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The design of highly efficient and stable photocatalysts to utilize solar energy is a

significant challenge in photocatalysis. In this work, a series of novel p-n heterojunction

photocatalysts, Li2SnO3/g-C3N4, was successfully prepared via a facile calcining

method, and exhibited superior photocatalytic activity toward the photodegradation of

Rhodamine B solution under visible light irradiation as compared with pure Li2SnO3

and g-C3N4. The maximum kinetic rate constant of photocatalytic degradation of

Rhodamine B within 60min was 0.0302 min−1, and the composites still retained

excellent performance after four successive recycles. Chemical reactive species trapping

experiments and electron paramagnetic resonance demonstrated that hydroxyl radicals

(·OH) and superoxide ions (·O−

2 ) were the dominant active species in the photocatalytic

oxidation of Rhodamine B solution, while holes (h+) only played a minor role. We

demonstrated that the enhancement of the photocatalytic activity could be assigned

to the formation of a p-n junction photocatalytic system, which benefitted the efficient

separation of photogenerated carriers. This study provides a visible light-responsive

heterojunction photocatalyst with potential applications in environmental remediation.

Keywords: Li2SnO3, g-C3N4, p-n heterojunction, photocatalysis, Rhodamine B, Photoelectrochemistry

INTRODUCTION

The presence of harmful and toxic substances in aqueous solution poses severe risks to human
health and ecosystems. The purification of waste water is an urgent priority and a major research
theme in environmental science (Shannon et al., 2008; Damasiewicz et al., 2012). As a promising
technique for oxidation of pollutants, semiconductor-based photocatalysis, which uses solar energy
to drive chemical reactions, has an important role in environmental remediation (Chen et al., 2010).
Among semiconductor photocatalysts, layered metal oxides have attracted much attention owing
to their low cost, photostability, and oxidation capability (Osada and Sasaki, 2009; Lei et al., 2014;
Haque et al., 2018).

Recently, the semiconductor Li2SnO3 has been applied as a UV light-responsive photocatalyst
with excellent photocatalytic performance and chemical stability (Li Y. Y. et al., 2019). As a
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state-of-the-art layered photocatalyst, the compound features a
conventional [Li1/3Sn2/3O2]

− anion layered structure in the a-b
planes, while the rest of the Li+ cations embed in the interlayer
spaces to balance the charge (Howard and Holzwarth, 2016).
The resulting charge density distribution in space generates
an electrostatic field perpendicular to the laminar direction,
promoting the separation of photo-induced carriers to drive
photocatalysis. In addition, the valence band edge of Li2SnO3 is
positive enough to oxidize organic pollutants. However, similar
to many other oxide semiconductors, Li2SnO3 can only absorb
UV light, while its harvesting of solar energy is poor owing
to its wide intrinsic optical band gap (∼3.7 eV), limiting its
photocatalytic activity. Constructing visible light-responsive
Li2SnO3-based heterojunction photocatalysts to make full use of
sunlight is thus an important goal. This kind of system, where
a heterojunction is formed between a visible light- and a UV
light-responsive photocatalyst, has received some attention in
recent years (Pan et al., 2012; Li et al., 2017; Wu et al., 2017; Liu
et al., 2018; Qiao et al., 2018; Wang et al., 2018a; Hafeez et al.,
2019). For instance, ZnFe2O4/TiO2 heterojunctions exhibited
outstanding photocatalytic degradation of bisphenol A under
visible light irradiation (Nguyen et al., 2019). A CdS/SrTiO3

nanodots-on-nanocubes heterojunction presented excellent
visible light photocatalytic performance for oxidation of H2

(Yin et al., 2019). Notably, Dong et al. successfully synthesized
an insulator-based core-shell SrCO3/BiOI heterojunction
structure, and this nanocomposite displayed an unprecedentedly
high photocatalytic NO removal performance (Wang et al.,
2018b). Therefore, the heterojunction strategy clearly provides
opportunities to utilize wide-band-gap semiconductors
with excellent intrinsic photophysical properties as visible
light-responsive photocatalysts.

Among the best known classes of such catalysts are p-n
heterojunctions, which have been extensively studied to optimize
their photocatalytic activity. Their catalytic mechanism is based
on an internal electric field established at the interface of
the p-n junction, which promotes the efficient separation of
photogenerated carriers (Wen X. J. et al., 2017; Dong et al., 2018;
Dursun et al., 2018; Wang et al., 2018; Zeng et al., 2019). The
Mott-Schottky plots measured by electrochemistry demonstrate
that Li2SnO3 is a p-type semiconductor. Therefore, to improve
its photocatalytic performance, it is necessary to couple Li2SnO3

with n-type and visible light-responsive semiconductors to
build p-n heterojunction systems, which would be able to
simultaneously realize high utilization rates of solar energy
and efficient separation of photogenerated carriers. Among
numerous n-type photocatalytic semiconductors, g-C3N4 is a
promising candidate for its tunable photo-response, and effective
charge carrier transportation properties. As a photocatalyst,
g-C3N4 has been widely investigated owing to its excellent
properties including layered graphite-like structure, visible light-
responsive band gap (∼2.7 eV), facile preparation, low toxicity,
and high photostability (Wang et al., 2009, 2019; Ong et al., 2016;
Wen J. Q. et al., 2017; Lu et al., 2018; Zhang et al., 2018; Li
X. B. et al., 2019). Furthermore, as an n-type semiconductor, g-
C3N4 has been selected to be coupled with p-type semiconductors
to enhance photocatalytic activity, such as in CuBi2O4/g-C3N4

(Guo et al., 2017), Bi4Ti3O12/g-C3N4 (Guo et al., 2016), and
LaFeO3/g-C3N4 (Liang et al., 2017).

EXPERIMENTAL SECTION

Synthesis of G-C3N4, Li2SnO3, and
Li2SnO3/g-C3N4 Heterojunction
g-C3N4 was prepared by annealing melamine in a muffle furnace.
Briefly, 5 g melamine was heated in an closed crucible at a
rate of 4.5◦C/min to 560◦C and maintained for 2 h. Then, the
furnace was turned off and cooled to room temperature naturally.
Pure Li2SnO3 was synthesized from a mixture of Li2CO3 and
SnO2 with a molar ratio of 3.3/3.0. The mixed reactants were
ground together within a mortar for 30min. Then, the mixture
was heated at 850◦C for 6 h. The heterojunctions Li2SnO3/g-
C3N4 (LSO-CN) with different mass ratios were prepared by a
traditional solid state method. Samples with initial mass ratios
of g-C3N4 to LSO-CN having values of 70, 80, 85, 90, and 95
wt% were prepared, and labeled as LSO-CN-70, LSO-CN-80,
LSO-CN-85, LSO-CN-90, and LSO-CN-95, respectively. Taking
LSO-CN-85 as an example, 0.03 g of Li2SnO3 powder, 0.17 g of
g-C3N4 and 1mL ethanol were mixed, and ground together for
10min. The resultant mixture was heated at 500◦C for 2 h in a
covered crucible.

Characterization
Powder X-ray diffraction (PXRD) was performed on a
PANalytical X’pert powder diffractometer equipped with a
PIXcel detector and with CuKα radiation (40 kV and 40mA).
The scanning step width of 0.01◦ and the scanning rate of
0.1◦ s−1 were applied to record the patterns in the 2θ range
of 6–90◦. A JEOL JSM-6700F field emission scanning electron
microscope (SEM) was employed to investigate the surface
morphologies. The transmission electron microscopy (TEM)
and high-angle annular dark field (HAADF) images and energy-
dispersive spectra (EDS) of Li2SnO3 were recorded by a Talos
F200S G2 Microscope to characterize the microstructures of the
samples. The UV-vis diffuse reflectance spectroscopy (UV-vis
DRS) data were collected at room temperature using a powder
sample with BaSO4 as a standard on a Shimadzu UV-3150
spectrophotometer over the spectral range 200–800 nm. The
Fourier transform infrared (FT-IR) spectra were obtained by
using a Nicolet 360 spectrometer with a 2 cm−1 resolution
in the range of 500–4,000 cm−1. Fluorescence spectra were
measured on a Hitachi fluorescence spectrophotometer F-7000
to detect the concentration of, in which the fluorescence
emission spectrum (excited at 316 nm) of the solution was
measured every 15min during the photocatalytic reaction.
The solid-state photoluminescence (PL) spectra were acquired
using a Fluorolog-TCSPC luminescence spectrometer with an
excitation wavelength of 325 nm. In the electron paramagnetic
resonance(EPR) experiments, 10mg of LSO-CN-85 sample
and 40 µ L of 5,5 Dimethyl-1-pyrroline N-oxide (DMPO)
was dispersed into 1mL of deionized water (DMPO-·OH) or
methol (DMPO-·O−

2 ), and then irradiated with visible light
(λ > 420 nm) for 5 and 10min, respectively. Electrochemical
measurement was conducted on a CHI 660E workstation. A
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Pt plate, a calomel electrode and sample LSO-CN-85 coated
on indium tin oxide (ITO) served as the counter electrode,
reference electrode and working electrode, respectively, in a
three-electrode cell. Electrochemical impedance spectroscopy
(EIS) was carried out using an alternating voltage of 5mV
amplitude over the frequency range of 105-0.1Hz with an open
circuit voltage in 0.5M Na2SO4. For the analysis of transient
photocurrent responses, a 300-W Xe lamp (cut-off λ> 420 nm;
CEL-HXF300, Beijing Aulight) and Na2SO4 were employed as
the light source and electrolyte, respectively. The Mott-Schottky
curves were measured in Na2SO4 solution and the amplitude
perturbation was 5mV with frequencies of 1,000 Hz.

Photocatalytic Activity Measurement
The photocatalytic performance of the LSO-CN composites
was evaluated by the degradation of RhB. The light irradiation
source was the above-mentioned Xe lamp with a filter (λ ≥

420 nm) laid on the top of the reaction vessel. The light source
was kept 7 cm away from the top of the reaction vessel and
the reactant solution was maintained at room temperature by
providing a flow of cooling water during the photocatalytic
reaction. Before irradiation, the photocatalyst powder (30mg)
and RhB solution (10mg L−1, 100mL) were fully stirred
in the dark for 1 h to establish the adsorption–desorption
equilibrium. Then, the reaction was exposed to the light, and
5mL samples of the suspension were extracted at a given time
interval and separated by centrifugation. The concentration of
RhB solution was determined by UV-vis spectrometry at its
maximum absorption peak of 554 nm. Typically, the trapping
experiments of active species were carried out as follows:
30mg LSO-CN-85 and dye solution (10 mg/L, 100mL) were
mixed. Then, 10mL 2-propanol (IPA), 0.1mmol disodium
ethylenediaminetetraacetic acid (EDTA), and 0.1mmol ascorbic
acid were added in sequence to trap radicals, holes (h+) and
radicals, respectively. Additionally, trapping experiments under
fluorescence spectroscopy were carried out as follows: 30mg

LSO-CN-85 and 8.3mg terephthalic acid (TA) were dissolved in
100mL NaOH solution (2mmol/L), then the solution was stirred
for 60min in the dark and irradiated by the 300-W Xe lamp.

Results and Discussion
The crystallographic structure and phase purity of the as-
synthesized samples were confirmed by PXRD. As presented in
Figure 1, one small peak at 13.1 and one strong peak at 27.4
for pure g-C3N4 were assigned to the (100) and (002) crystal
plane, respectively, in good accordance with previous reports
(Hou et al., 2013). For Li2SnO3, the XRD pattern matched well
with the monoclinic phase (JCPDS No. 00-031-0761). The two
characteristic peaks of g-C3N4 gradually decreased in intensity
with the increase of the Li2SnO3 content in the LSO-CN
composites, whereas the peak intensity of Li2SnO3 strengthened
gradually, reflecting the co-existence of Li2SnO3 and g-C3N4

in these heterojunctions. Further, the compositions of Li2SnO3,
g-C3N4 and the LSO-CN heterojunction photocatalysts were
confirmed by FT-IR. As shown in Figure 1B, for pure Li2SnO3,
characteristic absorption peaks appeared at 519, 1,430, 1,495, and
3,435 cm−1, and the peak located at 519 cm−1 was assigned to
the stretching vibration of Sn-O-Sn and Sn-O groups (Wang
et al., 2012). In the FT-IR spectrum of g-C3N4, the peak
located at 807 cm−1 was assigned to the breathing vibration
mode of triazine units. The absorption peaks in the range of
1,000–1,800 cm−1 were ascribed to the C=N and aromatic
C-N stretching vibration modes, whereas the peaks ranging
from 3,000 to 3,500 cm−1 originated from the N-H stretching
vibrations. The main characteristic peaks of the heterojunctions
LSO-CN were similar to those of pure g-C3N4 because of
the relatively weak vibration intensity of Li2SnO3. Notably,
however, compared with the g-C3N4, the characteristic peaks
at 1,241, 1,320, 1,413, and 1,631 cm−1 of sample LSO-CN-85
were shifted to higher wavenumbers, which indicated possible
interfacial interactions involving electron transfer in these LSO-
CN heterostructures (Figure S1).

FIGURE 1 | (A) XRD patterns, (B) FT-IR spectra of g-C3N4, Li2SnO3, and LSO-CN heterojunctions.
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SEM measurements were carried out to examine the
morphology of the as-synthesized photocatalysts. Evidently,
the as-prepared Li2SnO3 photocatalysts (Figure 2a) exhibited
irregular bulk morphologies with an average particle length of
∼6µm. Figure 2b presents the existence of large aggregates
of g-C3N4 with a folded thin-sheet morphology. After
combining Li2SnO3 and g-C3N4 into a heterojunction, irregular
aggregates of Li2SnO3 were observed to adhere to g-C3N4

(Figure 2c), and the SEM-EDS element mapping showed a
homogeneous distribution of Sn, O, C and N throughout the
heterojunction (Figure 2d).

The intimate contact at the heterojunction between Li2SnO3

and g-C3N4 can be further observed in the representative
HAADF-TEM image in Figure 3a. Meanwhile, the interface
formed after the addition of Li2SnO3 into the LSO-CN-85
heterojunction can be clearly seen in the HRTEM image
(Figure 3b). Notably, no distinct lattice fringes could be observed
in g-C3N4 because of its low crystallinity, whereas distinct
lattice fringes with a lattice spacing of 0.25 and 0.29 nm were
found in Li2SnO3, which were ascribed to the (131) and
(−113) planes, respectively. This kind of heterojunction system
would be expected to reduce the recombination probability of
photo-induced carriers and improve the photocatalytic activity.
Additionally, TEM-EDS elemental mapping was performed to
further authenticate the hybridization of the p-type and n-type
semiconductors. As presented in Figure 3c, the elements Sn, O,
C, and N were distributed uniformly across the assemblies, in
good accordance with the results of SEM-EDS. In summary,
the above analysis by powder XRD, FT-IR, SEM, and TEM
manifested that a heterojunction interface was successfully
formed in the composite between Li2SnO3 and g-C3N4.

The light absorption ability of the as-prepared samples was
determined via UV-vis reflectance spectroscopy to evaluate
the optical band gaps. As shown in Figure 4A, pure Li2SnO3

presented a typical absorption edge at ∼340 nm, and the
estimated band gap energy Eg was about 3.64 eV (Figure 4B,
black trace). For the pure g-C3N4 (Figure 4A, red trace), the
absorption edge was extended to 451 nm, and the corresponding
calculated optical band gap Eg was 2.75 eV (Figure 4B, red trace).
The obtained Eg values of Li2SnO3 and g-C3N4 were in excellent
accordance with previous reports (Wang et al., 2012; Guo
et al., 2017). Compared with the pure g-C3N4, when Li2SnO3

was composited with g-C3N4, the LSO-CN-85 heterojunction
displayed a blue shift of the absorption band, which would be
favorable for efficient separation of the photo-induced carriers,
thus leading to a higher photocatalytic performance.

The photocatalytic activities of the as-synthesized samples
were evaluated by RhB photodegradation under visible light
(λ ≥ 420 nm). The measured photocatalytic activities of the
LSO-CN composites are presented in Figure 5. As can be
seen in Figure 5A, without catalysts, the photodegradation of
RhB solution under visible light was almost undetectable. The
photodegradation rate in the presence of Li2SnO3 alone was
only slightly higher, attributed to its wide intrinsic optical
band gap. Meanwhile, pure g-C3N4 achieved the modest
photodegradation rate of just 36% within 60min irradiation.
However, the photocatalytic activity of g-C3N4/Li2SnO3 was

FIGURE 2 | SEM micrographs of (a) Li2SnO3, (b) g-C3N4, (c) LSO-CN-85,

and (d) element mapping of heterojunction LSO-CN-85.

FIGURE 3 | Heterojunction LSO-CN-85: (a) HAADF-TEM, (b) HRTEM, and (c)

elemental mapping.

remarkably influenced by the Li2SnO3 content, and all of the
LSO-CN composites exhibited superior photocatalytic activities
for RhB photodegradation compared with the parent compounds
g-C3N4 and Li2SnO3. Among these composites, LSO-CN-85
had the optimal photocatalytic activity, with a photocatalytic
degradation efficiency of 86% under visible light within 60min.
Figure 5B presents the photocatalytic reaction kinetics of the
as-synthesized samples, in which the experimental data can
be described by a pseudo-first order model expressed by the
following formula (Hailili et al., 2018; Xie et al., 2018):

−ln
C

C0
= kt
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FIGURE 4 | (A) UV-vis spectra of Li2SnO3, g-C3N4 and LSO-CN-85 (B) Plots of (αhν)2 vs. photon energy (hν) to calculate the band gap energies for Li2SnO3 and

g-C3N4.

FIGURE 5 | (A) Photocatalytic degradation of RhB with as-synthesized samples under visible light (λ≥ 420 nm); (B) The pseudo-first order kinetic fitting of the

photodegradation of RhB; (C) The fitted kinetic constants for RhB photodegradation; (D) Cycling experiments of LSO-CN-85 for RhB photodegradation.

where C0 and C are the RhB concentration in solution at
time 0 and t, respectively. The quantity k is the fitted kinetic
rate constant. It can be seen that the plots of the irradiation
time t against lnC0

C are nearly straight lines, which reveals
that all the photocatalysts followed pseudo-first order kinetics
in the photodegradation of the RhB solution. The kinetic rate

constants of Li2SnO3 and g-C3N4 were 0.0006 and 0.0057
min−1, respectively. For the Li2SnO3/g-C3N4 heterojunctions,
the corresponding kinetic rate constants of LSO-CN-70, LSO-
CN-80, LSO-CN-85, LSO-CN-90, and LSO-CN-95 were fitted as
0.0208, 0.0203, 0.0302, 0.0167, and 0.0108 min−1, respectively.
The kinetic rate constant of the LSO-CN-85 was the highest,
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FIGURE 6 | (A) PL spectra at the excitation wavelength of 320 nm. (B) Transient photocurrent responses. (C) EIS Nyquist plots of the as-prepared samples Li2SnO3,

g-C3N4 and LSO-CN-85.

and was ∼50 and 5 times that of pure Li2SnO3 and g-C3N4.
To evaluate the stability of the photocatalytic performance,
cycling experiments of the heterojunction LSO-CN-85 were
carried out. As indicated in Figure 5D, the photocatalytic
activity exhibited no obvious loss after four successive cycles
for the photodegradation of RhB solution, and the observed
XRD patterns during the cycling photocatalytic experiments
still matched well with pristine LSO-CN-85 (Figure S2), both
suggesting that the LSO-CN heterojunction photocatalyst was
stable during the photocatalytic reaction process.

To quantify the separation efficiency of the photo-
induced carriers, measurements of solid photoluminescence,
photocurrent responses and electrochemical impedance
spectroscopy were performed. Figure 6A presents the PL spectra
of Li2SnO3, g-C3N4 and LSO-CN-85 excited at 325 nm. For
Li2SnO3, no obvious emission peak was observed in the range of
400–600 nm, whereas for g-C3N4, strong fluorescence intensity
was centered at ∼460 nm. Generally, weaker emission intensity
of a PL spectrum manifests higher separation efficiency of
photo-induced carriers, implying a low recombination rate.
For the heterojunction LSO-CN-85, the PL intensity was
considerably lower than that of g-C3N4, indicating the strong
suppression of the recombination of photo-induced carriers in
the heterojunction.

Further, the photocurrent responses of the as-prepared
samples were determined during four on/off visible light
irradiation cycles in Na2SO4 electrolyte. As presented in
Figure 6B, g-C3N4 had a markedly low transient photocurrent
response because of the high recombination rate of photo-
induced carriers, while Li2SnO3 exhibited the lowest
photocurrent density, ascribed to its wide band gap. However,
for the LSO-CN-85 heterostructure, the photocurrent density
increased notably, indicating remarkably enhanced efficiency
in the separation and transportation of photo-induced carriers.
Next, EIS was performed to explore the conductive properties
of the as-prepared samples under visible light (Figure 6C). As
is well-known, in Nyquist plots, a smaller arc radius represents
lower impedance and higher efficiency of charge transfer.
Notably, the LSO-CN-85 heterostructure had a smaller arc
radius than the parent compounds Li2SnO3 and g-C3N4, which

further testified to the effective separation of photo-induced
carriers after forming the heterojunction. Hence, based on the
above results, the Li2SnO3/g-C3N4 heterostructure was able
to promote the transfer and separation of the photo-induced
carriers, leading to the enhancement of photocatalytic activity
under visible light.

Mott-Schottky measurement was performed to evaluate the
oxidation capability of the as-synthesized catalysts. The flat-
band potentials were calculated by the Mott-Schottky equation
(Gelderman et al., 2007; Cho et al., 2009; Boltersdorf et al., 2016):

1

C2
= (

2

εrε0Nde
)× (V − Vfb −

κBT

e
)

where C is the space charge capacitance, εr and ε0 are the
dielectric constant of the semiconductor and the permittivity in
a vacuum, e is the electronic charge, Nd is the carrier density,
and V, Vfb, κB and T are the applied voltage, flat-band potential,
Boltzmann constant and temperature, respectively. Here, Vfb was

obtained as the x-intercept of the Mott-Schottky plots ( 1
C2 = 0)

as a function of the applied potential. Meanwhile, the flat-band
potential Vfb corresponds to the conduction band potential for
an n-type semiconductor and the valence band edge potential
for a p-type semiconductor. As indicated from the positive and
negative slopes of the Mott-Schottky plots in Figures 7A,B,
Li2SnO3 was a p-type semiconductor, while g-C3N4 was of the
n-type. The corresponding Vfb of Li2SnO3 and g-C3N4 were
determined to be 2.27 and−1.1V vs. saturated calomel electrode
(SCE), respectively, and these potentials relative to SCE were
calibrated to the reversible hydrogen electrode (RHE) potentials
through the following equation (Ke et al., 2017; Lin et al., 2018;
Xu et al., 2019):

VRHE = VSCE + 0.059 pH + V0
SCE

where VRHE is the calibrated potential vs. RHE, V0
SCE equals

0.245V, andVSCE are the obtained experimental values. Thus, the
Vfb of Li2SnO3 and g-C3N4 were 2.92 and −0.45V vs. RHE after
calibration. Herein, the flat-band potential (defined as the quasi-
Fermi level) is adopted to be 0.1V below the conduction band
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FIGURE 7 | Mott-Schottky plots for (A) Li2SnO3 and (B) g-C3N4.

FIGURE 8 | Effects of a series of scavengers on the degradation of RhB

solution by heterojunction LSO-CN-85.

minimum (CBM) or above the valence band maximum (VBM)
for n-type and p-type semiconductors, respectively. Therefore,
the final VBM of Li2SnO3 and CBM of g-C3N4 were 3.02 and
−0.55V, respectively. Referring to the estimated optical band
gaps from the UV-vis DRS curves, the CBM of Li2SnO3 and VBM
of g-C3N4 were calculated to be−0.62 and 2.20V, respectively.

Trapping experiments of reactive species during the
photocatalytic process were carried out to explore the
mechanism of the LSO-CN-85 heterojunction. As shown in
Figure 8, a dramatic suppression of photodegradation efficiency
was observed after adding IPA and ascorbic acid, manifesting
that and were the main participants in the photocatalytic
reaction. In contrast, the introduction of EDTA had only a weak
influence on the photodegradation rates, demonstrating that h+

played a minor role in degrading the RhB solution. The reactive
species were also detected using fluorescence spectroscopy. The
increase of fluorescence intensity with prolonged irradiation

FIGURE 9 | DMPO spin-trapping EPR spectra for DMPO-·OH and DMPO-·O−

2

under visible light irradiation with heterojunction LSO-CN-85.

time was consistent with the results of the trapping experiments
(Figure S3). To further investigate the active species ·OH and
·O−

2 during the photocatalytic process, EPR measurements were
performed. As presented in Figure 9, it could be seen that no
EPR signal was detected in the darkness. However, the signal of
·OH and ·O−

2 were increased remarkably, when the light was on.
These results further confirmed the existence of ·OH and ·O−

2
during the photocatalytic process.

Based on the above analysis, the proposed photocatalytic
mechanism of the LSO-CN-85 heterojunction is presented
in Figure 10. As revealed by the results of the Mott-
Schottky measurements and UV-vis DRS experiments, the band
alignments of p-type Li2SnO3 and g-C3N4 before formation of
an interface were as presented in Figure 10a. First, when the
p-type Li2SnO3 and g-C3N4 were combined to form the p-n
heterostructure, the Fermi levels of Li2SnO3 tended to rise up
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FIGURE 10 | Schematic of charge transfer between p-type Li2SnO3 and n-type g-C3N4 (a) before contact and (b) after contact forming the p-n heterojunction.

and the Fermi levels of g-C3N4 tended to descend to reach
an equilibrium state. As a result, the CB edge of Li2SnO3

was higher than that of g-C3N4 and a built-in electric field
was generated in the space charge region containing negatively
charged Li2SnO3 and positively charged g-C3N4 (Figure 10b).
Second, once the Li2SnO3/g-C3N4 heterojunction was irradiated
with visible light, photo-induced electrons and holes were
generated in the g-C3N4. However, the photogenerated electrons
and holes could not be excited in the Li2SnO3 owing to its
intrinsic wide band gap. As a results, the inner electric field
at the p-n heterojunction interface will push the holes in
the VB of g-C3N4 toward the VB of Li2SnO3. Meanwhile,
the generated electrons remained in the conduction band
of g-C3N4, where the accumulated electrons reacted with
O2 adsorbed on the surface of the heterojunction to form
and, which in turn degraded RhB in the aqueous solution.
Therefore, in such a way, the photogenerated electrons and
holes were efficiently separated and the recombination rate was
decreased. In addition, the dye sensitization effect was also
considered in this system. The photoexcited electrons on the
LOMO level of RhB molecule (Dong et al., 2014) were prone
to transfer to the CB of g-C3N4, resulting in the increased
aggregation of electrons and further enhanced the performance
of the photodegradation.

CONCLUSION

A novel LSO-CN heterojunction photocatalyst, comprising
p-type Li2SnO3 and n-type g-C3N4, was successfully prepared
by a facile calcining method. The obtained heterojunctions
LSO-CN were characterized by PXRD, SEM, TEM, FT-IR,
and UV-vis DRS. The optimum photodegradation rate was
that of the heterojunction LSO-CN-85, i.e., 86% degradation
of RhB after 60min of visible light irradiation, which was
∼5 times that of g-C3N4. The photo-induced and active

radicals played the dominant role in the photocatalytic RhB
degradation over the LSO-CN-85 heterojunction photocatalyst.
Photoelectrochemical performance measurements were carried
out to elucidate the photocatalytic mechanism. The enhanced
photocatalytic performance could be attributed to the successful
preparation of a p-n heterojunction between Li2SnO3 and g-
C3N4, which greatly promoted the efficient separation of photo-
induced carriers.
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