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A novel series of dihydrofuro[3,4-d]pyrimidine (DHPY) analogs have recently been

recognized as promising HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors

(NNRTIs) with potent antiviral activity. To better understand the pharmacological

essentiality of these DHPYs and design novel NNRTI leads, in this work, a systematic

in silico study was performed on 52 DHPYs using three-dimensional quantitative

structure–activity relationship (3D-QSAR), molecular docking, virtual screening,

absorption-distribution-metabolism-excretion (ADME) prediction, and molecular

dynamics (MD) methods. The generated 3D-QSAR models exhibited satisfactory

parameters of internal validation and well-externally predictive capacity, for instance,

the q2, R2, and rpred
2 of the optimal comparative molecular similarity indices analysis

model were 0.647, 0.970, and 0.751, respectively. The docking results indicated that

residues Lys101, Tyr181, Tyr188, Trp229, and Phe227 played important roles for the

DHPY binding. Nine lead compounds were obtained by the virtual screening based on

the docking and pharmacophore model, and three new compounds with higher docking

scores and better ADME properties were subsequently designed based on the screening

and 3D-QSAR results. The MD simulation studies further demonstrated that the newly

designed compounds could stably bind with the HIV-1 RT. These hit compounds were

supposed to be novel potential anti-HIV-1 inhibitors, and these findings could provide

significant information for designing and developing novel HIV-1 NNRTIs.

Keywords: HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), dihydrofuro[3,4-d]pyrimidines, virtual

screening, molecular docking, rational drug design

INTRODUCTION

Acquired immune deficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV)
is one of the most widely spread infectious diseases worldwide. There is no effective drug or
vaccine that could cure AIDS absolutely at present. According to the report from the Joint United
Nations Program on HIV/AIDS, there were approximately 36.9 million people living with HIV
worldwide in 2018, and neighboring 1.8 million new cases and 0.94 million AIDS-related deaths
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FIGURE 1 | Chemical structures of diarylpyrimidines (DAPYs).

in 20171. Two main types of HIV (HIV-1 and HIV-2) have
been identified currently. HIV-1 is widely spread throughout the
world, whereas HIV-2 has correspondingly poor transmission
(Vasavi et al., 2019; Wang et al., 2019). In the fight against
HIV-1, highly active antiretroviral therapy (HAART) has been
considered to be a relatively successful and effective therapy in
controlling HIV-1 epidemics (Chen et al., 2011; Wang et al.,
2018).

HIV-1 reverse transcriptase (RT), as one of the most
important enzymes that convert the single-stranded RNAs into
double-stranded DNAs, is vital to restrain HIV-1 replication
and a prime target for antiviral research (Esposito et al., 2012).
Inhibitors of the HIV-1 RT are divided into nucleoside RT
inhibitors (NRTIs) and non-nucleoside RT inhibitors (NNRTIs),
and the latter binds to an allosteric site that is located about 10
Å distance from the polymerizing processing site (Zhan et al.,
2009). NNRTIs have become an indispensable portion of HAART
regimen due to its potent antiviral activity, high specificity, and
low cytotoxicity. However, single mutations such as K103N,
Y181C, V106A, and L100I in the binding site of the HIV-1
RT might result in decreased inhibitory potencies of NNRTIs,
and a double mutation (K103N+Y181C) was more frequently
discovered in the process of treating with NNRTIs (Das et al.,
2008).

Six HIV-1 NNRTIs including nevirapine, delavirdine,
efavirenz, etravirine (ETV), rilpivirine (RPV), and doravirine
have been approved by US Food and Drug Administration
for clinical use to date (Namasivayam et al., 2019). ETV and
RPV (Figure 1), which belong to diarylpyrimidine (DAPY)
derivatives that were recognized as one of the most effective
families of NNRTIs, have attracted considerable attention due
to their excellent potency against HIV-1 wild-type and mutant
strains. However, the low solubility and unsatisfactory oral

1UNAIDS. UNAIDS Data 2018. Available online at: http://www.unaids.org/en/
resources/documents/2018/unaids-data-2018

bioavailability of these analogs restrict their clinical usage in
some respects (Gu et al., 2019). Thus, novel NNRTIs with
improved pharmacokinetic profiles have been urged to design
and discover.

Recently, Kang et al. (2016, 2017) have designed and
synthesized a series of thiophene[3,2-d]pyrimidine derivatives,
among which compounds K-5a2 and 25a (Figure 1) were
two representative HIV-1 NNRTIs, exhibiting more drug-like
pharmacokinetic properties and greater inhibitory activities
compared to nevirapine and efavirenz. Compound 25a also
exhibited better inhibition against HIV-1 mutant strains than
ETV and RPV. However, compound K-5a2 did not display
excellent activity against K103N+Y181C mutant HIV-1 strains
(Kang et al., 2017; Yang et al., 2018). Further structural
modification on K-5a2 and 25a using six alicyclic-fused
pyrimidine rings led to a series of dihydrofuro[3,4-d]pyrimidine
(DHPY) derivatives with potent anti-HIV activity (Table 1)
(Kang et al., 2019).

To date, there are many computer-aided drug design methods
applied in designing and developing novel HIV-1 inhibitors
(Almerico et al., 2007). For example, the three-dimensional
quantitative structure–activity relationship (3D-QSAR) and
pharmacophore models were utilized to learn about structural
characteristics of HIV-1 NNRTIs in our previous studies (Liu
et al., 2018; Wan et al., 2018). The multivariate statistical
procedures, containing principal component and discriminant
analysis, could be as credible methods to predict the activities
of HIV-1 inhibitors by taking advantage of the vast anti-HIV
data (Almerico et al., 2003, 2006). The molecular docking
and molecular dynamics (MD) simulation were often used to
understand the binding conformations of ligands in the active
sites of HIV-1-related proteins. Furthermore, a comparative
analysis with the combination of docking and multivariate
methods was used to study the drug resistance of HIV-
1 inhibitors and to further design new compounds with
appropriate structural features (Almerico et al., 2008).
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TABLE 1 | Chemical structures of DHPYs and their actual and predicted activities as HIV-1 NNRTIs.

CoMFA CoMSIA

No. R EC50 (nM) Actual pEC50 Predicted pEC50 Residual Predicted pEC50 Residual

01b 4-SO2NH2-Ph 2.20 8.658 8.728 0.070 8.672 0.014

02 3-CONH2-Ph 10.3 7.987 8.043 0.056 8.014 0.027

03 4-SO2CH3-Ph 9.98 8.001 7.919 −0.082 7.992 −0.009

04a 4-pyridinyl 31.7 7.499 7.528 0.029 7.392 −0.107

05b 4-SO2NH2-Ph 8.69 8.061 8.046 −0.015 8.076 0.015

06 4-CONH2-Ph 10.4 7.983 8.042 0.059 8.025 0.042

07 3-CONH2-Ph 41.3 7.384 7.360 −0.024 7.365 −0.019

08 4-SO2CH3-Ph 13.9 7.857 7.923 0.066 7.860 0.003

09a 4-pyridinyl 16.0 7.796 7.500 −0.296 7.830 0.034

10 4-SO2NH2-Ph 104 6.983 7.083 0.100 7.004 0.021

11 4-CONH2-Ph 55.7 7.254 7.164 −0.090 7.242 −0.012

12 4-SO2CH3-Ph 50.7 7.295 7.214 −0.081 7.275 −0.020

13b 4-pyridinyl 16.7 7.777 7.843 0.066 7.781 0.004

14 4-SO2NH2-Ph 4.53 8.344 8.251 −0.093 8.335 −0.009

15 4-CONH2-Ph 4.76 8.322 8.317 −0.005 8.304 −0.018

16 3-CONH2-Ph 8.95 8.048 7.954 −0.094 8.053 0.005

17a 4-SO2CH3-Ph 207 6.684 6.860 0.176 7.329 0.645

18b 4-pyridinyl-Ph 2.21 8.656 8.690 0.034 8.680 0.024

19 4-SO2NH2-Ph 4.3 8.367 8.468 0.101 8.467 0.100

20a 4-CONH2-Ph 4.8 8.319 8.490 0.171 8.328 0.009

21 4-SO2CH3-Ph 5.9 8.229 8.197 −0.032 8.238 0.009

22b 4-pyridinyl 2.6 8.585 8.613 0.028 8.637 0.052

23a 4-NO2-Ph 8.0 8.097 8.103 0.006 8.226 0.129

24 3-CONH2-Ph 27.7 7.558 7.500 −0.058 7.547 −0.011

25a 4-SO2NH2-Ph 37.2 7.429 7.494 0.065 7.263 −0.166

26a,b 4-SO2Me-Ph 3.8 8.420 8.406 −0.014 7.714 −0.706

27 4-NO2-Ph 11.5 7.939 7.902 −0.037 7.898 −0.041

28 4-NH2-Ph 8.4 8.076 7.889 −0.187 8.067 −0.009

29 4-NHSO2Me-Ph 11.2 7.951 8.043 0.092 7.987 0.036

30 4-SO2NH2-Ph 2.8 8.553 8.562 0.009 8.543 −0.010

31b 4-CONH2-Ph 1.6 8.796 8.768 −0.028 8.812 0.016

32 4-SO2CH3-Ph 1.9 8.721 8.677 −0.044 8.629 −0.092

33 4-pyridinyl 2.3 8.638 8.701 0.063 8.736 0.098

34 4-NO2-Ph 7.4 8.131 8.075 −0.056 8.178 0.047

35a 3-CONH2-Ph 7.8 8.108 7.971 −0.137 8.238 0.130

36b 4-SO2NH2-Ph 1.1 8.959 8.867 −0.092 8.941 −0.018

37 4-CONH2-Ph 6.1 8.215 8.387 0.172 8.270 0.055

(Continued)
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TABLE 1 | Continued

CoMFA CoMSIA

No. R EC50 (nM) Actual pEC50 Predicted pEC50 Residual Predicted pEC50 Residual

38a 4-SO2CH3-Ph 4.9 8.310 8.603 0.293 8.479 0.169

39 4-pyridinyl 1.8 8.745 8.642 −0.103 8.452 −0.293

40 4-NO2-Ph 14.5 7.839 7.953 0.114 7.858 0.019

41a 3-CONH2-Ph 2.0 8.699 8.060 −0.639 8.437 −0.262

42 4-SO2NH2-Ph 6.0 8.222 8.145 −0.077 8.169 −0.053

43b 4-CONH2-Ph 6.0 8.222 8.182 −0.040 8.218 −0.004

44a 4-SO2CH3-Ph 8.0 8.097 8.278 0.181 8.308 0.211

45 4-pyridinyl 8.6 8.066 8.033 −0.033 8.188 0.122

46 4-NO2-Ph 77.4 7.111 7.330 0.219 7.106 −0.005

47a 3-CONH2-Ph 6.5 8.187 7.792 −0.395 8.369 0.182

48b 4-SO2NH2-Ph 2.7 8.569 8.588 0.019 8.540 −0.029

49 4-CONH2-Ph 3.0 8.523 8.523 0.000 8.434 −0.089

50 4-SO2CH3-Ph 3.9 8.409 8.453 0.044 8.451 0.042

51 4-NO2-Ph 8.6 8.066 8.024 −0.042 8.056 −0.010

52a 3-CONH2-Ph 5.1 8.292 8.087 −0.205 8.429 0.137

aTest set compounds used for 3D-QSAR models.
bThe compounds used for pharmacophore models.

CoMFA, comparative molecular field analysis; CoMSIA, comparative molecular similarity indices analysis; DHPY, dihydrofuro[3,4-d]pyrimidine; NNRTIs, non-nucleoside reverse

transcriptase inhibitors.

To further explore the essential structural and
pharmacological features of the novel DHPYs as HIV-1
NNRTIs in this study, the combination of 3D-QSAR models,
molecular docking, and MD simulation was applied to analyze
the 3D-QSARs of these DHPYs and their binding modes
in the HIV-1 RT. We also utilized the pharmacophore- and
docking-based virtual screening to obtain some hit compounds
from ZINC database and subsequently designed new potential
NNRTIs according to the screening and 3D-QSAR results.
Molecular docking and MD simulations were utilized to identify
the binding of these new NNRTIs and the stabilization of the
protein–ligand complexes.

MATERIALS AND METHODS

Preparation of Small Molecules
A total of 52 DHPY derivatives were collected from the published
literature (Kang et al., 2019) for performing the molecular
modeling study. Their structures, EC50, and corresponding
pEC50 (− logEC50) values were listed in Table 1. All compounds
were stretched by SYBYL-X 2.1 (Tripos Inc., St. Louis, USA)
running on Windows 7 workstation and minimized with
Gasteiger–Hückel charges, the termination of 0.005 kcal/(mol·Å)
and max iterations of 1,000 by Powell method. Other parameters
were set to default values.

Three-Dimensional Quantitative
Structure–Activity Relationship Model
The 3D-QSAR model could help to find a significant correlation
between the biological activities of drug molecules and their
structures (Borisa and Bhatt, 2015). In this study, comparative

molecular field analysis (CoMFA) and comparative molecular
similarity indices analysis (CoMSIA) methods were used to
construct 3D-QSAR models. All compounds were randomly
divided into a training set (39 compounds) to generate CoMFA
and CoMSIA models and a test set (13 compounds) to confirm
the reliability of the generated models (Table 1). The number
of test set compounds should be kept in the range from 1/4
to 1/3 of the total compounds. Compound 36 with the highest
activity was used as a template, and all training set compounds
were superimposed on it by the common skeleton alignment
(Figure 2A).

For generating a reasonable model, the internal predictive
ability was evaluated by partial least squares (PLS) regression
method using the SAMPLS. The leave-one-out (LOO) cross-
validation procedure was applied to determine the optimum
number of components (ONC) and the highest cross-validation
correlation coefficient (Q2) (Bush and Nachbar, 1993), and non-
cross-validated analysis was applied to compute the non-cross-
validated correlation coefficient (R2), standard error of estimate
(SEE), and the Fisher test values (F) (Li et al., 2014). External
validation parameters were also essential for further assessing
the predictive capability of 3D-QSAR models, such as r0

2, k,
r0

′2, and k
′

. r0
2, and k were the corresponding correlation

coefficient and the slope value of linear regression equation,
respectively, for predicted vs. actual activities when the intercept
was set to zero, and r0

′2 and k
′

were for actual vs. predicted
activities, respectively. In addition, rm2, rm

′2, △rm
2, rm2, and the

root mean square error (RMSE) as traditional data were also
calculated to appraise the predictive ability. A model, which met
the requirements of [(r2−r0

2)/r2] or [(r2−r0
′2)/r2]< 0.1, 0.85≤

k≤1.15 or 0.85≤ k
′

≤ 1.15,△rm
2 < 0.2 and rm2 > 0.5, especially
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FIGURE 2 | The molecular alignment using compound 36 as a template. (A) The alignment results of the training set compounds used for the three-dimensional

quantitative structure–activity relationship (3D-QSAR) models. (B) The chemical structure of compound 36, and the red region represents the common scaffold.

the predictive correlation rpred
2 > 0.6, would be deemed to

possess well-predictive capability and reliability (Caballero, 2010;
Ojha et al., 2011; Roy et al., 2016). The parameters were calculated
according to our previous studies (Wang et al., 2018; Gao et al.,
2019; Liu et al., 2019).

Pharmacophore Model
Ten compounds (Table 1) with high activities and diverse
structures were selected to generate pharmacophore model using
Genetic Algorithm with Linear Assignment of Hypermolecular
Alignment of Database (GALAHAD) module in SYBYL-
X 2.1. GALAHAD method mainly contained two steps.
The ligands are neatly aligned to each other in internal
coordinate space, and then the produced conformations as
rigid bodies are aligned in Cartesian space. In the process
of running GALAHAD, the parameters of population
size, max generation, and molecules required to hit were
automatically set according to the experiment activity
data. Finally, 20 models with diverse parameters including
SPECIFICITY, N_HITS, STERICS, HBOND, and Mol_Qry
were generated.

In order to further validate the ability of the pharmacophore
model, a decoy set method was used for evaluating the generated
model. The decoy set database was comprised of 6,234 inactive
compounds downloaded from the DUD-E database (http://dud.
docking.org/) (Mysinger et al., 2012) and 42 active compounds
from Table 1 except the compounds used for constructing the
pharmacophore model. The enrichment factor (EF) and Güner–
Henry (GH) scores were considered as metrics to assess the
reliability of the pharmacophore models. The GH score took the
percent yield of actives in a hit list (%Y, recall) and the percent
ratio of actives in a database (%A, precision) into account. While

the GH score is ranging 0.6–1, the pharmacophore model would
be regarded as a rational model (Kalva et al., 2014).

%Y = Ha/Ht × 100% (1)

%A = Ha/A × 100% (2)

EF = (Ha/Ht)/(A/D) (3)

GH = (Ha (3A+Ht))/(4AHt)× (1− (Ht −Ha)/(D− A))

(4)

where Ha is the number of active molecules in the hit list, Ht is
the hit compounds from the decoy set database, A is the total
number of active compounds in the database, and D is the sum
of the database.

Molecular Docking
The crystal structures of wild-type HIV-1 RT (PDB ID: 6C0J) and
K103N/Y181C mutant RT (PDB ID: 6C0R) were downloaded
from the Protein Data Bank and were used for the docking
study. While preparing the two proteins, hydrogen atoms
were added after the crystallographic ligands were extracted
and all water molecules except for W936 were removed. In
order to verify the rationality and reliability of the docking
method, the extracted ligands (K-5a2 and 25a) were first
redocked into the corresponding active site using the Surflex-
Dock Geom module of SYBYL-X 2.1 with default parameters.
All compounds were then docked into the binding pocket
as the same pattern. Twenty conformations with different
scores were produced for each docked compound, and the
highest-score conformation of each compound was chosen for
further study.
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Virtual Screening
The selected GALAHAD model was converted into a UNITY
query for virtual screening from ZINC database, and the “Flex
search” was employed to serve as query type. Lipinski’s rule of
five as the primary filter was utilized to further decrease screened
compounds. The QFIT score, whose value was between 0 and
100, reflected how closely the hit compounds matched with
query. In consideration of the time and accuracy of screening,
two ways of molecular docking including Surflex-Dock and
Surflex-Dock Geom were implemented to verify the potential hit
compounds obtained from the pharmacophore-based screening.

ADME Analysis
ADME properties are essential for selecting and evaluating
lead candidates. The online tool Swiss ADME (http://
www.swissadme.ch/index.php) was applied to calculate the
pharmacokinetic properties of new NNRTI candidates, such as
lipophilicity, water solubility, and blood–brain barrier (BBB)
permeability (Daina et al., 2017). The synthetic accessibility was
also predicted by the score from 1 to 10, in which a score of
1 suggested the synthetic route was relatively easy and a score
closer to 10 indicated the compound had complex structure and
was tough to be synthesized.

Molecular Dynamics Simulation
To further explore the dynamics protein–ligand interactions,
10 ns MD simulations were performed on compound 36 and
newly designed inhibitors using GROMACS2016.5 software with
AMBER 99SB force field. Before starting MD simulation, several
important procedures should be performed to generate a steady
environment. First, it was very momentous to generate the

topology file of ligand by a acpype tool, which was on the basis
of Python. Second, a 12 Å × 12 Å × 12 Å cubic box full of water
models (transferable intermolecular potential with 3 points) was
set to create the aqueous environment for the whole system. Nine
chloride ions were added into the box for the sake of keeping
the state of charge neutrality. In order to satisfy a tolerance
of 10 kJ/mol, the steepest descent method for 50,000 steps
was carried out for minimization without constraint to avoid
possible collision between atoms. NVT at 300K using V-rescale
for 100 ps and NPT at 1 atm pressure using Parrine–Rahman
for 100 ps were successively equilibrated to maintain proper
temperature and pressure for the system. At last, the 10 ns MD
simulation was run and the simulation step length was defined
as 2 fs.

RESULTS AND DISCUSSION

Statistical Analysis of the Comparative
Molecular Field Analysis and Comparative
Molecular Similarity Indices Analysis
Models
The classical parameters of the CoMFA and CoMSIA models
were summarized in Table S1. In general, the q2 and R2 should
be more than 0.5 and 0.9, respectively, and the SEE and F-
value should be rational. As for the CoMSIA models, there were
different combinations of five fields as shown in Table S1. The
model generated by the combination of the steric (S), electrostatic
(E), hydrogen-bond acceptor (A), hydrogen-bond donor (D),
and hydrophobic (H) fields was the optimal CoMSIA model
because of its satisfactory q2, R2, SEE, F, and rpred2 values. The

TABLE 2 | External validation results of the CoMFA and CoMSIA models.

Validation parameters RMSE MAE r2 r0
2 r0

′2 r2−r0
2

r2
k k

′

rm
2 rm

′2 △rm
2 rm2

CoMFA 0.263 1.608 0.750 0.746 0.709 0.006 1.007 0.992 0.700 0.597 0.103 0.648

CoMSIA 0.302 0.549 0.655 0.653 0.533 0.004 0.996 1.003 0.622 0.426 0.196 0.524

CoMFA, comparative molecular field analysis; CoMSIA, comparative molecular similarity indices analysis; RMSE, root mean square error; MAE, mean absolute error.

FIGURE 3 | Plots of actual vs. predicted pEC50 values of all dihydrofuro[3,4-d]pyrimidines (DHPYs) based on the comparative molecular field analysis (CoMFA) (A)

and comparative molecular similarity indices analysis (CoMSIA) (B) models.
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contributions of S, E, A, D, and H fields were 4.1, 19.7, 29, 33.4,
and 13.8%, respectively, indicating that A and D fields played
more important roles. The q2 of the CoMFA andCoMSIAmodels
were 0.647 and 0.735, respectively, which indicated that both
models were rational. The R2 values of the CoMFA and CoMSIA
models were 0.970 and 0.982, respectively, and the rpred2 values
were 0.751 and 0.672, respectively, suggesting that both models
had excellent predictive abilities. In addition, it was common for
the CoMFA and CoMSIA models that the E field contribution
was more than the S field contribution, which illustrated that the
E field could be more significant than the S field in the effect on
compound activity.

External validation parameters could further confirm the
reasonability of the constructed CoMFA and CoMSIA models.
As shown in Table 2, all external validation results of the CoMFA
and CoMSIA models were in the rational range, for example, the
rm2 values of the CoMFA and CoMSIA model were 0.648 and

0.524, respectively. The statistical results of Table S1 and Table 2

proved that the generated 3D-QSAR models were reliable and
possessed excellent predictive capacity. Figure 3 showed the plots
of actual vs. predicted pEC50 values for all compounds based on
the CoMFA and CoMSIA models. All compounds were evenly
distributed in the two sides of the trend lines, which indicated
that the 3D-QSAR models had excellent abilities to predict the
activities of DHPYs. The predictive capacity of the CoMFAmodel
seems to be better than that of the CoMSIA model.

Contour Maps of the Comparative
Molecular Field Analysis and Comparative
Molecular Similarity Indices Analysis
Models
The contour maps of the CoMFA and CoMSIA models could
visually provide significant information for the QSARs of

FIGURE 4 | Contour maps of steric and electrostatic fields with compound 36 as a reference in the comparative molecular field analysis (CoMFA) (A,B) and

comparative molecular similarity indices analysis (CoMSIA) (C,D) models.
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DHPYs. Compound 36 with the highest activity was utilized
as a reference molecule to analyze the contour maps of both
models. As shown in Figure 2B, the structure of compound
36 consisted of the common scaffold, Tolerant Regions
I and II.

Figure 4 showed the S and E field contourmaps of the CoMFA
and CoMSIA models. In the S field, the green contour indicates
that a bulky substituent at this position is beneficial for the
activity, whereas a yellow block corresponds to a region where
a small group is favorable for the activity. For the E field, a
blue contourmeans that introduction of electropositive groups in
this region may improve the biological activity, whereas the red
contour indicates that electronegative groups may be beneficial
for the activity. As can be seen from Figures 4A,C, the S field
contours of the CoMFA model were consistent with those of
the CoMSIA model. The yellow contour in the Tolerant Region
I indicated that a relatively small group at this region would
be beneficial for enhancing the activity, which might explain
why the actual activities of compounds 30–41 were greater
than those of compounds 25–29. On the other hand, in the
Tolerant Region II, there was a green contour at the terminal,
suggesting that introduction of a bulky groupwasmore favorable,
which was in agreement with the activity orders: 18 (pyridine-
4-yl-Ph) > 14 (4-SO2NH2-Ph) > 17 (4-SO2CH3-Ph), 19 (4-
SO2NH2-Ph) > 21 (4-SO2CH3-Ph) > 23 (4-NO2-Ph), and 42

(4-SO2NH2-Ph) > 44 (4-SO2CH3-Ph) > 46 (4-NO2-Ph). At the
para-position of the benzene ring of Tolerant Region II, two
yellow contours indicated that small substituents here might
be favorable for the activity, for instance, 3 (4-SO2CH3-Ph)
> 2 (3-CONH2-Ph) > 4 (pyridine-4-yl), 8 (4-SO2CH3-Ph) >

9 (pyridine-4-yl), 31 (4-CONH2-Ph) > 33 (pyridine-4-yl). In
Figures 4B,D, it can be clearly observed that a big blue contour
was located at the terminal of Tolerant Region II, indicating that
the positively charged group might be beneficial for the activity,
such as 1 (4-SO2NH2-Ph) > 3 (4-SO2CH3-Ph), 15 (4-CONH2-
Ph) > 17 (4-SO2CH3-Ph), and 19 (4-SO2NH2-Ph) > 21 (4-
SO2CH3-Ph). In addition, a red contour was located at the para-
position of the benzene ring of Tolerant Region II, indicating that

electronegative groups were beneficial for the antiviral activity at
this position.

The H, D, and A field contour maps of the CoMSIA
models were shown in Figure 5. In the H field, yellow contours
represent the favorable zone of hydrophobic groups, whereas
white contours show the unfavorable zone of hydrophobic
groups. As shown in Figure 5A, a huge white near Tolerant
Region I indicated that this place was appropriate to introduce
hydrophobic groups. In addition, there was a white contour
at the benzene ring of Tolerant Region II, which illustrated
that hydrophobic substituents here were beneficial. The H field
results were in good consistency with those of the previous study
(Kang et al., 2019) that DHPYs with hydrophobic groups at
corresponding positions exhibited promising activities. As for
the D field, cyan suggests hydrogen-bond donor groups are
useful for enhancing the activity, whereas purple is opposite.
In Figure 5B, a cyan contour close to the linker atom of the
pyrimidine ring and the right wing showed that the hydrogen-
bond donor might be helpful for the activity at this position.
There was also a cyan contour at the terminal of Tolerant Region
II, indicating that hydrogen-bond donor groups were beneficial
here, for example, 28 (4-NH2-Ph) > 27 (4-NO2-Ph). A purple
contour near the para-position of the benzene ring of Tolerant
Region II manifested that the place might not be suitable for
hydrogen-bond donor groups, such as 1 (4-SO2NH2-Ph) > 2 (3-
CONH2-Ph). In the A field, beneficial and unbeneficial contour
of hydrogen-bond acceptors are colored in magenta and red,
respectively. In Figure 5C, a red contour at the terminal of
Tolerant Region II signified that the hydrogen-bond acceptors
at this position were disadvantageous for the activity, and two
magenta contours at the para-position of the benzene ring of
Tolerant Region II illustrated that the hydrogen-bond acceptor
was advantageous. In short, introduction of hydrogen-bond
acceptors at the para-position of the benzene ring of Tolerant
Region II and hydrogen-bond donors at the terminal of Tolerant
Region II might be advantageous for the inhibitory activity.

In a word, the contour maps of 3D-QSAR models presented
that a small and/or hydrophobic group in Tolerant Region I;

FIGURE 5 | Contour maps of hydrophobic (A), hydrogen-bond donor (B), and hydrogen-bond acceptor (C) fields in the optimal comparative molecular similarity

indices analysis (CoMSIA) model.
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a small, electronegative and/or hydrogen-bond accepter group
at the para-position of the benzene ring of Tolerant Region II;
and/or a bulky, electropositive and/or hydrogen-bond donor
group at the terminal of Tolerant Region II would be favorable
for increasing the activity, respectively.

Pharmacophore Model
The statistical parameters of 20 pharmacophore models
generated by GALAHAD were listed in Table S2. As for
pharmacophore models, it could be served as the query for
a UNITY flex search only if the SPECIFITY value was more
than 5. The identical value of the PARETO column indicated
that all models were statistically equivalent. In general, a good
pharmacophore model should have small ENERGY and high
SPECIFITY, N_HITS, STERICS, and MOL_QRY (Caballero,
2010). Among 20 models, model_20 was regarded as the
optimal model by the comprehensive consideration of the
abovementioned parameters.

The pharmacophore features of the best GALAHAD
Model_20 were displayed in Figure 6, including three
hydrophobic centers (HYs, cyan), four hydrogen-bond acceptor
atoms (AAs, green), and one hydrogen-bond donor atom (DAs,
magenta). All features were located in the left and middle

structures of DHPYs. One of the hydrogen-bond acceptor
atom at the connecting atom of the left ring indicated that
hydrogen-bond acceptor groups might increase the inhibitory
activities at this position, which was consistent with our
previous study (Wan et al., 2018). The other hydrogen-bond
acceptor atoms were located at the nitrogen atoms of the
pyrimidine ring and the cyano group of the left benzene
ring. Moreover, the hydrophobic center of the left phenyl
ring was located at the hydrophobic pocket of the HIV-1
RT, which was also in good consistency with our previous
studies (Wan et al., 2018). The right linker atom was the
hydrogen-bond donor atom, which suggested that the hydrogen-
bond donor atom at this position was likely to improve the
anti-HIV-1 activities, which was in good agreement with the
3D-QSAR results.

For the optimal pharmacophore, there were 70 compounds
screened from the decoy database, and 42 of them were active
molecules. In addition, the calculated values of %Y, %A, EF,
and GH were 60%, 100%, 89.66, and 0.70, respectively, which
met the requirements that the EF value should be more than
1 and the GH value should be in the range from 0.6 and 1.
These statistical results indicated that model_20 had excellent
abilities of recognizing the false positives and distinguishing the

FIGURE 6 | The best pharmacophore model with the alignment of 10 training set compounds. The model includes four hydrogen-bond acceptor atoms (green), three

hydrophobic centers (cyan), and one hydrogen-bond donor atom (magenta).

FIGURE 7 | The redocked results of K-5a2 in the binding pocket of the HIV-1 reverse transcriptase (RT) (PDB: 6C0J). (A) The superimposition of the cognate K-5a2

(yellow) and the redocked K-5a2 (orange). (B) The blue region represents the surface of the binding pocket.
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similar structures of active and inactive compounds from the
database. Thus, model_20 could be used for the next virtual
screening studies.

Molecular Docking
Molecular docking was performed to investigate the binding
modes of DHPYs at the active site of the HIV-1 RT. To validate
the reliability of the molecular docking method, the cognate
ligand (K-5a2) was redocked into the binding pocket of the
HIV-1 RT (PDB: 6C0J), and the result was shown in Figure 7A.
The original crystallographic and redocked conformations were
almost superposition, and the root mean square deviation
(RMSD) value between them for all atoms was 0.38 Å, which
suggested that the docking method and used parameters were
reasonable (Khan et al., 2010). As seen from Figure 7A, the
two ligands adopted a similar binding pattern, in which the left
benzene ring was located at the hydrophobic region consisting of
residues Tyr181, Tyr188, Trp229, Phe227, and Val106 and could
form π-π stacking interactions with the aromatic residues of
them. In addition, it was noteworthy that the two ligands not
only formed hydrogen-bond interactions with residues Lys101,
Lys104, and Val106, respectively, but also interacted with residues
Lys103 and Pro236 via a network of hydrogen bonds by a water
molecule (W936). Those results were in good consistency with
previous reports (Yang et al., 2018; Kang et al., 2019). At the same
time, the hydrogen bond formed between the C = O of Lys101
and the NH of the right linker atom indicated that hydrogen-
bond donor atoms were beneficial in the place, which was a
good agreement with the results of pharmacophore and 3D-
QSAR models. As shown in Figure 7B, 52 DHPYs embedded
in the binging pocket by the similar U-shaped conformations,
suggesting the accuracy of the docking method.

Virtual Screening
To discover and design novel HIV-1 NNRTI leads, a multistage-
filtered virtual screening was performed based on the constructed
pharmacophore model and the established molecular docking
method (Figure 8). First, a total of 19,740 compounds were
obtained from ZINC database by the pharmacophore-based
virtual screening and the restriction with Lipinski’s rule of
five. Then, 3,451 compounds were selected on the basis of
the QFIT score of more than 50. In order to enhance the
efficiency and accuracy of docking screening, the preliminary
docking by Surflex-Dock and the second round docking by
Surflex-Dock Geom were performed. The results indicated
that only 20 compounds met the requirements simultaneously.
In view of the predicted ADME properties of the screened
20 compounds, nine compounds were selected to regard as
NNRTI hits, whose structures and docking scores were shown
in Table 3. Furthermore, the interactions between the screened
compounds and the HIV-1 RT were shown in Table S3.
Nine screened compounds formed hydrophobic interactions
with residues Tyr181, Tyr188, Phe227, Trp229, and Val106
and π-π stacking interactions with the aromatic residues of
them. Except for ZINC_91409938, which formed a hydrogen-
bond network with the residues Pro236 and Lys103 by a
water molecule (W936), the screened compounds also formed

FIGURE 8 | Representation of the overall virtual screening process.

hydrogen bonds with the key residues Lys101 and Glu138. The
docking results indicated that nine screened compounds might
be potential NNRTIs.

Newly Designed Non-nucleoside Reverse
Transcriptase Inhibitors
According to the structural characteristics of DHPYs and the
results of the 3D-QSAR models and molecular docking, we
further designed three new compounds (N1, N2, and N3;
Table 4) using ZINC_73709240 as a lead compound. The 3D-
QSAR contour maps indicated that the hydrogen-bond acceptor
at the para-position of the benzene ring of Tolerant Region
II and the hydrogen-bond donor at the terminal of Tolerant
Region II were favorable to the inhibitory activity. Therefore,
we designed compounds N1, N2, and N3 by adding amide or
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TABLE 3 | Chemical structures and docking scores of the screened hit compounds as novel HIV-1 NNRTIs from ZINC database.

Compound No. Structure Docking score

ZINC_57841658 9.43

ZINC_60381334 9.02

ZINC_63070905 9.56

ZINC_69532225 9.12

ZINC_71894576 9.00

ZINC_73709240 9.64

ZINC_89506228 9.29

(Continued)
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TABLE 3 | Continued

Compound No. Structure Docking score

ZINC_91409938 9.30

ZINC_97995063 9.22

NNRTIs, non-nucleoside reverse transcriptase inhibitors.

TABLE 4 | Chemical structures and docking scores of the newly designed HIV-1 NNRTIs.

Compound No. R Docking score

Wild-type HIV-1 RT Mutant HIV-1 RT (K103N+Y181C)

N1 13.83 10.60

N2 12.59 12.03

N3 12.93 12.88

NNRTIs, non-nucleoside reverse transcriptase inhibitors; RT, reverse transcriptase.

carboxyl groups as hydrogen-bond donors or acceptors at these
positions (Table 4).

All designed compounds were then docked into the binding
site of HIV-1 RT by Surflex-Dock Geom method. The docking

scores of compounds N1, N2, and N3 were 13.83, 12.59, and
12.93, respectively, and higher than that of compound 36 (11.86),
suggesting that the interactions between the newly designed
compounds and the protein might be more stable. As shown
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FIGURE 9 | The docked results of compounds 36 (A), N1 (B), N2 (C), and N3 (D) in the binding pocket of wild-type HIV-1 reverse transcriptase (RT) (PDB: 6C0J).

in Figure 9, the binding modes of compounds N1, N2, and N3

with the protein were basically similar to that of compound
36. The left wings of four ligands were all located in the
hydrophobic region and formed π-π stacking interactions with
residues Tyr181, Tyr188, Trp229, and Phe227, and the positive
nitrogen of their right wing formed hydrogen-bond networks
with Lys103 and Pro236 through a water molecule (W936),
which was in good agreement with the docking results. However,
there were some differences for four compounds in terms of
protein–ligand interactions. As for compound 36, it formed three
hydrogen bonds with Lys101 (Lys101-O. . .H-N-, 2.8 Å) and
Val106 (Val106-NH. . .O=C, 3.0 Å; -O. . .H-N-, 2.7 Å), which was
consistent with the redocked results of K-5a2. As can be seen
from Figures 9A,B, compounds N1 and N3 not only formed
hydrogen bonds with Glu138 and Lys103 but also had hydrogen
bonds with Ile234 and/or Tyr318. Another finding was that five
hydrogen bonds were formed between residues Glu138, Lys103,
Lys101, Tyr318, and His235 with compound N2. The docking
results revealed that the four compounds interacted with key
amino acid residues (Lys101 and Glu138), and several new
hydrogen bonds between three newly designed compounds and
residues Lys103, Ile234, Tyr318, and His235 were found. These
results suggested that compounds N1, N2, and N3 might be the
potential inhibitors with improving anti-HIV-1 activities.

To further explore whether the newly designed compounds
could inhibit mutant HIV-1 RT, they were also docked into
the mutant (K103N+Y181C) RT (PDB ID: 6C0R) (Figure S1;
Table 4). The co-crystallizing ligand (25a) of 6C0R as a reference

compound was also redocked into the binding site as displayed
in Figure S1A. Kang et al. (2017) reported that the inhibitory
activity of compound 25a (EC50 = 5.5 ± 0.81 nM) against the
K103N+Y181C mutant RT was better than that of RPV (EC50

= 11 ± 1.9 nM). Our docking results indicated that compound
25a formed four hydrogen bonds with residues Lys101, Val106,
Lys104, and Tyr188, respectively, and the π-π stacking and/or
hydrophobic interactions were also found with residues Trp229,
Phe227, and Tyr188. In addition, the residue Tyr183 played
an important role in the binding site of the mutant RT and
could offset the loss of π-stacking and hydrophobic interactions
between inhibitors and residue Tyr181 as it was mutated to
Cys181 (Das et al., 2008).

The docking scores of three hit compounds were relatively
high (Table 4), especially compoundsN2 andN3, whose docking
scores were higher than 25a (12.02), indicating that the newly
designed molecules might have better inhibitory activity against
the mutant RT. It was observed that the hydrogen bond with
residue Lys101, π-π stacking, and hydrophobic interactions
still existed for three complexes (Figure S1). However, the
difference was that compounds N1, N2, and N3 could form
a direct hydrogen bond with the mutated residue Asn103,
which indicated that these designed molecules could bind well
in the binding pocket with mutations. These docking results
demonstrated that the three hit compounds might have the
ability to inhibit the HIV-1 RT mutant. However, the actual anti-
HIV activities of the three hits are necessary to be identified in
future studies.
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TABLE 5 | Predicted absorption-distribution-metabolism- excretion (ADME) parameters and drug-like properties of compound 36 and the newly designed inhibitors

(N1–3).

Properties Parameters Compounds

36 N1 N2 N3

Physicochemical MWa (g/mol) 532.66 482.58 481.59 482.57

Properties Rotatable bonds 7 11 10 10

HBA 8 8 7 8

HBD 2 3 2 2

TPSAb 142.61 133.91 121.88 116.09

Lipophilicity iLOGP 3.82 3.29 3.38 3.60

XLOGP3 4.17 0.04 0.92 1.57

WLOGP 4.33 0.63 1.72 2.32

MLOGP 2.06 0.44 1.42 1.82

Silicos IT logP 3.51 2.08 3.09 3.33

Consensus logP 3.58 1.30 2.11 2.53

Water Solubility ESOL Class MSc Sd S S

Ali Class PSe S S S

Silicos IT Class PS MS MS MS

Pharmacokinetics GIf absorption low high high high

BBBg permeat No No No No

CYP1A2 inhibitor No No No No

CYP2C19 inhibitor Yes No No No

CYP2C9 inhibitor Yes No No No

CYP2D6 inhibitor Yes No Yes Yes

CYP3A4 inhibitor Yes No Yes Yes

Druglikeness Lipinski violations 1 0 0 0

Ghose violations 2 2 2 2

Egan violations 1 1 0 0

Muegge violations 1 1 0 0

Bioavailability Score 0.55 0.55 0.55 0.56

Medicinal Chemistry PAINSh alerts 0 0 0 0

Brenk alerts 0 1 0 0

Leadlikeness violations 2 2 1 2

Synthetic accessibility 4.68 4.68 4.12 4.10

aMolecular weight.
bTotal polar surface area.
cModerately soluble.
dSoluble.
ePoorly soluble.
fGastrointestinal.
gBlood–brain barrier.
hPan assay interference compounds.

ADME Analysis
ADME prediction studies were carried out for compound 36

and three newly designed NNRTIs (N1, N2, and N3). The
results were depicted in Table 5. In this program, five inhibitors
of cytochrome P450 (CYP) enzymes were predicted. CYPs,
which primarily mediated oxidation of various compounds and
participated in physiological and pathophysiological processes,
were the major phase I drug-metabolizing enzymes and
responsible for metabolism of about 75% of all marketed
drugs (Moroy et al., 2012). In the family of CYP enzymes,
the CYP3A4 was the most important enzyme on account of
metabolizing ∼50% of all drugs by itself, and the CYP2C9

enzyme mainly metabolizes several clinically used drugs such
as celecoxib and diclofenac (Daly et al., 2017). As shown in
Table 5, compounds N1, N2, and N3 could be easier to be
metabolized compared with compound 36. In addition, three
newly designed compounds showed high human gastrointestinal
absorption (HIA), indicating that they might have a high chance
of brain penetration (Li et al., 2019). The topological polar surface
area (TPSA) values of compound N1 and N3 were in the range
from 20 to 130 Å2, which suggested that they possessed good
transport properties in vivo. Notably, the synthetic accessibilities
of designed compounds were lower than 5, suggesting that
they were relatively easy to be synthesized. On the whole, the
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ADME properties of the three newly designed compounds were
superior to that of compound 36, especially in pharmacokinetics,
druglikeness, andmedicinal chemistry properties. Thus, the three
newly designed compounds might be supposed to have good
pharmacokinetics properties.

Molecular Dynamics Simulation
As for newly designed molecules, their stability of protein–ligand
interactions should be taken into account. Thus, 10 ns MD
simulations were performed for four complex systems, 6C0J-
36, 6C0J-N1, 6C0J-N2, and 6C0J-N3, respectively. The RMSD
values of backbone atoms for the four complexes were displayed
in Figure 10A. During the 10 ns MD simulations, the RMSD

values of the four systems were relatively stable and were lower
than 0.3 nm. Figure 10B showed the RMSD values of the four
ligands during 10 ns MD simulations. The four ligands had
similar fluctuations and reached equilibrium at approximately
0.5 ns. The root mean square fluctuation (RMSF) profiles of the
four complexes (Figures 10C,D) also exhibited similar trends
during the MD simulations. It should be pointed out that
the key residues, Lys101 of chain A and Glu138 of chain B,
had relatively lower RMSF values. As shown in Figure 10E,
the radius of gyration (Rg) values, which could explain the
compactness of the protein throughout simulation, basically
maintained at about 3.5 nm, indicated that greater changes of
the conformations of protein did not take place. In addition,

FIGURE 10 | The 10 ns molecular dynamics (MD) results of compounds 36, N1, N2, and N3 in wild-type HIV-1 reverse transcriptase (RT). (A) Root mean square

deviation (RMSD) values of backbone atoms of the protein. (B) RMSD values of the ligands. (C) Root mean square fluctuation (RMSF) values of the chain A. (D) RMSF

values of the chain B. (E) Radius of gyration (Rg) values of backbone atoms. (F) The total number of hydrogen bonds between the ligands and the protein.
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the intermolecular hydrogen bonds could be used to analyze
the protein–ligand interaction. As shown in Figure 10F, the
hydrogen-bond numbers of 6C0J-36, 6C0J-N1, 6C0J-N2, and
6C0J-N3 complexes were 1-2, 1-6, 1-6, and 2-5 over the 10 ns
simulations, respectively, which suggested that all newly designed
compounds might be more stable than compound 36. The MD
simulation results revealed that four protein–ligand complexes
could maintain a relative stability in the dynamic simulation and
three newly designed compounds might have more interactions
with the HIV-1 RT than compound 36. These were in good
consistency with the docking results.

In the same pattern, 10 ns MD simulations were also carried
out for three protein–ligand complexes (6C0R-N1, 6C0R-N2,
and 6C0R-N3) to further study whether they still could remain
stable in the dynamic environment. The results were shown in
Figure S2. The RMSD values of protein backbones of the three
complexes were displayed in Figure S2A, and it can be clearly
seen that they basically reached stability after 5 ns and were below
0.4 nm. The RMSD values of the three ligands were also stable
(Figure S2B). Figures S2C,D were the RMSF plots of chains A
and B, respectively, which showed that the residues of the three
complexes fluctuated in the same trend, indicating that they had
great stability. In addition, the Rg values just slightly floated
within 3.5 nm from Figure S2E, indicating that the proteins had
good compactness. The number of hydrogen bonds was also
essential to verify the stability. As shown in Figure S2F, the
hydrogen-bond numbers of compounds N1, N2, and N3 were
2-4, 1-5, and 2-5 over the 10 ns MD, respectively, suggesting
that the three compounds could tightly bind to the mutant RT.
The abovementioned results revealed that the three complexes
could keep stable during MD simulations and the three designed
compounds could interact well with the mutant HIV-1 RT.
However, the experimental activities of the three new hits against
wild-type and mutant HIV-1 strains remain to be studied.

CONCLUSION

In conclusion, 52 DHPYs were collected to construct the
CoMFA and CoMSIA models, which exhibited rationally
statistical parameters and good predictive ability. These models
well-explained the 3D-QSARs of these DHPY and provided
useful information for designing new HIV-1 NNRTIs. The
optimal pharmacophore model containing eight features was
in agreement with the 3D-QSAR results. The docking results

revealed that Lys101 was the key amino acid residue, and
the hydrophobic and π-π stacking interactions with Tyr181,
Tyr188, Trp229, and Phe227 also played key roles for the
anti-HIV activity of DHPYs. Nine lead compounds were
obtained by the pharmacophore-based and docking-based virtual
screening as well as ADME prediction. Three novel inhibitors
were designed by modifying the structure of the screened
compound ZINC_73709240 according to the 3D-QSAR and
docking results. Three newly designed inhibitors showed good
stability and strong interactions not only in the wild-type
RT but also in the K103N/Y181C RT mutant based on the
docking and MD simulation results. The ADME prediction
indicated that compounds N1, N2, and N3 might possess
desirable drug-like properties. However, further study on
synthesis and anti-HIV activities of the three newly designed
hits is necessary. We expect that the screened and designed
compounds could be served as lead candidates of novel
HIV-1 NNRTIs.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

GL and YC proposed the research idea and designed the
experiment. YC performed the experiment. YC, FW, YT, and YG
analyzed the data. YC, XL, XJ, and GL wrote the manuscript. All
authors revised and approved the manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 21807082), the Hubei Provincial
Natural Science Foundation of China (No. 2017CFB121), and
the Hubei Provincial Department of Education of China
(No. Q20171503).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2020.00164/full#supplementary-material

REFERENCES

Almerico, A. M., Lauria, A., Tutone, M., Diana, P., Barraja, P., Montalbano,
A., et al. (2003). A multivariate analysis on non-nucleoside HIV-1 reverse
transcriptase inhibitors and resistance induced by mutation. QSAR Comb. Sci.

22, 984–996. doi: 10.1002/qsar.200330834
Almerico, A. M., Tutone, M., Ippolito, M., and Lauria, A. (2007). Molecular

modelling and QSAR in the discovery of HIV-1 integrase inhibitors.
Curr. Comput. Aid. Drug Des. 3, 214–233. doi: 10.2174/1573409077816
95468

Almerico, A. M., Tutone, M., and Lauria, A. (2008). Docking and multivariate
methods to explore HIV-1 drug-resistance: a comparative analysis. J. Comput.

Aid. Mol. Des. 22, 287–297. doi: 10.1007/s10822-008-9186-7
Almerico, A. M., Tutone, M., Lauria, A., Diana, P., Barraja, P., Montalbano, A.,

et al. (2006). Amultivariate analysis of HIV-1 protease inhibitors and resistance
induced by mutation. J. Chem. Inf. Model. 46, 168–179. doi: 10.1021/ci050139z

Borisa, A., and Bhatt, H. (2015). 3D-QSAR (CoMFA, CoMFA-RG, CoMSIA) and
molecular docking study of thienopyrimidine and thienopyridine derivatives to
explore structural requirements for aurora-B kinase inhibition. Eur. J. Pharm.

Sci. 79, 1–12. doi: 10.1016/j.ejps.2015.08.017

Frontiers in Chemistry | www.frontiersin.org 16 March 2020 | Volume 8 | Article 164

https://www.frontiersin.org/articles/10.3389/fchem.2020.00164/full#supplementary-material
https://doi.org/10.1002/qsar.200330834
https://doi.org/10.2174/157340907781695468
https://doi.org/10.1007/s10822-008-9186-7
https://doi.org/10.1021/ci050139z
https://doi.org/10.1016/j.ejps.2015.08.017
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Chen et al. Computational Design of Novel HIV-1 NNRTIs

Bush, B. L., and Nachbar, R. B. (1993). Sample-distance partial least squares: PLS
optimized for many variables, with application to CoMFA. J. Comput. Aid. Mol.

Des. 7, 587–619. doi: 10.1007/BF00124364
Caballero, J. (2010). 3D-QSAR (CoMFA and CoMSIA) and pharmacophore

(GALAHAD) studies on the differential inhibition of aldose reductase
by flavonoid compounds. J. Mol. Graph. Model. 29, 363–371.
doi: 10.1016/j.jmgm.2010.08.005

Chen, X. W., Zhan, P., Li, D. Y., Clercq, E. D., and Liu, X. Y. (2011). Recent
advances in DAPYs and related analogues as HIV-1 NNRTIs. Curr. Med. Chem.

18, 329–376. doi: 10.2174/092986711794839142
Daina, A., Michielin, O., and Zoete, V. (2017). SwissADME: a free web tool to

evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness
of small molecules. Sci. Rep. 7:42717. doi: 10.1038/srep42717

Daly, A. K., Rettie, A. E., Fowler, D. M., and Miners, J. O. (2017).
Pharmacogenomics of CYP2C9: functional and clinical considerations. J. Pers.
Med. 8:1. doi: 10.3390/jpm8010001

Das, K., Bauman, J. D., Clark, A. D., Frenkel, Y. V., Lewi, P. J., Shatkin, A. J., et al.
(2008). High-resolution structures of HIV-1 reverse transcriptase/TMC278
complexes: strategic flexibility explains potency against resistance mutations.
PNAS. 105, 1466–1471. doi: 10.1073/pnas.0711209105

Esposito, F., Corona, A., and Tramontano, E. (2012). HIV-1 reverse transcriptase
still remains a new drug target: structure, function, classical inhibitors, and new
inhibitors with innovative mechanisms of actions. Mol. Biol. Int. 2012:586401.
doi: 10.1155/2012/586401

Gao, Y., Chen, Y. M., Tian, Y. F., Zhao, Y. L., Wu, F. S., Luo, X. G., et al.
(2019). In silico study of 3-hydroxypyrimidine-2,4-diones as inhibitors of
HIV RT-associated RNase H using molecular docking, molecular dynamics,
3D-QSAR, and pharmacophore models. New J. Chem. 43, 17004–170017.
doi: 10.1039/C9NJ03353J

Gu, S. X., Xiao, T., Zhu, Y. Y., Liu, G. Y., and Chen, F. E. (2019). Recent progress
in HIV-1 inhibitors targeting the entrance channel of HIV-1 non-nucleoside
reverse transcriptase inhibitor binding pocket. Eur. J. Med. Chem. 174, 277–291.
doi: 10.1016/j.ejmech.2019.04.054

Kalva, S., Azhagiya Singam, E. R., Rajapandian, V., Saleena, L. M.,
and Subramanian, V. (2014). Discovery of potent inhibitor for
matrix metalloproteinase-9 by pharmacophore based modeling and
dynamics simulation studies. J. Mol. Graph. Model. 49, 25–37.
doi: 10.1016/j.jmgm.2013.12.008

Kang, D. W., Fang, Z. J., Huang, B. S., Lu, X. Y., Zhang, H., Xu, H., et al. (2017).
Structure-based optimization of thiophene[3,2-d]pyrimidine derivatives as
potent HIV-1 non-nucleoside reverse transcriptase inhibitors with improved
potency against resistance-associated variants. J. Med. Chem. 60, 4424–4443.
doi: 10.1021/acs.jmedchem.7b00332

Kang, D. W., Fang, Z. J., Li, Z. Y., Huang, B. S., Zhang, H., Lu, X. Y.,
et al. (2016). Design, synthesis, and evaluation of thiophene[3,2-d]pyrimidine
derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors with
significantly improved drug resistance profiles. J. Med. Chem. 59, 7991–8007.
doi: 10.1021/acs.jmedchem.6b00738

Kang, D. W., Zhang, H., Wang, Z., Zhao, T., Ginex, T., Luque, F. J.,
et al. (2019). Identification of dihydrofuro[3,4-d]pyrimidine derivatives as
Novel HIV-1 non-nucleoside reverse transcriptase inhibitors with promising
antiviral activities and desirable physicochemical properties. J. Med. Chem. 62,
1484–1501. doi: 10.1021/acs.jmedchem.8b01656

Khan, K. M., Wadood, A., Ali, M., Zia, U., Ul-Haq, Z., Lodhi, M. A., et al.
(2010). Identification of potent urease inhibitors via ligand- and structure-
based virtual screening and in vitro assays. J. Mol. Graph. Model. 28, 792–798.
doi: 10.1016/j.jmgm.2010.02.004

Li, M., Wei, D., Zhao, H., and Du, Y. (2014). Genotoxicity of quinolones:
substituents contribution and transformation products QSAR
evaluation using 2D and 3D models. Chemosphere 95, 220–226.
doi: 10.1016/j.chemosphere.2013.09.002

Li, Q., Zhang, C., and Ren, Y. (2019). Molecular modeling technology
studies of novel pyrazoylethylbenzamide derivatives as selective

orexin receptor 1 antagonists. J. Taiwan Inst. Chem. Eng. 100, 1–17.
doi: 10.1016/j.jtice.2019.03.018

Liu, G. Y., Wan, Y. L., Wang, W. J., Fang, S., Gu, S. X., and Ju, X. L. (2019).
Docking-based 3D-QSAR and pharmacophore studies on diarylpyrimidines
as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Mol. Divers. 23,
107–121. doi: 10.1007/s11030-018-9860-1

Liu, G. Y., Wang, W. J., Wan, Y. L., Ju, X. L., and Gu, S. X. (2018). Application
of 3D-QSAR, pharmacophore, and molecular docking in the molecular design
of diarylpyrimidine derivatives as HIV-1 nonnucleoside reverse transcriptase
inhibitors. Int. J. Mol. Sci. 19:1436. doi: 10.3390/ijms19051436

Moroy, G., Martiny, V. Y., Vayer, P., Villoutreix, B. O., and Miteva, M. A. (2012).
Toward in silico structure-based ADMET prediction in drug discovery. Drug
Discov. Today. 17, 44–55. doi: 10.1016/j.drudis.2011.10.023

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory
of useful decoys, enhanced (DUD-E): better ligands and decoys for better
benchmarking. J. Med. Chem. 55, 6582–6594. doi: 10.1021/jm300687e

Namasivayam, V., Vanangamudi, M., Kramer, V. G., Kurup, S., Zhan, P., Liu,
X., et al. (2019). The journey of HIV-1 non-nucleoside reverse transcriptase
inhibitors (NNRTIs) from lab to clinic. J. Med. Chem. 62, 4851–4883.
doi: 10.1021/acs.jmedchem.8b00843

Ojha, P. K., Mitra, I., Das, R. N., and Roy, K. (2011). Further exploring r2m
metrics for validation of QSPRmodels.Chemom. Intell. Lab. Syst. 107, 194–205.
doi: 10.1016/j.chemolab.2011.03.011

Roy, K., Das, R. N., Ambure, P., and Aher, R. B. (2016). Be aware of error measures.
Further studies on validation of predictive QSAR models. Chemom. Intell. Lab.

Syst. 152, 18–33. doi: 10.1016/j.chemolab.2016.01.008
Vasavi, C. S., Tamizhselvi, R., and Munusami, P. (2019). Exploring the drug

resistance mechanism of active site, non-active site mutations and their
cooperative effects in CRF01_AE HIV-1 protease: molecular dynamics
simulations and free energy calculations. J. Biomol. Struct. Dyn. 37, 2608–2626.
doi: 10.1080/07391102.2018.1492459

Wan, Y. L., Tian, Y. F., Wang, W. J., Gu, S. X., Ju, X. L., and Liu, G. Y.
(2018). In silico studies of diarylpyridine derivatives as novel HIV-1 NNRTIs
using docking-based 3D-QSAR, molecular dynamics, and pharmacophore
modeling approaches. RSC Adv. 8, 40529–40543. doi: 10.1039/C8RA0
6475J

Wang, R., Xu, K., and Shi, W. (2019). Quinolone derivatives: potential
anti-HIV agent-development and application. Arch. Pharm. 352:e1900045.
doi: 10.1002/ardp.201900045

Wang, W. J., Tian, Y. F., Wan, Y. L., Gu, S. X., Ju, X. L., Luo, X.
G., et al. (2018). Insights into the key structural features of N1-ary-
benzimidazols as HIV-1 NNRTIs using molecular docking, molecular
dynamics, 3D-QSAR, and pharmacophore modeling. Struct. Chem. 30,
385–397. doi: 10.1007/s11224-018-1204-3

Yang, Y., Kang, D. W., Nguyen, L. A., Smithline, Z. B., Pannecouque, C., Zhan,
P., et al. (2018). Structural basis for potent and broad inhibition of HIV-1
RT by thiophene[3,2-d]pyrimidine non-nucleoside inhibitors. Elife 7:e36340.
doi: 10.7554/eLife.36340

Zhan, P., Liu, X. Y., and Li, Z. Y. (2009). Recent advances in the discovery and
development of novel HIV-1 NNRTI platforms: 2006-2008 update. Curr. Med.

Chem. 16, 2876–2889. doi: 10.2174/092986709788803231

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Chen, Tian, Gao, Wu, Luo, Ju and Liu. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Chemistry | www.frontiersin.org 17 March 2020 | Volume 8 | Article 164

https://doi.org/10.1007/BF00124364
https://doi.org/10.1016/j.jmgm.2010.08.005
https://doi.org/10.2174/092986711794839142
https://doi.org/10.1038/srep42717
https://doi.org/10.3390/jpm8010001
https://doi.org/10.1073/pnas.0711209105
https://doi.org/10.1155/2012/586401
https://doi.org/10.1039/C9NJ03353J
https://doi.org/10.1016/j.ejmech.2019.04.054
https://doi.org/10.1016/j.jmgm.2013.12.008
https://doi.org/10.1021/acs.jmedchem.7b00332
https://doi.org/10.1021/acs.jmedchem.6b00738
https://doi.org/10.1021/acs.jmedchem.8b01656
https://doi.org/10.1016/j.jmgm.2010.02.004
https://doi.org/10.1016/j.chemosphere.2013.09.002
https://doi.org/10.1016/j.jtice.2019.03.018
https://doi.org/10.1007/s11030-018-9860-1
https://doi.org/10.3390/ijms19051436
https://doi.org/10.1016/j.drudis.2011.10.023
https://doi.org/10.1021/jm300687e
https://doi.org/10.1021/acs.jmedchem.8b00843
https://doi.org/10.1016/j.chemolab.2011.03.011
https://doi.org/10.1016/j.chemolab.2016.01.008
https://doi.org/10.1080/07391102.2018.1492459
https://doi.org/10.1039/C8RA06475J
https://doi.org/10.1002/ardp.201900045
https://doi.org/10.1007/s11224-018-1204-3
https://doi.org/10.7554/eLife.36340
https://doi.org/10.2174/092986709788803231
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	In silico Design of Novel HIV-1 NNRTIs Based on Combined Modeling Studies of Dihydrofuro[3,4-d]pyrimidines
	Introduction
	Materials and Methods
	Preparation of Small Molecules
	Three-Dimensional Quantitative Structure–Activity Relationship Model
	Pharmacophore Model
	Molecular Docking
	Virtual Screening
	ADME Analysis
	Molecular Dynamics Simulation

	Results and Discussion
	Statistical Analysis of the Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis Models
	Contour Maps of the Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis Models
	Pharmacophore Model
	Molecular Docking
	Virtual Screening
	Newly Designed Non-nucleoside Reverse Transcriptase Inhibitors
	ADME Analysis
	Molecular Dynamics Simulation

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


