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Hollow Co3O4@MnO2 cubic nanomaterials are synthesized by ZIF-67@Mn-ZIF sacrificial

precursor through a facile thermal treatment. As a kind of supercapacitor electrode

material, it demonstrates high performances, such as specific capacitance of 413 F g−1

at the current density of 0.5 A g−1; as the current densities raised from 0.5 to 10A g−1 (20

times increasing), there is still∼41% retention of its initial capacitance. These satisfactory

electrochemical properties should be put down to the hollow and porous structure and

the relative higher BET surface area, which supplies more reactive sites for charge and

discharge processes.
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INTRODUCTION

As a new and efficient energy storage device, supercapacitors qualified the benefits of high-power
density, high security, long service life, and fast short time storage and release (El-Kady et al.,
2016; Shao et al., 2018; Xu et al., 2018). As a result, supercapacitors attracted wide attention in the
application on portable consumer electrical products and electric automobiles, and so on (Qu et al.,
2016; Li et al., 2018). The performance of the used electrodematerials is themain factor affecting the
performance of supercapacitors. Currently, the most studied materials are carbon-based materials
(Zhang and Zhao, 2009; Zhang et al., 2017), transition metal oxides (TMOs) (Liu et al., 2011; Li
et al., 2014; Yu and Lou, 2018; Xu et al., 2019), and conductive polymer materials (Snook et al.,
2011; Du et al., 2017). In recent years, metal-organic frameworks (MOFs) are developed as a new
type of porous materials ascribed to their great specific surface area, porosity and regulatory pores,
functional and special optical and electrical properties (Yue et al., 2015; Salunkhe et al., 2017). So
they have great potential in the high-performance supercapacitor after thermal treatment as TMOs’
sacrificial precursor.

Up to the present, numerous TMO nanomaterials have been synthesized as supercapacitor
electrodes from many kinds of MOF precursors. For instance, high surface area Co3O4

nanoparticles have been obtained from the pyrolysis of ZIF-67 with an appreciable 190 F g−1

specific capacitance value at 5A g−1 (Saraf et al., 2019), NiO architecture with porous structure
was constructed by thermal treatment Ni-MOF under the air flow and demonstrated 324 F g−1

at 1A g−1 (Han et al., 2017), and porous hollow α-Fe2O3 microboxes synthesized by using
MOF as precursor and self-template can reach 380 F g−1 at 0.1 A g−1 as supercapacitor electrode
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(Yu et al., 2019). Except for these single metal oxides, somemixed
metal oxides, and metal oxide composites can also be obtained
by MOF precursors. Chen and coworkers have fabricated porous
small size ZnCo2O4 nanoparticles (<20 nm) from a mixed
zinc and cobalt-MOF, which exhibited an unexpected specific
capacitance of 451 F g−1 at 0.5mV s−1 (Chen et al., 2015).
Hierarchical NiO/ZnO double-shell hollow spheres are obtained
by Li and coworkers through calcining the bimetallic organic
frameworks, which delivered 497 F g−1 at current density of 1.3 A
g−1 (Li et al., 2016). Xu and coworkers developed a Co3O4/ZnO
nano-heterostructure via a solid-solid conversion process, the
synthesized core-shell MOFs@MOFs were used as a template
with cobalt and zinc as metal sources, which demonstrated 415 F
g−1 specific capacitance value at 0.5 A g−1 (Xu et al., 2016). The
mixed metal oxides and the metal oxide composites as electrodes
exhibit superior electrochemical performance compared with
single ones. Despite these achievements, there are still large
spaces to explore other metal oxide composites based on
MOF precursors.

Herein, we have prepared single ZIF-67 nanocrystals first,
combined it with Mn-ZIF to form ZIF-67@Mn-ZIF composite,
and finally obtained Co3O4@MnO2 electrode material by
thermal treatment. After evaluating the electrochemical
performance of Co3O4@MnO2 electrode, we found that it
exhibited excellent electrochemical properties. When the
current density is 0.5 A g−1, the specific capacitance could
achieve 413 F g−1, with 20 times current density increasing, it
kept 41% retention of initial capacitance and good long-term
cycling stability, which is a very promising electrode for use in
a supercapacitor.

EXPERIMENTAL

Preparation of ZIF-67
First, 1.455g Co(NO3)2·6H2O and 1.642g 2-methylimidazole
were separately dissolved in 40ml methanol. Second, the two
different solutions were mixed and vigorously stirred for 60 s
and reacted for 24 h to complete reaction at room temperature
after 24 h. Third, the purple precipitates in the bottom were
collected by centrifugation with ethanol as washing solution for
several times. The collected purple precipitates were dried at
80◦C overnight in a vacuum drying chamber.

Preparation of ZIF-67@Mn-ZIF
First, 0.25 g Mn(NO3)2·6H2O was dissolved in 50ml ethanol.
ZIF-67 obtained in the first step was well-dispersed in the above
solution. Then, the mixture was transferred into a beaker flask
after 20min of continuous stirring, and the reaction temperature
was 50◦C and kept for 3 h in an oil bath.

Thermal Treatment of ZIF-67@Mn-ZIF
Crystals
The obtained ZIF-67@Mn-ZIF crystals could be converted to
Co3O4@MnO2 nanomaterials through a thermal treatment in a
tube furnace with air flow at 300◦C for 0.5 h; the heating rate
was controlled at 0.5◦C·min−1. As a contrast experiment, the

single precursors (ZIF-67) were calcined under the same thermal
conditions, and the final product is Co3O4 nanomaterial.

Material Characterizations
X-ray diffraction (XRD) patterns were measured by using
monochromator Cu Kα radiation at a scanning rate of 2◦•min−1

(PA-Nalytical X′Pert PRO). Binding energies were detected by
the X-ray photoelectron spectroscopy (XPS; ESCALab250). The
morphologies were obtained by scanning electron microscope
(SEM) (Hitachi, SU-8000). The more detailed structures were
investigated by transmission electron microscope (TEM) (JEOL,
JEM-2100F), and the elements were detected by its equipped
energy dispersive X-ray spectrometer (EDS). The BET surface
area and pore size distribution are tested on Accelerated Surface
Area & Porosimetry System (ASAP 2020, Micromeritics). XS
analytical balance (Mettler Toledo; δ = 0.01mg) is used to weigh
the mass of the electrode materials.

Electrochemical Characterizations
The electrochemical performances of the final products were
accomplished by the AUTOLAB PGSTAT302N electrochemical
workstation in a standard three-electrode test cell at ∼25◦C
with 1.0M LiOH solution as electrolyte. The Ag/AgCl (3M KCl)
electrode and platinum (Pt) plate (2.5 cm × 2.5 cm × 0.2mm)
directly served as the reference electrode and counter electrode,
respectively. The fabricating processes of working electrode were
as follows: Co3O4@MnO2 materials (active electrode material,
80%) derived from ZIF-67@Mn-ZIF crystals were mixed with
acetylene black (5%) and polyvinylidene difluoride (15%), which
was mixed with appropriate volume N-methyl pyrrolidone
solvent. The mixture was treated by ultrasonication to form a
homogeneous slurry and dropped onto the graphite substrate
current collector, the covered surface area is ∼1 × 1 cm2, and
then dried under vacuum condition at 120◦C for 4 h to form the
electrodes. For comparison, the Co3O4 materials prepared from
single ZIF-67 crystals were also fabricated into electrode with the
same processes.

The electrochemical performances of the fabricated
electrodes were evaluated from the galvanostatic charge-
discharge (GCD) and cyclic voltammetry (CV) measurements.
The equation of C = [(I × ∆t)/(m × ∆V)] is applied to
calculate the specific capacitance values of Co3O4@MnO2

and Co3O4 electrodes, where the I (A), ∆t(s), ∆V (V), and
m (g) represent the discharge current, the discharge time,
the potential window, the mass of active materials in the
electrodes, respectively.

RESULTS AND DISCUSSIONS

The synthesized products were analyzed by X-ray diffraction
(XRD) first. The result is shown in Figure 1a. As can be seen from
the obtained pattern, there are some strong diffraction peaks that
appeared in 2θ = 7.3◦, 10.4◦, 12.8◦, 14.8◦, 16.5◦, 18.1◦, which
can be confirmed with the sample ZIF-67 and highly consistent
with reported literature (Qin et al., 2017). Figures 1b,c are the low
to high magnification SEM images. The particles’ morphology is
uniform rhombic dodecahedral nanocrystals which were clearly
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FIGURE 1 | (a) X-ray diffraction (XRD) pattern, (b,c) scanning electron

microscope (SEM), and (d) transmission electron microscope (TEM) images of

synthesized ZIF-67 sample.

monodispersed, with a diameter of about 300–500 nm. Figure 1d
shows a single ZIF-67 nanocrystal with dodecahedron and solid
construction. After thermal treatment, the structure collapsed
(Figure S1).

The calcined ZIF-67@Mn-ZIF products were detected by
XRD, and the result is shown in Figure 2a. The main diffraction
peaks consisted of cubic phase Co3O4 (JCPDS card No. 074-
2120), which is obtained by calcinating the ZIF-67 nanocrystal
(Figures S2, S3). In addition, there are some other small peaks
that also appeared in the pattern (marked with blue star), which
could be MnO2 formed by Mn-ZIF (the exact components
were detected by XPS, which is detailed later). Figure 2b is
a low-resolution SEM image of the obtained Co3O4@MnO2

products, which indicated that the products can be synthesized
in large scale. In the enlarged SEM image of Figure 2c, the
diameter of obtained Co3O4@MnO2 products increased to about
800 nm; interestingly, the obtained Co3O4@MnO2 products are
with hollow structure (Figure 2d), and the corresponding EDS
result in Figure 2e is consistent with our designed concept.
Co, Mn, and O elements are from Co3O4@MnO2 products,
the existence of Cu and C signals is because the TEM grid
is made of Cu substrate and carbon membrane, while the
peak of Si could be an impurity that brings in the sample
preparation process. Inset shows the HRTEM image of the
Co3O4@MnO2, the d-spacing of 0.24 nm corresponding to the
(311) lattice plane of the Co3O4 crystal, and the d-spacing of
0.22 nm corresponding to the (200) lattice plane of the MnO2

crystal (JCPDS No. 12-0716).
The obtained calcinated products were further detected by

XPS to confirm the metal oxidation states and the chemical
compositions. Figure 3A is the survey spectrum of the products,
which shows the core levels of Co 2p, Mn 2p, and O 1s,
respectively. To get clearer information, the high-resolution XPS
spectra analysis was carried out. The Co 2p’s high-resolution
XPS spectrum is shown in Figure 3B. The main two peaks

FIGURE 2 | (a) X-ray diffraction (XRD) pattern of the products after calcinating

the ZIF-67@Mn-ZIF. (b,c) Low magnification and enlarged scanning electron

microscope (SEM) images of the Co3O4@MnO2. (d) Transmission electron

microscope (TEM) image and corresponding (e) energy dispersive X-ray

spectrometer (EDS) pattern of the Co3O4@MnO2 products. Inset shows the

HRTEM image of Co3O4@MnO2.

centered at 780.3 and 796.2 eV can be appointed to the binding
energies of 2p3/2 and 2p1/2 of Co(II), whereas the other two
lower peaks centered at 786.1 and 802.5 eV can be appointed
to the binding energies of 2p3/2 and 2p1/2 of Co(III). These
results imply the Co3O4 phase in our sample and agreement with
the XRD result (Yan et al., 2012; Li et al., 2013). Figure 3C is
the high-resolution XPS spectrum extracted from Mn 2p. The
main two peaks are centered at 641.1 and 652.7 eV; therefore,
the spin-orbital splitting calculated is 11.6 eV. These results
well refer to the electronic orbits of Mn 2p3/2 and 2p1/2,
pointing to Mn(IV) state of the products (Sui et al., 2009).
As can be seen from the high-resolution spectrum of O 1s in
Figure 3D, there are two distinct components, except for the
binding energy of 531.2 eV assigned to the oxygen atoms in the
hydroxyl groups, the strong peak of 529.6 eV should belong to
the oxygen atoms in the chemical compositions of Co3O4 and
MnO2 (Wei et al., 2008; Xia et al., 2010). These results further
proved that the chemical component of as-fabricated products
is Co3O4@MnO2.

A typical IV type adsorption behavior was observed in
the prepared Co3O4 and Co3O4@MnO2 products by the N2
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FIGURE 3 | X-ray photoelectron spectroscopy (XPS) spectra of the products

after calcinating the ZIF-67@Mn-ZIF. (A) Survey XPS spectrum and (B–D)

high-resolution XPS spectra of Co 2p, Mn 2p, and O 1s.

FIGURE 4 | N2 adsorption-desorption isotherms of (A) Co3O4 and (B)

Co3O4@MnO2 products. Inset shows their corresponding pore

size distributions.

adsorption-desorption isotherms (Figures 4A,B), which exhibit a
mesoporous structure with slit type pores. The BET surface areas
for the Co3O4 and Co3O4@MnO2 are 72.214 and 148.407 m2

g−1, a high BET surface area might be beneficial for the electrons
and ions’ storage and shuttle in the electrode because it provides
more active sites, hence could lead to enhanced electrochemical
capacity (Jiang et al., 2012). From the corresponding pore size
distributions of the inset image, it can be found that the pore sizes
are concentrated in 3–10 nm for Co3O4 sample and 3–6 nm for
Co3O4@MnO2 sample. The porous structure is facilitating the
electrolyte ion diffusion and transference in the course of charge
and discharge processes.

The electrochemical properties of the Co3O4@MnO2

electrode materials were evaluated, and the results are
summarized and shown in Figure 5. Enclosed loops in Figure 5A
show the electrode’s CV performance at increasing scan rates
from 1 to 100mV s−1, unlike the pseudocapacitance behavior
of single Co3O4 nanocrystals (Figure S4). The shapes of the CV
curves of Co3O4@MnO2 indicate a typical electrical double layer
capacitance (EDLC) behavior, and it retains well as the scan rate

FIGURE 5 | Electrochemical test results of Co3O4@MnO2 electrode. (A)

Cyclic voltammetry (CV) curves at extending scan rates from 1 to 100mV s−1.

(B) CD curves under extending current densities from 0.5 to 10A g−1. (C) Plot

of the specific capacitance against different current densities. (D) Long-term

cycling stability.

upscales to 20mV s−1, demonstrating its good rate capability
(Wu et al., 2015). The EDLC behavior of Co3O4@MnO2 ascribes
to the MnO2 outer layer (Li et al., 2012). The slight shape
deformation was observed when the scan rate achieves 50
and 100mV s−1; this could be ascribed to the polarization
phenomenon at high scan rate (Salanne et al., 2016). The GCD
properties were evaluated at current densities from 0.5A g−1

and extended to 10A g−1 in the voltage range from 0 to 0.6V vs.
Ag/AgCl (3M KCl). In Figure 5B, it is clear to observe a series of
good symmetric triangle shape GCD curves, revealing its good
EDLC behavior; this result is consistent with CV performance.
Under a series of current densities, that is, 0.5, 1, 2, 4, 6, 8, and
10A g−1, the specific capacitances were calculated to be 413,
370, 324, 273, 233, 200, and 168 F g−1, respectively. On the
contrary, single Co3O4 nanocrystal only delivers 187, 155, 108,
76, 57, and 45 F g−1 at 1, 2, 4, 6, 8, and 10A g−1, respectively
(Figure S5). Obviously, the Co3O4@MnO2 electrode presents
better capacitance values than single Co3O4 electrode, the reason
could be owing to the multicomponent and higher BET surface
of Co3O4@MnO2 electrode that endows the more charge storage
(Jiang et al., 2012). Under the extending current densities from
0.5 to 10A g−1, the specific capacitance decreased from 413
to 168 F g−1, retaining ∼41% of its initial capacitance (shown
in Figure 5C). While for single Co3O4 nanocrystal, the rate
capability is only 25% from 1 to 10A g−1 (187 vs. 45 F g−1,
Figure S6). After 2,000 times cycles of CV test at 20mV s−1, the
capacitance retention remains at 110% (shown in Figure 5D),
while only 80% of single Co3O4 nanocrystal (Figure S7),
indicating a good stability of Co3O4@MnO2 electrode. It is
clear to conclude that the performance of Co3O4@MnO2 in
connection with capacitance retention and cycling ability is
much improved compared with single Co3O4.
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CONCLUSIONS

In conclusion, hollow Co3O4@MnO2 cubic nanomaterials
were synthesized by sacrificing the ZIF-67@Mn-ZIF precursor
through an uncomplicated controlled thermal treatment.
The porous structure and high BET surface area endow
its excellent properties as supercapacitor electrode, it
presented a high specific capacitance of 413 F g−1 (0.5 A
g−1) and showed a rate capability of 41% at the current
density enhanced to 20 times with excellent stability,
giving the impression that this hollow cubic nanomaterial
possesses considerable potential as a supercapacitor
electrode material.
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