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We report the design, synthesis and electroluminescent properties of three kinds

of through-space charge transfer (TSCT) polymers consisting of non-conjugated

polystyrene backbone, acridan donor and triarylboron acceptors having different

substituents such as hydrogen (H), fluorine (F), and trifluoromethyl (CF3). Owing to the

weak electron interaction between acridan donor and triarylboron acceptor through

non-conjugated connection, blue emission with peaks in range of 429–483 nm can be

achieved for the polymers in solid-state film, accompanied with photoluminescence

quantum yields of 26–53%. The resulting TSCT polymers exhibit small 1EST values

below 0.1 eV owing to the separated HOMO and LUMO distributions, showing thermally

activated delayed fluorescence with lifetimes in range of 0.19–0.98 µs. Meanwhile, the

polymers show aggregation-induced emission (AIE) effect with the emission intensity

increased by up to ∼33 folds from solution to aggregation state. Solution-processed

organic light-emitting diodes based on the polymers containing trifluoromethyl

substituent exhibit promising electroluminescent performance with maximum luminous

efficiency of 20.1 cd A−1 and maximum external quantum efficiency of 7.0%, indicating

that they are good candidates for development of luminescent polymers.

Keywords: thermally activated delayed fluorescence, through-space charge transfer, triarylboron,

electroluminescent polymer, organic light-emitting diodes

INTRODUCTION

Charge transfer (CT) is a crucial process in determining the emission behaviors of luminescent
materials (Muller et al., 2003; Wu et al., 2004; Yuan et al., 2012; Liu et al., 2018; Sarma and
Wong, 2018; Li J. et al., 2019). Luminescent polymers with CT emission have enabled important
applications in solution-processed optoelectronic devices owing to their tunable emission color
and promising luminescent efficiency (Yu et al., 2013; Bai et al., 2017). For example, thermally
activated delayed fluorescence (TADF) polymers with finely manipulated CT process between
electron donors and acceptors have emerged as attractive materials for organic light-emitting
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diodes (OLEDs) in recent years (Uoyama et al., 2012; Albrecht
et al., 2015; Nikolaenko et al., 2015; Lee et al., 2016; Li
et al., 2016, 2017; Luo et al., 2016; Zhu et al., 2016; Freeman
et al., 2017; Wei et al., 2017; Wong and Zysman-Colman,
2017; Xie et al., 2017; Hu et al., 2018; Kim D. H. et al.,
2018; Li C. S. et al., 2019). By separating the highest occupied
molecular orbital (HOMO) and the lowest unoccupiedmolecular
orbital (LUMO) orbitals to realize small singlet-triplet energy
splitting (1EST), the CT polymers with TADF characteristics
can utilize the spin-forbidden triplet excitons through reverse
intersystem crossing (RISC) process, shedding light on the
potential of achieving solution-processed OLEDs with 100%
internal quantum efficiency (IQE) based on pure organic
polymers (Zhang et al., 2012; Hirata et al., 2015; Suzuki et al.,
2015; Wang et al., 2015; Huang et al., 2018; Kim H. J. et al., 2018;
Spuling et al., 2018; Wu et al., 2018; Ahn et al., 2019; Ban et al.,
2019; Zhao et al., 2019).

So far, most luminescent polymers with CT emission are
based on conjugated backbone, with feature of through-bond
charge transfer (TBCT) emission from covalently bonded
donors and acceptors. Owing to the strong electron coupling
between donors and acceptors, the polymers are able to show
large oscillator strength and high photoluminescence quantum
efficiency (PLQY). However, the strong electron coupling
mediated by covalent bonds tends to induce considerable red-
shift of emission for the resulting polymers, undesirable for
blue/deep blue emission. Meanwhile, 1EST of the polymer can
also be increased by the strong electron interaction between
donor and acceptor, which could be unfavorable for realizing
TADF effect (Li et al., 2016; Nobuyasu et al., 2016; Hu et al., 2018).

Different from conjugated donor-acceptor polymers with
TBCT emission, non-conjugated polymers with through-space
charge transfer (TSCT) emission between spatially separated
acridan donors and triazine accepters have been reported to
realize blue emission with TADF effect (Shao et al., 2017; Hu
et al., 2019). Due to the physical separation of donor and
acceptor, through-space charge transfer, rather than through-
bond charge transfer occurs in this motif. This molecular design
has the following merits. First, the non-conjugated polymer
backbone avoids the strong electron coupling between donor
and acceptor, favorable for blue emission of the resulting

FIGURE 1 | Molecular design and chemical structures of the through-space charge-transfer polymers containing triarylboron units.

polymers. Second, the spatially separated donors and acceptors
result in small overlap of HOMO and LUMO distributions,
leading to small 1EST and TADF effect. By modulating the
CT strength through introducing substituents with different
electron-accepting capability, TSCT polymers with emission
color ranging from deep-blue to red can be realized with external
quantum efficiency (EQE) up to 16.2%, suggesting their potential
in development of novel luminescent materials for solution-
processed OLEDs.

Recently triarylborons have been attractive building blocks
for luminescent materials with CT character because of their
promising electron-accepting properties endowed by the vacant
p-orbitals of central boron atoms that can participate in π-
conjugation with aryl groups (Hirai et al., 2015; Numata et al.,
2015; Suzuki et al., 2015; Hatakeyama et al., 2016; Wu et al.,
2018; Ahn et al., 2019; Kondo et al., 2019; Mellerup and
Wang, 2019). The CT character of triarylboron-based donor–
acceptor compounds strongly influences their photophysical
properties and makes them useful for design of luminescent
materials. For example, Adachi et al. first reported efficient blue
TADF materials having a boron-containing acceptor combined
with various donors, producing deep blue emission (450 nm)
with maximum EQE of 20% (Numata et al., 2015). Recently,
Hatakeyama et al. demonstrated triarylboron polycyclic aromatic
compounds with multiple resonance effect of boron and nitrogen
atoms, showing ultrapure blue emission with full-width at half-
maximum of 18 nm and maximum EQE of 34.4%, indicating the
great potential of triarylboron in developing efficient luminescent
materials (Kondo et al., 2019).

Here we report the design, synthesis and properties of three
kinds of through-space charge transfer polymers containing
non-conjugated polystyrene backbone, acridan donor and
triarylboron acceptors having different substituents such as
hydrogen (H), fluorine (F), and trifluoromethyl (CF3). The
triarylboron units are used as acceptors because of their weak
electron-accepting capability which is favorable for realizing blue
emission. By decorating the triarylboron acceptors with H, F,
and CF3 groups to tune the charge transfer strength between
donor and acceptor, the emission color can be tuned from deep
blue (429 nm) to sky blue (483 nm) region in solid-state film,
accompanied with improved photoluminescence quantum yield
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(PLQY) from 26 to 53%. The polymers exhibit small 1EST
values (<0.1 eV) because of the separated HOMO and LUMO
distributions, allowing them to show TADF effect. Meanwhile,
the polymers show aggregation-induced emission effect with the
emission intensity increased by up to ∼33 folds from solution
to aggregation state (Luo et al., 2001; Hong et al., 2011; Mei
et al., 2015). Solution-processed organic light-emitting diodes
(OLEDs) based on the triarylboron-containing polymers show
maximum EQEs up to 7.0%, indicating that they are promising
candidates for development of luminescent polymers.

RESULTS AND DISCUSSION

Molecular Design and Synthesis
To design luminescent polymers with through-space charge
transfer, selection of polymer backbone, donor and acceptor
plays the key role in determining the photophysical and

electroluminescent properties of the resulting polymers. In this
work polystyrene is selected as backbone because it provides
the non-conjugated connection between donor and acceptor,
while acridan is chosen as donor because of its good electron-
donating ability as well as the rigid bridged structure. Moreover,
triarylboron units are used as acceptors because they exhibit
weak electron-accepting capability owing to the empty pz
orbital of boron that is capable to participate in π-conjugation
with aryl groups. To tune the emissive color, three kinds of
substituents hydrogen (H), fluorine (F), and trifluoromethyl
(CF3) are introduced to the polymers, denoted as PH-05–PH-
20, PF-05–PF-20, and PTF-05–PTF-20, respectively (Figure 1).
The three substituents are selected because their electron affinity
are gradually increased in order of H, F, and CF3, which can
enhance the CT strength between the acridan donor and the
triarylboron acceptor, allowing themodulation of TSCT emission
of the resulting polymers. In addition, the content of acceptors

SCHEME 1 | Synthetic routes for the triarylboron monomers (A) and TSCT polymers (B). Reagents and conditions: (i) n-BuLi, THF, −78◦C; (ii) LDA, THF, −78◦C; (iii)

Pd(PPh3)2Cl2, Cs2CO3, THF/H2O, 80
◦C, 24 h; (iv) Pd(PPh3)4, toluene, 105

◦C, 20 h.
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are tuned at 5, 10, and 20mol% to explore the influence of relative
ratio between donor and acceptor on photophysical properties of
the polymers.

Synthetic routes of the polymers are outlined in Scheme 1.
The monomer Mon-H was prepared by a two-step procedure
where the commercially available 4-bromovinylbenzene
was first lithiated with n-BuLi, and then reacted with
dimesityfluoroborane (Mes2BF) to afford the product in yield

of 56%. For Mon-F and Mon-TF, 1-bromo-3,5-difluorobenzene
(1) and 1-bromo-3,5-bis(trifluoromethyl)benzene (3) were
first lithiated by lithium diisopropylamide (LDA) and then
treated with Mes2BF to afford the bromide intermediates
2 and 4. Consequently 2 and 4 were cross-coupled with
vinyltrifluoroborate or tributylvinylstannane under palladium-
catalyzed conditions to afford the desired monomers. With the
monomers in hand, TSCT polymers were synthesized by free

TABLE 1 | Physical properties of the TSCT polymers.

Polymer Mn
a (KDa) PDIa Tg (◦C) Td (◦C) λPL

b (nm) λPL
c (nm) PLQYf (%) τp/τd

d (µs) 1EST
e (eV)

PH-05 21.8 1.68 176 356 438 429 26 0.007/0.19 0.076

PH-10 29.5 1.44 196 335 440 429 27 0.009/0.22 0.083

PH-20 43.2 1.55 193 303 439 435 27 0.008/0.21 0.096

PF-05 24.6 1.61 195 360 465 443 27 0.021/0.49 0.070

PF-10 31.6 1.51 197 343 467 453 30 0.036/0.44 0.073

PF-20 38.2 1.54 170 336 470 459 38 0.029/0.46 0.090

PTF-05 20.4 1.56 201 341 494 481 34 0.018/0.86 0.068

PTF-10 14.6 1.63 204 338 496 472 44 0.019/0.95 0.087

PTF-20 9.0 1.73 207 317 501 483 53 0.024/0.98 0.084

aDetermined by gel permeation chromatography with polystyrene standards.
bMeasured in toluene at room temperature with a concentration of 1 ×10−4 M.
cMeasured in neat films at room temperature.
dLifetimes of prompt emission (τp) and delayed emission (τd ) in toluene at 298K in N2.
eCalculated from the onset wavelength of fluorescent and phosphorescent emission in film state.
fAbsolute PL quantum yield in neat films determined in nitrogen.

FIGURE 2 | PL spectra of PH-20, P-Ac containing only acridan donor and P-BH containing only triarylboron acceptor (A); as well as absorption and PL spectra of

PH-05–PH-20 (B), PF-05–PF-20 (C), and PTF-05–PTF-20 (D) in toluene at 298K with concentration of 1 ×10−4 M (λex = 310 nm).
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radical polymerization of the corresponding vinyl-functionalized
acridan and triarylboron monomers using 2-azoisobutyronitrile
as initiator and tetrahydrofuran (THF) as solvent. The content
of triarylboron acceptors of the polymers are controlled through
feed ratio (5–20 mol% for PX-5–PX-20). For comparison, three
triarylboron model compounds bearing no vinyl groups and
two control polymers with only acridan donors and triarylboron
acceptors are also synthesized (Scheme S1). Number-average
molecular weights (Mns) of the polymers measured by gel
permeation chromatography using polystyrene as standard
exhibit typical values of 9–45 KDa with polydispersity index
(PDI) of 1.44–1.73 (Table 1). The decomposition temperatures
(Td) of the polymers with 5% weight loss under nitrogen are
higher than 300◦C, while glass transition temperatures (Tg) for
the polymers are observed at 170–210◦C (Figure S1). There
are no exothermic peaks produced by crystallization within
the scanning range, indicating the amorphous nature of the
polymers. The TSCT polymers are readily soluble in common
organic solvents, such as toluene, chloroform, tetrahydrofuran
and chlorobenzene, ensuring the formation of high-quality films
through solution process.

Photophysical Properties
The UV–vis absorption and fluorescence spectra of the polymers
in toluene at 298K are shown in Figure 2, with the data

summarized in Table 1. The polymers show similar absorption

peaks at 290 nm which are mainly attributed to π-π∗ transition

of acridan and triarylboron units under diluted solutions.
PL spectra of the polymers exhibit weak emission bands at

374 nm coming from the acridan unit, together with a strong,
broad, and featureless emission bands at longer wavelength.

These featureless bands are red-shifted compared with those

of acridan and triarylboron units as well as the acridan-
and triarylboron-containing homopolymers (Figure 2A and

Figure S2). Moreover, these emissions show strong positive
solvation effect as the polarity of the solvent increases. For
instance, the emission maxima (λem,max) of PH-20 shifts
from 417 nm in cyclohexane to 476 nm in THF (Figure S3),
confirming that the emissions are originating from CT transition
between the donors and acceptors. By increasing electron-
accepting ability of the triarylboron acceptors, the CT emission
can be red-shifted from 438 nm (PH-05) to 465 nm (PF-05) and
494 nm (PTF-05). The content of the acceptor also have influence
on the emission wavelength of the polymers. As the content of the

acceptor increases from 5 to 20 mol%, the emission wavelength

is red-shifted by 2–7 nm, consistent with the observations for

triazine-based TSCT polymers (Shao et al., 2017). Different
from those in solution, PL spectra of the polymers in film
state show only CT emission from 429 to 483 nm (Figure 3),
indicating that excited state energy of acridan donor has been

FIGURE 3 | PL spectra of PH-05–PH-20 (A), PF-05–PF-20 (B), and PTF-05–PTF-20 (C) in film state.

FIGURE 4 | PL decay curves of PH-05–PH-20 (A), PF-05–PF-20 (B), and PTF-05–PTF-20 (C) in toluene under nitrogen/air at 298K.
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FIGURE 5 | HOMO/LUMO distributions and energy levels for the polymer models consisting of two repeating units using density functional theory (DFT) method at

B3LYP/6-31G(d) level.

completely transferred to the CT emissive species. The PLQYs of
the polymers determined by integrating sphere is 26–27% for PH-
05–PH-20, 27–38% for PF-05–PF-20 and 34–53% for PTF-05–
PTF-20 (Table 1). As the content of acceptor increases, PLQYs of
the polymers do not decrease, implying the weak concentration
quenching effect of the TSCT emissive species.

To investigate the TADF properties of the polymers, PL
decay characteristics are measured in nitrogen and air. As
shown in Figure 4 and Table 1, under nitrogen, all polymers
in toluene displays distinctive delayed emissions with lifetimes
(τd) in microsecond scale, together with prompt emissions with
lifetimes (τp) in nanosecond scale. For example, PH-5, PF-5,
and PTF-5 show τds of 0.19, 0.49, and 0.86 µs, respectively.
The content of triarylboron units has slightly influence on
τd, with values of 0.21, 0.46, and 0.98 µs detected for PH-
20, PF-20, and PTF-20, respectively. Under air, the delayed
components are not detectable for all the polymers, indicating
that the delayed emission is arising from triplets which can be
quenched by oxygen, consistent with typical TADF behaviors.
To further explore the TADF character, 1ESTs of the polymers
were determined from the onset of fluorescence spectra at room
temperature and phosphorescence spectra at 77K (Figure S4),
which are smaller than 0.1 eV (Table 1). Such small 1ESTs are
consistent with the TADF effect since the rapid RISC process

can be favored by small 1EST to convert non-forbidden triplet
excitons to radiative singlet excitons.

To get insight into the electronic structures of the
triarylboron-based TSCT polymers, frontier orbital distributions
were investigated by density functional theory (DFT)
calculations. It is found that for all the polymers with different
substitution patterns, the HOMOs are predominantly located
on the acridan units, whereas the LUMOs are distributed over
the triarylboron acceptors, suggesting the CT character of
the polymers (Figure 5). Moreover, the LUMO level of the
polymers decreases from−1.61 to−1.75 eV and−1.84 eV as the
substituent changes from H to F and CF3, indicating that the
electron-accepting ability becomes stronger. Since the HOMO
and LUMO are well-separated, the polymers show close singlet
state (S1) and triplet state (T1) energy levels with the1EST values
estimated to be ∼zero according to time-dependent density
functional theory (TD-DFT) calculations, which are consistent
with the experimental 1EST values.

It is noteworthy that the triarylboron-based TSCT polymers
exhibit aggregation-induced emission (AIE) effect through
measuring their PL spectra in THF/water mixed solvents (Luo
et al., 2001; Hong et al., 2011; Mei et al., 2015). As shown in
Figure 6, PTF-20 in pure THF solution shows a weak emission
band at ∼520 nm. As water is added, a slight increase in PL
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FIGURE 6 | PL spectra of PH-20 (A), PF-20 (B), and PTF-20 (C) in THF/water mixture with different water fractions (concentration of polymers was 1 × 10−5 M, λex

= 310 nm), and relative emission intensity of PTF-20 in THF/water mixture (D). Inset, PL images of polymers with different water fractions under 254 nm UV light.

intensity was observed, which is accompanied with blue-shift of
emission band. When the weight water (fw) is higher than 60%,
the PL intensity increases drastically. Especially, at fw of 99%, the
polymer shows a dramatic increased intensity that is ∼33 times
higher than the initial THF solution (fw = 0). Similar AIE effect
is also observed for PH-20 and PF-20 with emission enhanced by
∼6 and ∼18 folds, respectively, as fw increases from 0 to 0.99,
which can be attributed to aggregation-induced dipole-dipole
interaction between donors and acceptors.

Electroluminescent Properties
To investigate the electroluminescent properties of the
triarylboron TSCT polymers, solution-processed OLEDs
were fabricated with device configuration of ITO/PEDOT:PSS
(40 nm)/polymer (40 nm)/TSPO1 (8 nm)/TmPyPB(42 nm)/LiF
(1 nm)/Al (100 nm) (Figure 7). Here PEDOT:PSS stands for
poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)
which serves as the hole-injection layer. TSPO1 (diphenyl(4-
(triphenylsilyl)phenyl)phosphine oxide) (Mamada et al., 2011)
and TmPyPB (1,3,5-tri(m-pyrid-3-yl-phenyl) benzene) (Su
et al., 2008) act as the exciton blocking layer and the electron-
transporting layer, respectively. As shown in Figures 7D–F,
the polymers containing H substituents (PH-05, PH-10, and
PH-20) show multiple emission bands at ∼420 and ∼480 nm.
The former emission bands are similar to those observed in

film-state PL spectra and therefore can be assigned to the CT
emission. However, the origin of the latter emission bands is
not clear yet. Similar behavior is also observed for PF-05–PF-20,
showing CT emission at ∼460 nm and unattributable emission
bands at ∼570 nm. Despite of this, the polymer bearing CF3
groups (PTF-05–PTF-20) show mainly CT emission regardless
of the triarylboron content, with CIE coordinates in range of
(0.25, 0.39)–(0.29, 0.47).

EQE–luminance and current density–voltage–luminance
characteristics of the devices are shown in Figures 7G–I and
Figure S5. The device performance is summarized in Table 2.
All the devices show low driving voltages at 3.0–3.4V, implying
the good carrier injection and transport from the electrodes.
The device efficiency of the TSCT polymers is dependant on
both the substituent and the content of triarylboron units. For
example, from PH-05 to PF-05 and PTF-05, the maximum
LE increases from 5.5 to 16.3 cd A−1, and the maximum EQE

increases from 2.9 to 5.7%. This observation is consistent
with the enhanced PLQYs of the polymer films. Meanwhile,
from PTF-05 to PTF-20 with increasing triarylboron content,

the maximum LE increases slightly from 16.3 to 20.1 cd A−1,
implying the negligible concentration quenching effect in the

polymers. We note that the maximum EQEs of PTF-05–PTF-20
with values of 5.7–7.0% are much higher than the upper limit of
conventional fluorescent materials (EQE = 5%), confirming the
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FIGURE 7 | Device configuration (A–C), EL spectra (D–F), and current efficiency-luminance curves (G–I) of the solution-processed OLEDs.

TABLE 2 | Summary of the device performance of the TSCT polymers.

Polymer Von
a (V) LEb (cd/A) EQEc (%) CIE (x, y)d

Maximum value/at 100cd m−2

PH-05 3.4 5.5/2.4 2.9/1.4 0.23, 0.27

PH-10 3.4 7.7/3.7 3.6/1.8 0.23, 0.31

PH-20 3.4 7.7/4.1 3.0/1.8 0.27, 0.36

PF-05 3.2 5.7/2.9 2.9/1.6 0.23, 0.26

PF-10 3.2 6.4/3.5 3.1/1.9 0.25, 0.29

PF-20 3.2 6.3/4.1 2.8/1.9 0.28, 0.34

PTF-05 3.0 16.3/6.2 5.7/2.6 0.25, 0.39

PTF-10 3.0 17.4/8.2 6.7/3.3 0.25, 0.41

PTF-20 3.0 20.1/11.4 7.0/4.2 0.29, 0.47

aTurn-on voltage at the luminance of 1 cd m−2.
bLuminous efficiency.
cExternal quantum efficiency.
dCIE coordinates at 4 V.

contributions of the triplets for EL emission, and indicating the
promising potential of triarylboron TSCT polymers to serve as
luminescent materials.

CONCLUSION

In summary, three kinds of through-space charge transfer
polymers with triarylboron acceptors bearing substituents of
hydrogen (H), fluorine (F), and trifluoromethyl (CF3) are
designed and synthesized for solution-processed OLEDs. The
substitution effect on their photophysical and electroluminescent
properties are investigated. It is found that as the substituent
changes from H to F and CF3, the polymers show deep blue
(429 nm) to sky-blue emission (483 nm) in solid-sate film due
to the increase of electron-accepting ability of the triarylboron
units. Owing to the small 1EST of <0.1 eV, the TSCT polymers
exhibit typical delayed fluorescence with τd of 0.19–0.98 µs in
the absence of oxygen, with promising PLQY up to 53% in
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solid-state film. Aggregation-induced emission effect is observed
for the polymers with the emission intensity increased by up to
∼33 folds from solution to aggregation state. The TSCT polymer
bearing trifluoromethyl substituent with 20 mol% acceptor
content exhibits promising electroluminescent performance with
maximum external quantum efficiency of 7.0%, suggesting
that they are prospective candidates for the development of
luminescent polymers in the future. Further investigation on
enhancing the color purity and emission efficiency of the
triarylboron-based TSCT polymers is currently underway.
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