doi: 10.1016/0005-1098(78)90005-5

Ryckman, C., Vandal, K., Rouleau, P., Talbot, M., and Tessier, P. A. (2003).

Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9

Frontiers in Chemistry | www.frontiersin.org 15 November 2019 | Volume 7 | Article 779

https://doi.org/10.1007/s12272-015-0607-6
https://doi.org/10.1021/ci900419k
https://doi.org/10.1021/acschemneuro.7b00379
https://doi.org/10.1109/CIDM.2009.4938668
https://doi.org/10.1162/153244303322753616
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1158/1078-0432.CCR-05-0352
https://doi.org/10.1021/acschemneuro.5b00265
https://doi.org/10.1021/acschemneuro.7b00512
https://doi.org/10.1006/jmbi.2001.5340
https://doi.org/10.1038/s41598-018-33354-6
https://doi.org/10.1016/j.cbi.2006.12.006
https://doi.org/10.1371/journal.pone.0198767
https://doi.org/10.1021/acs.jcim.6b00720
https://doi.org/10.1021/pr8007573
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1016/j.drudis.2014.10.012
https://doi.org/10.2174/09298673113209990001
https://doi.org/10.3390/molecules23102452
https://doi.org/10.1007/s10822-016-9963-7
https://doi.org/10.1109/TKDE.2005.66
https://doi.org/10.1021/ci049875d
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1109/41.538609
https://doi.org/10.2174/138620709788167980
https://doi.org/10.1016/j.drudis.2015.09.007
https://doi.org/10.1007/978-3-540-71605-1_12
https://doi.org/10.1016/j.ddtec.2006.12.002
https://doi.org/10.1038/nrd4507
https://doi.org/10.1021/jm300687e
https://doi.org/10.1002/cmdc.200900243
https://doi.org/10.1111/j.1747-0285.2009.00930.x
https://doi.org/10.1016/j.cbpa.2004.06.008
https://doi.org/10.1182/bloodadvances.2018016667
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.2174/138920307781369427
https://doi.org/10.1016/0005-1098(78)90005-5
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Lee et al. ML-Based Predictive Models for S100A9

induce neutrophil chemotaxis and adhesion. J. Immunol. 170, 3233–3242.

doi: 10.4049/jimmunol.170.6.3233

Scannell, J. W., Blanckley, A., Boldon, H., and Warrington, B. (2012). Diagnosing

the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11:191.

doi: 10.1038/nrd3681

Shafer, J., Agrawal, R., and Mehta, M. (1996). “SPRINT: a scalable parallel classifier

for data mining,” in VLDB (Citeseer), 544–555.

Shehata, M. A., Nøhr, A. C., Lissa, D., Bisig, C., Isberg, V., Andersen, K.

B., et al. (2016). Novel agonist bioisosteres and common structure-activity

relationships for the orphan G protein-coupled receptor GPR139. Sci. Rep.

6:36681. doi: 10.1038/srep36681

Shi, Y. (2001). “Particle swarm optimization: developments, applications and

resources,” in Proceedings of the 2001 Congress on Evolutionary Computation

(IEEE Cat. No. 01TH8546) (Seoul: IEEE), 81–86.

Shoichet, B. K. (2004). Virtual screening of chemical libraries. Nature 432:862.

doi: 10.1038/nature03197

Singla, D., Tewari, R., Kumar, A., and Raghava, G. P. (2013). Designing of

inhibitors against drug tolerant Mycobacterium tuberculosis (H37Rv). Chem.

Cent. J. 7:49. doi: 10.1186/1752-153X-7-49

Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E. W. (2014).

Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395.

doi: 10.1124/pr.112.007336

Smieja, M., and Warszycki, D. (2016). Average information content

maximization—a new approach for fingerprint hybridization and reduction.

PLoS ONE 11:e0146666. doi: 10.1371/journal.pone.0146666

Stahura, F. L., and Bajorath, J. (2004). Virtual screening methods that

complement HTS. Comb. Chem. High Throughput Screen. 7, 259–269.

doi: 10.2174/1386207043328706

Stahura, F. L., and Bajorath, J. (2005). New methodologies for ligand-based

virtual screening. Curr. Pharm. Des. 11, 1189–1202. doi: 10.2174/1381612053

507549

Vafaie, H., and De Jong, K. (1992). “Genetic algorithms as a tool for feature

selection in machine learning,” in Proceedings Fourth International Conference

on Tools with Artificial Intelligence TAI’92 (Arlington, VA: IEEE), 200–203.

Verikas, A., Gelzinis, A., and Bacauskiene, M. (2011). Mining data with random

forests: a survey and results of new tests. Pattern Recognit. 44, 330–349.

doi: 10.1016/j.patcog.2010.08.011

Walters, W. P., Stahl, M. T., and Murcko, M. A. (1998). Virtual

screening—an overview. Drug Discov. Today 3, 160–178.

doi: 10.1016/S1359-6446(97)01163-X

Warszycki, D., Smieja, M., and Kafel, R. (2017). Practical application of the average

information content maximization (AIC-MAX) algorithm: selection of the

most important structural features for serotonin receptor ligands. Mol. Divers.

21, 407–412. doi: 10.1007/s11030-017-9729-8

Wellmar, U., East, S., Bainbridge, M., Mackinnon, C., Carr, J., and Hargrave, J.

(2016). Imidazo [2, 1-b] thiazole and 5, 6-Dihydroimidazo [2, 1-b] thiazole

Derivatives Useful as S100-Inhibitors. U.S. Patent Application No 15/545,573,

2018.

Wellmar, U., Liberg, D., Ekblad, M., Bainbridge, M., East, S., Hargrave, J., et al.

(2015). Compounds Useful as S100-Inhibitors. U.S. Patent No 9,771,372,2017.

Williams, A. J. (2008). Public chemical compound databases. Curr. Opin.

Drug Discov. Dev. 11:393. Available online at: https://www.researchgate.net/

publication/5424985_Public_chemical_compound_databases

Williams, C. (2006). Reverse fingerprinting, similarity searching by group

fusion and fingerprint bit importance. Mol. Divers. 10, 311–332.

doi: 10.1007/s11030-006-9039-z

Yadav, D. K., Sharma, P., Misra, S., Singh, H., Mancera, R. L., Kim, K.,

et al. (2018). Studies of the benzopyran class of selective COX-2 inhibitors

using 3D-QSAR and molecular docking. Arch. Pharm. Res. 41, 1178–1189.

doi: 10.1007/s12272-017-0945-7

Yap, C. W. (2011). PaDEL-descriptor: an open source software to calculate

molecular descriptors and fingerprints. J. Comput. Chem. 32, 1466–1474.

doi: 10.1002/jcc.21707

Yatime, L., Betzer, C., Jensen, R. K., Mortensen, S., Jensen, P. H., and Andersen,

G. R. (2016). The structure of the RAGE: S100A6 complex reveals a unique

mode of homodimerization for S100 proteins. Structure 24, 2043–2052.

doi: 10.1016/j.str.2016.09.011

Yoshioka, Y., Mizutani, T., Mizuta, S., Miyamoto, A., Murata, S., Ano, T., et al.

(2016). Neutrophils and the S100A9 protein critically regulate granuloma

formation. Blood Adv. 1:184. doi: 10.1182/bloodadvances.2016000497

Yu, L., and Liu, H. (2004). Efficient feature selection via analysis of relevance and

redundancy. J. Mach. Learn. Res. 5, 1205–1224.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Lee, Kumar, Lee, Park and Kim. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Chemistry | www.frontiersin.org 16 November 2019 | Volume 7 | Article 779

https://doi.org/10.4049/jimmunol.170.6.3233
https://doi.org/10.1038/nrd3681
https://doi.org/10.1038/srep36681
https://doi.org/10.1038/nature03197
https://doi.org/10.1186/1752-153X-7-49
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1371/journal.pone.0146666
https://doi.org/10.2174/1386207043328706
https://doi.org/10.2174/1381612053507549
https://doi.org/10.1016/j.patcog.2010.08.011
https://doi.org/10.1016/S1359-6446(97)01163-X
https://doi.org/10.1007/s11030-017-9729-8
https://www.researchgate.net/publication/5424985_Public_chemical_compound_databases
https://www.researchgate.net/publication/5424985_Public_chemical_compound_databases
https://doi.org/10.1007/s11030-006-9039-z
https://doi.org/10.1007/s12272-017-0945-7
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1016/j.str.2016.09.011
https://doi.org/10.1182/bloodadvances.2016000497
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Development of Predictive Models for Identifying Potential S100A9 Inhibitors Based on Machine Learning Methods
	Introduction
	Algorithms and Methods
	Datasets
	Descriptor and Fingerprint Calculation
	Dimensionality Reduction
	Low-Variance Filter and High-Correlation Filter
	Correlation-Based Feature Subset Selection
	Best First (BF)
	Genetic Search (GS)
	Particle Swarm Optimization Search (PSO)
	Subset Size Forward Selection (SSFS)

	Machine Learning Classifiers
	Decision Tree (DT)
	Random Forest (RF)
	Naïve Bayes

	Parameter Optimization
	Model Validation
	In silico Screening of the eMolecules Database
	Screening Library
	Prediction and Identification of Hits
	Prediction of ADME Properties


	Results and Discussion
	Reasonable Compression of Features for Predictive Models
	Feature Reduction
	Merit

	Evaluation of Classification Performance
	AUC of ROC
	MCC
	Quality, Cost, and Effectiveness of Screening Hits


	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


