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An efficient Fenton-like catalyst CuO/CeO2 was synthesized using ultrasonic

impregnation and used to remove diclofenac from water. The catalyst was characterized

by N2 adsorption-desorption, SEM-EDS, XRD, HRTEM, Raman, and XPS analyses.

Results showed that CuO/CeO2 possessed large surface area, high porosity, and fine

elements dispersion. Cu was loaded in CeO2, which increased the oxygen vacancies.

The exposed crystal face of CeO2 (200) was beneficial to the catalytic activity. The

diclofenac removal experiment showed that there was a synergistic effect between CuO

and CeO2, which might be caused by more oxygen vacancies generation and electronic

interactions between Cu and Ce species. The experimental conditions were optimized,

including pH, catalyst and H2O2 dosages, and 86.62% diclofenac removal was achieved.

Diclofenac oxidation by ·OH and adsorbed oxygen species was the main mechanism for

its removal in this Fenton-like system.

Keywords: CuO/CeO2, ultrasonic impregnation, Fenton-like system, OH, oxygen vacancies

HIGHLIGHTS

- CuO/CeO2 was prepared with ultrasound to remove diclofenac in Fenton-like system.
- Ultrasound made CuO/CeO2 had large surface area, high porosity and fine elements dispersion.
- More oxygen vacancies caused by Cu doping were in favor of the catalytic reaction.
- 86.62% diclofenac removal was achieved under the optimal conditions.
- ·OH and adsorbed oxygen species were responsible for diclofenac degradation.

INTRODUCTION

Advanced oxidation processes (AOPs) for wastewater treatment have attracted extensive attention
due to the quick and efficient pollutant removal by strong oxidizing free radicals, like hydroxyl
radical (Silveira et al., 2015; Zhu et al., 2019). The most widely used AOP is Fenton reaction
(Fe2+ activate H2O2), which is a homogeneous reaction that requires low pH (2.0–4.0) and forms
large amount of iron sludge (Blanco et al., 2016). To overcome these disadvantages, heterogeneous
catalysts have been adopted as the alternative (Lei et al., 2015), forming heterogeneous Fenton-like
systems (Nidheesh, 2015).

The frequently used catalysts in heterogeneous Fenton-like systems are transition metal-
based catalysts (Anipsitakis and Dionysiou, 2004; Bokare and Choi, 2014), due to the good
catalytic activity, low cost, easily available materials, and abundant reserves. Among them,
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catalysts containing Cu2+ are in the limelight (Gu et al.,
2019), because of the similar redox properties of Cu2+/Cu+ to
Fe3+/Fe2+, broad pH workable range, few sludge production
and easily decomposition of Cu2+ complexes by ·OH (Bokare
and Choi, 2014; Peng et al., 2019). As one of the most common
and simplest copper compounds, CuO has successfully activated
H2O2 to form ·OH to remove pollutants (Sehati and Entezari,
2017). However, CuO nanoparticles tend to agglomerate in water
which is unfavorable for catalytic reaction. Besides, the leached
Cu ions are poisonous. Loading CuO on support is an effective
way to overcome the above problems.

Some metal oxides (such as CeO2, Al2O3), clays, zeolites and
carbon materials have been used as supports (Rao et al., 2018;
Xu et al., 2018). The support increases the specific surface area of
catalyst and reduces the leaching of metal ions (Du et al., 2016),
which are beneficial to the adsorption property and stability of
catalyst. Especially, CeO2 can enhance the catalytic property of
catalyst for its unique structure and redox property. CeO2 has
abundant oxygen vacancy defects and Ce4+/Ce3+ redox couple
(Chong et al., 2016), so it has high oxygen storage capacity, which
is beneficial for catalytic reaction.

Doping transition metal ion into CeO2 can create more
oxygen vacancies due to the different ionic radii between Ce ion
and transition metal ion, and the number of oxygen vacancies
depends on the ionic radius and electrons of transition metal
ions (Raj et al., 2017). Thus, the catalytic activity is improved by
enhancing the oxygen storage and redox capacity (Parvas et al.,
2014). The catalytic performance improvement by Cu doped into
CeO2 has been reported before (Wang et al., 2006; Yang et al.,
2009; Lin et al., 2011).

The traditional impregnation method takes a long doping
time and metal species agglomerate easily, due to the small mass
transfer force between CeO2 and the doping ions (Wang et al.,
2006; Yang et al., 2009; Lin et al., 2011). Ultrasound has been
used in the impregnation stage to overcome these disadvantages.
Ultrasound waves induce the cavitation effect in water, which is
related to the formation, growth, and rapid collapse of cavitation
bubbles (Mirtamizdoust et al., 2017; Zhang et al., 2017). The
ultrasonic cavitation can significantly accelerate the mass transfer
velocity and provide thermal effects (Zhu and Zhang, 2008;
Li et al., 2018). Therefore, ultrasound impregnation increases
active components (transitionmetal ions) doped onto the surface
of support (like CeO2). Meanwhile, some active components
may be introduced into the structure of support under the
power of ultrasound, thus the catalyst prepared by ultrasound
impregnation would have better catalytic performance (Chong
et al., 2016). Moreover, ultrasound can significantly shorten the
preparation time of catalyst by providing fastermass transfer rate.

In this paper, CuO was doped into CeO2 by ultrasonic
impregnation to form CuO/CeO2, which was then applied
as a catalyst in Fenton-like process. Diclofenac, a typical
pharmaceutical and emerging contaminant, was used as the
target pollutant to check the activity of the catalyst. The catalyst
was characterized by N2 adsorption-desorption, scanning
electron microscope (SEM), X-ray powder diffraction (XRD), X-
ray photoelectron spectra (XPS), high resolution transmission
electron microscope (HRTEM), and Raman analyses. Influences

of experimental parameters including pH, catalyst dosage, and
H2O2 dosage on diclofenac removal were investigated. The
potential reaction mechanism was proposed. The objective was
to obtain a highly active Fenton-like catalyst with facial synthesis.

MATERIALS AND METHODS

Materials
All chemicals used were analytical grade. Cu(NO3)2·4H2O
and Ce(NO3)3·6H2O were bought from Tianjin Guangfu Fine
Chemical Co. (China). Thirty percent of H2O2 was obtained from
Beijing Chemical (China). Diclofenac (98%) was bought from
Tokyo Chemical (Japan). HPLC grade acetonitrile was purchased
from Fisher Scientific (USA).

Synthesis of Catalysts
CuO was prepared by precipitation method (Ghasemi and
Karimipour, 2018). One hundred and fifty milliliter NaOH
solution (16.67 mol/L) was slowly injected into 150mL of
Cu(NO3)2 solution (0.67 mol/L). The mixture was stirred at
∼1,000 rpm at a constant temperature of 80◦C for 3 h. The
precipitate was separated by centrifugation, in which the solution
was centrifuged for 20min at 3,500 rpm. The precursor of CuO
was dried for 3 h at 105◦C and then calcined for 3 h at 700◦C. The
CuO powder was obtained after grinding.

CeO2 was prepared by precipitation method (Zhao et al.,
2014) and CuO/CeO2 was prepared by ultrasonic impregnation
method. As such, 2 g prepared CeO2 powder was added to 20mL
1 mol/L Cu(NO3)2 solution and impregnated for 30min under
0.5W/cm3 ultrasound, and then the filtered solid particulars were
calcined for 2 h at 450◦C in muffle furnace to obtain CuO/CeO2.

Characterization of CuO/CeO2
The porosity and specific surface area of CuO/CeO2 were
characterized by N2 adsorption-desorption test using 3H-
2000PS2, BeiShiDe Instrument-S&T Company. CuO/CeO2

morphology was recorded by SEM with energy dispersive
spectroscopy (EDS) (Hitachi S 4700 SEM analyzer). The XRD
patterns were carried out by Rigaku D/maxrc diffractometer.
TheHRTEMmeasurement was investigated by Thermo Scientific
Dionex UltiMate 3000 instrument. The oxidation state of
CuO/CeO2 was characterized by XPS analysis (EScalab250Xi
spectrometer), and the binding energies were calibrated by C 1s
peak at 284.8 eV.

Diclofenac Removal Experiments
The operation processes of reactions were as follows: 50mL
diclofenac solution (20 mg/L) was added to a 150mL beaker
and adjusted to the desired pH using 1 mol/L NaOH and
H2SO4 solutions. After that, certain dosages of CuO/CeO2 and
H2O2 were poured into the solution under continuous magnetic
stirring. Finally, a small sample of the mixture was taken out by
syringe at certain times and filtered by a 0.45µmmembrane filter.
The filtered solution was measured by HPLC. The experiments
were done in triplicate.

The diclofenac concentration in the experiment was
analyzed by Thermo Scientific Dionex UltiMate 3000 liquid
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FIGURE 1 | N2 adsorption-desorption isotherm and pore size distribution of

CuO/CeO2.

chromatographt with a C18 column. The operation parameters
were as follows: the flowing phases were 70% acetonitrile and
30% acetic acid solution (volume fraction was 0.2%), the flow
rate was 1 mL/min, the injection volume was 10 µL, and the
detection wavelength was 275 nm. The leached metal ions
were detected by inductively coupled plasma optical emission
spectrometer (ICP-OES) (IRIS Intrepid II XSP, ThermoFisher).

RESULTS AND DISCUSSION

Catalyst Characterization
N2 Adsorption-Desorption Analysis
Figure 1 shows the N2 adsorption-desorption isotherm of CuO-
CeO2, which was typical type-IV isotherm with a H1-type
hysteresis loop. This implied that mesoporous structure existed
in the obtained CuO/CeO2. The pore diameter distribution
of CuO/CeO2 was calculated from the adsorption branch and
suggested the existence of mesopores at∼10 nm with the average
diameter 3.9 nm (the embedded diagram of Figure 1). Table 1
summarized the basic structural parameters of CuO, CeO2, and
CuO/CeO2. The specific surface area of CuO/CeO2 reached 114.8
m2/g which was higher than that of CuO and CeO2, and was
also much higher than that of other CuO-containing catalysts
such as CuO/rGO (56.1 m2/g) (Du et al., 2019) and CuO/Ti6O13

(6.93 m2/g) (Sehati and Entezari, 2017). The high specific surface
area allowed the rapid electron transfer (Prathap et al., 2012)
and would benefit the catalytic performance of CuO/CeO2. These
results indicated that ultrasonic preparation might facilitate
catalytic reaction by changing the surface structure of the catalyst.
For one thing, the mechanical effect of ultrasound could cut
CeO2 into smaller particles increasing specific surface area.
Furthermore, the ultrasonic cavitation effect made CuO more
uniformly distributed on the surface of CeO2. The decreases of
pore volume and pore diameter after ultrasonic impregnation of
CeO2 (Table 1) exactly indicated that CuO was indeed loaded
on CeO2.

TABLE 1 | Basic structural parameters of CuO, CeO2, and CuO/CeO2.

Catalyst Surface area

(m2/g)

Pore volume

(cm3/g)

Average pore

diameter (nm)

CuO 0.5 1.9 × 10−3 14.2

CeO2 78.5 1.9 × 10−1 9.4

CuO/CeO2 114.8 1.1 × 10−1 3.9

SEM Analysis
SEMwas used to characterize the morphology of CuO/CeO2, and
the results were shown in Figure 2. Figure 2A shows an overview
of CuO/CeO2 in which the size of particles was uniform. CuO
was finely loaded on CeO2 (Figure 2B). Element mapping results
of Cu, Ce, and O (Figures 2D–F) indicated that the three
elements were all well-dispersed in the catalyst. To investigate
how ultrasound affected the structure of catalyst, Mahdiani et al.
(2018) prepared PbFe12O19 with and without ultrasound, and
found that ultrasound could decompress the large structures and
form fine and homogeneous structures. Thus, the fine dispersion
of elements and uniform size of CuO/CeO2 benefitted from
the cavitation effect of ultrasound which created an intense
environment in the reaction mixture (Shende et al., 2018).
Moreover, Hočevar et al. (2000) showed that the high dispersion
of Cu on CeO2 had positive effect on the activity and selectivity
of copper cerium oxide. The Cu, Ce, and O atomic percentages
confirmed by EDS were 10.56, 18.07, and 71.37%, respectively.
The lower content of Cu showed that the dispersion of Cu was
relatively sparse.

XRD Analysis
XRD analysis was applied to identify the component and
crystallography of the catalyst. The results were shown in
Figure 3. The diffraction peaks at 28.46◦, 32.9◦, 47.44◦, 56.24◦,
76.260◦, and 79.22◦ could be attributed to the cubic fluorite CeO2

(JCPDS No. 48-1548), which are characteristics of the (111),
(200), (220), (311), (400), and (331) crystal faces. There were
also characteristic diffraction peaks owing to CuO crystal, and
35.46◦, 38.66◦ were assigned to the (002) and (111) faces (JCPDS
No. 04-0593). The characteristic diffraction peaks of CeO2 in
CuO/CeO2 were slightly broadened compared with that in CeO2.
This might be associated with the incorporation of Cu2+ ions
with a smaller ionic radius (0.73 Å) compared with Ce4+ (0.97
Å) (Cau et al., 2014). These phenomena indicated that lattice
constriction occurred in CuO/CeO2.

TEM and HRTEM Analyses
The TEM images of CuO/CeO2 and CeO2 were shown in
Figures 4A,C. The particle size of CuO/CeO2 was uniform,
and was generally smaller than that of CeO2, which was a
favorable result of ultrasonic impregnationmethod and was good
for catalytic reaction. The lattice fringes of CuO/CeO2 were
measured at 2.77 and 3.14 Å (Figure 4B), corresponding to (200)
and (111) crystal faces. Compared with the two crystal faces of
CeO2 (Figure 4D), the lattice fringe spacing in CuO/CeO2 had
a slight increase. This phenomenon might be caused by some
Cu atoms doped into CeO2 structure. CuO/CeO2 had lattice
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FIGURE 2 | SEM analysis of CuO/CeO2: (A) general view, (B) detailed image, (C) mapping region, (D) Cu mapping image, (E) Ce mapping image, and (F) O mapping

image.

constriction and generated a solid solution structure. The XRD
analysis showed similar results.

The crystal face (111) of CeO2 was the most stable crystal
face in CeO2 for its minimal surface energy. Thus, the stability
of the catalyst would be enhanced with the increase of exposed
crystal face (111). The catalytic activity could be improved by the
crystal face (200) for its high surface energy. Moreover, oxygen
vacancies were more favored to form on unstable face (200) than
on (111). Thus, exposed (200) and (111) faces were beneficial to
the catalytic performance and stability of CuO/CeO2.

Raman Analysis
To investigate the effect of CuO doping on the quantities of
oxygen vacancies over CuO/CeO2, CuO/CeO2, and CeO2 were
both characterized by Raman spectra. As shown in Figure 5, a
strong peak at 462 cm−1 was observed, which was attributed to
the vibration mode of the F2 g symmetry in cubic fluorite CeO2

lattice. This peak of CuO/CeO2 presented a red shift compared
to pure CeO2 because of the reduction in the lattice parameter as
a result of shorter M-O bond length (Cau et al., 2014). The weak
band at 1,172 cm−1 was assigned to the second-order phonon
mode of fluorite structure. The band at 593 cm−1 was attributed
to oxygen vacancies in CeO2. With Cu doping into CeO2, more
oxygen vacancies were generated, which would promote the
catalytic property of CuO/CeO2.

XPS Analysis
The valence states of Cu, Ce, and O in CuO/CeO2 were
investigated by XPS analysis. Figure 6A shows the XPS spectrum
of Cu 2p of CuO/CeO2. The peak at 935.09 eV was the main peak
of Cu 2p3/2, which was related to CuO (Jawad et al., 2018). CuO
had a satellite peak accompanied by the main peak, which was
approximately 9 eV higher binding energy than the main peak
(Zeng et al., 2013). Thus, 944.27 eV was the satellite peak of CuO.
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The XPS spectrum of Ce 3d is shown in Figure 6B. The
four main 3d5/2 features appeared at 883.23, 885.2, 889.68, and
899.19 eV, while the 3d3/2 features appeared at 901.68, 903.38,
908.39, and 917.64 eV. Among them, the peaks at 883.23 and
901.68 eV were assigned to characteristic of Ce3+, indicating
that there were two valence states of Ce (+3 and +4) existed
in CuO/CeO2.

The O 1s XPS spectrum was shown in Figure 6C. O 1s existed
in two groups, O2− and OH−, which were fitted with peaks at

FIGURE 3 | XRD pattern of CuO/CeO2.

529.89 and 532.12 eV, respectively. O2− groups represented the
lattice oxygen (Olatt) in metal oxides, generating from CuO and
CeO2. The peak at 532.12 eV was the characteristic of adsorbed
oxygen species or surface OH species. The chemical adsorbed
oxygen (Oads) on the surface of CuO/CeO2 might be transformed
fromOlatt through oxygen vacancies, which was a reactive oxygen
specie to attack organics (Chong et al., 2017). This kind of
conversion demonstrated that Olatt species participated in the
degradation process of diclofenac, which was consistent with the
study by Sedmak et al. (2003). Furthermore, XPS results indicated
that CuO doped in CeO2, which could improve the formation of
Olatt in CuO/CeO2 (Zou et al., 2011).

FIGURE 5 | Raman spectra of CuO/CeO2 and CeO2.

FIGURE 4 | (A) TEM and (B) HRTEM images of CuO/CeO2, (C) TEM and (D) HRTEM images of CeO2.
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FIGURE 6 | XPS spectra of (A) Cu 2p, (B) Ce 3d, and (C) O 1s in CuO/CeO2.

Diclofenac Removal in CuO/CeO2-H2O2

Fenton-Like System
The comparison of diclofenac removal efficiency by H2O2,
CuO/CeO2, CuO-H2O2, CeO2-H2O2, and CuO/CeO2-H2O2 was

FIGURE 7 | Removal efficiency of diclofenac in different systems. Reaction

conditions: pH = 5, H2O2 = 200 mg/L, catalyst = 1 g/L.

shown in Figure 7. Single H2O2 and single CuO/CeO2 could
hardly remove diclofenac, the same for CuO-H2O2 and CeO2-
H2O2 system. However, CuO/CeO2 could effectively catalyze
H2O2 to remove diclofenac. The highest removal efficiency was
81.05, 30.01, and 19.67% for CuO/CeO2-H2O2, CuO-H2O2 and
CeO2-H2O2 processes, respectively. Compared with CuO-H2O2

and CeO2-H2O2 systems, diclofenac removal efficiency after
60min in CuO/CeO2-H2O2 system was increased by 63.99 and
65.05%, respectively.

Clearly, CuO/CeO2-H2O2 system had higher diclofenac
removal than the sum of CuO-H2O2 system and CeO2-H2O2

system, showing a synergistic effect between CuO and CeO2. The
synergistic effect might be caused by two reasons. Firstly, more
oxygen vacancies were formed for Cu doped in CeO2, which was
shown in the above characterization analyses. Lu et al. (2011)
found that the formation energy of oxygen vacancy in Cu-doped
ceria was lower than bare ceria, demonstrating that Cu dopant
could serve as a seed for the formation of oxygen vacancies.
Secondly, there were electronic interactions between metal and
the support, i.e., the facilitation of redox interactions between
Cu2+/Cu+ and Ce4+/Ce3+ redox couples, which would favor the
CuO reduction (Konsolakis, 2016). Studies (Szabová et al., 2010,
2013) also reported that Cu doped on CeO2 surface accompanied
electron transfer process between Cu and neighboring Ce4+,
generating more Ce3+.

Optimization of Operation Parameters for
Diclofenac Removal
pH is an important parameter in AOPs. An advantage of Fenton-
like process over Fenton reaction is avoiding of too acidic
condition (pH < 3.5). As known, diclofenac was more likely to
dissociate to ionic structure when the pH was higher than its
pKa (4.2), which was favorable to its adsorption and degradation.
Thus, the effect of pH above 5 was investigated. As shown in
Figure 8A, pH had a significant effect on diclofenac removal
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in CuO/CeO2-H2O2 system, which decreased by 79.31% when
the pH changed from 5 to 11. The result might attribute to
two reasons: (1) the oxidation potential of ·OH decreased, and
more H2O2 decomposed to O2 and H2O at high pH value;
(2) deprotonation of the catalyst gradually increased, which was
unfavorable to the electrostatic attraction between diclofenac and
CuO/CeO2 (Hassani et al., 2018).

Different dosages of CuO/CeO2 were added to the Fenton-like
system. Figure 8B shows that the diclofenac removal efficiency
was improved from 25.21 to 86.62% when the catalyst dosage
increased from 0.1 to 1.2 g/L. The active sites were mostly on
the surface of the catalyst, so more catalyst meant that more
active sites exposed. But when the active sites were adequate
in CuO/CeO2-H2O2 system, further addition of catalyst would
bring little improvement. Thus, the optimum CuO/CeO2 dosage
was 1.2 g/L.

The effect of H2O2 on diclofenac removal was studied within
the dosage of 25–500 mg/L. Figure 8C shows that with the
continuous increase of H2O2 dosage, the removal efficiency of
diclofenac reached 86.62% at 200 mg/L H2O2, then the reaction
tended to stabilize. Excessive H2O2 reacted with ·OH, thus go
against the diclofenac removal (Hassani et al., 2018). Taking into
account the removal efficiency and cost, 200mg/L was considered
as the optimum dosage of H2O2.

Lee et al. (2014) found only about 24% diclofenac could
be removed in 60min by Cu(II)/H2O2 system. Xu et al.
(2016) used Cu-doped α-FeOOH as Fenton-like catalyst to
degrade diclofenac, <50% diclofenac was removed in 60min.
Zhou et al. (2018) found 80% diclofenac was removed in
a magnetic field enhanced Fe0/EDTA Fenton-like system.
In comparsion, CuO/CeO2 was a high-efficiency Fenton-like
catalyst for diclofenac removal. Moreover, leaching test showed
that there was almost no Ce leached (<0.05 mg/L) under the
above optimal reaction conditions. The leached Cu concentration
in the solution was 1.7 mg/L, which met the wastewater discharge
standard of China (Cu < 2mg L−1) (Wang et al., 2016) and was
only 9‰ of the catalyst dosage. Besides, the removal of diclofenac
still reached 70.12% in the third run of CuO/CeO2-H2O2 system.
These results showed a good stability and reusability of the
CuO/CeO2 catalyst.

Potential Mechanism of Diclofenac
Degradation in CuO/CeO2-H2O2 System
Potential mechanism of diclofenac degradation in CuO/CeO2-
H2O2 system was proposed in Figure 9. CuO could decompose
H2O2 to form highly active ·OH (Drijvers et al., 1999), and the
reaction was represented by Equations (1) and (2) (Yamaguchi
et al., 2018). ·OH radical could also be produced by Ce3+ with
H2O2, which was achieved by the division of O-O bond of H2O2,
as shown in Equation (3) (Chong et al., 2017). Moreover, the
synergistic copper and ceria interaction (Equation 4) facilitated
the redox cycles of Cu2+/Cu+ and further was conducive to ·OH
generation (Konsolakis, 2016). Sehati and Entezari (2017) found
that ·OH on the catalyst surface (·OHads) was the major reactive
species, while ·OH in the solution had little effect on pollutant

FIGURE 8 | Influencing factors of diclofenac removal in CuO/CeO2-H2O2

system: (A) pH, (B) CuO/CeO2 dosage, (C) H2O2 dosage. Reaction

conditions: (A) H2O2 = 200 mg/L, catalyst = 1 g/L; (B) pH = 5, H2O2 = 200

mg/L; (C) pH = 5, catalyst = 1.2 g/L.
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FIGURE 9 | Potential mechanisms of diclofenac degradation in CuO/CeO2-H2O2 system.

removal in Fenton-like system. During diclofenac degradation,
diclofenac molecules were adsorbed on the surface of the catalyst,
meanwhile, H2O2 was decomposed to ·OH by Cu and Ce species
on the catalyst surface. Then, the adsorbed diclofenac molecules
reacted with ·OHads and transformed into smaller molecules
(intermediate products), H2O or CO2. The process continued
until the complete decomposition of diclofenac was achieved
(Ziylan et al., 2013).

Cu2+ + H2O2 → Cu+ + ·OOH + H+ (1)

Cu+ + H2O2 → Cu2+ + ·OH + OH− (2)

Ce3+ + H2O2 + H+
→ Ce4+ + ·OH + H2O (3)

Cu2+ + Ce3+ → Cu+ + Ce4+ (4)

More oxygen vacancies were generated by Cu doped into
CeO2, which was proven by the Raman spectra (Figure 5).
The oxygen storage capacity of a ceria-based catalyst benefited
from oxygen vacancies (Soler et al., 2016). In the degradation
process, the adsorbed O2 on the surface of CuO/CeO2 and
bulk Olatt could replenish oxygen vacancies by diffusion from
the surface and inner of the catalyst (Balcaen et al., 2010),
then transformed to active oxygen (Oads) accompanied by
valence state transformation of CeO2 and CuO (Ce3+/Ce4+

and Cu+/Cu2+) (Dong et al., 2019). Oads could also participate
in the oxidation of diclofenac (Xian et al., 2019). Besides,
large specific surface area and high porosity of ultrasonically
prepared CuO/CeO2 catalyst allowed rapid electron transfer,
which improved the catalytic property (Prathap et al., 2012).

CONCLUSIONS

An efficient heterogeneous Fenton-like catalyst CuO/CeO2 was
synthesized by ultrasonic impregnation method and used to

remove diclofenac from water. The prepared CuO/CeO2 had
large specific surface area, high porosity and fine elements
dispersion. CuO and CeO2 crystals coexisted in CuO/CeO2

with a lattice constriction. HRTEM analysis demonstrated that
the main exposed crystal faces of CeO2 contained (200) face
which readily formed oxygen vacancies and improved the
catalytic property of CuO/CeO2. Oxygen vacancies in CeO2 were
increased by Cu doping. The optimal operating conditions of
CuO/CeO2-H2O2 system were pH = 5, CuO/CeO2 dosage =

1.2 g/L, and H2O2 dosage = 200 mg/L, with 86.62% diclofenac
removal. The synergistic effect between CuO and CeO2 on
diclofenac removal might be caused by more oxygen vacancies
generation and electronic interactions between Cu and Ce species
in CuO/CeO2. The degradation of diclofenac was mainly by
·OH and adsorbed oxygen species which were enhanced by
oxygen vacancies.
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