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Solvothermal method is a very common synthetic method in the preparation of catalysts

for the hydrogen evolution reaction (HER) of H2O decomposition. Since a certain

surfactant can be added to the solvothermal solvent, the crystal particle growth process

can be changed to obtain catalysts with different morphologies. We synthesized a series

of nickel-manganese oxides (NiMnO) by adding different amounts of Polyethylene glycol

(PEG) using the solvothermal method. Structure characterizations exhibit that NiMnO

catalyst prepared with different PEG additions have different morphologies. The NiMnO

catalyst prepared by adding 3 g of PEG possesses abundant petal-like scales, it brings

a large specific surface area, high reaction efficiency, and has the best electrocatalytic

activity in alkaline media.

Keywords: hydrogen evolution reaction, electrocatalysts, nickel-manganese oxides, surfactant, polyethylene

glycol

INTRODUCTION

The world’s energy consumption of fossil energy such as coal, oil, and natural gas brings many
questions, such as energy shortage and serious environmental pollution (Zou and Zhang, 2015;
Ojha et al., 2018). H2 is a promising clean and renewable source of energy with extremely
high calorific value (285.8 kJ mol−1). Electrocatalytic cracking water to H2 becomes feasible for
the impetus of electrochemical HER is derived from electricity from tidal energy, wind energy,
geothermal energy, etc. Researchers have found that platinum-based catalysts are the most efficient
catalysts for HER (Chen et al., 2013; Zhou W. et al., 2016; Wu et al., 2019; Eiler et al., 2020; Li
and Baek, 2020). However, platinum is very rare in the earth’s crust, making it extremely expensive.
Therefore, it is necessary to develop ametal catalyst with abundant resources as an alternative. After
the efforts of scientists, they found that transition metal oxide is an efficient catalyst for the HER of
H2O decomposition (Wang et al., 2017; Han et al., 2019; Liang et al., 2020).

The atomic number of nickel is 28. The abundance of nickel in Earth’s crust is > 50 ppm.
And nickel is an earth-abundant first row transitional metal (Jamesh et al., 2015). Ni possesses
very strong ductility and corrosion-resistance. The addition of nickel could significantly improve
the stability and activity of catalyst for HER (Chu et al., 2018; Zhang et al., 2019). Another rich
transition metal element manganese on the earth is also an important catalyst raw material. There
are many defects, which created in MnO2, can strengthen the stability and activity for HER.
δ-MnO2 Nanosheet demonstrates favorable stability and activity for HER (Leonard and Bard, 2013;
Liu et al., 2017; Zhao et al., 2017). The δ-MnO2 phase includes trivalent and tetravalent manganese.
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It will create defects in the catalyst structure. Therefore,
the defects and oxygen vacancies can generate the Mn3+

active sites, which can afford half-metalicity. This can
significantly increase the electronic conductivity of the catalyst,
and thus the reaction efficiency is significantly improved
(Mohammed-Ibrahim and Sun, 2019).

The performance of HER catalysts is highly correlated to the
syntheticmethods. On account of the inherent pitfalls, i.e., unable
to control the concentration gradient and dispersibility of metal
particles (Arevalo and Chirik, 2019), the traditional synthetic
methods, such as precipitation and wet impregnation, have been
gradually phased out. For the past few years, by combining
surfactant with traditional co-precipitation method was raised
and widespread used for catalyst preparation (Das et al., 2015;
Chong et al., 2018; Xu et al., 2018; Toloman et al., 2019).

Due to the hydroxyl protons exchange between cetyltrimethyl
ammonium bromide (CTAB) and hydrous metal hydroxide
gels would lower surface tension and interfacial energy of
H2O exist in the pores (Sohn and Ozkan, 2016). Therefore,
CTAB can assist-synthesized a high specific surface area oxide
catalyst. Moreover, the pore structure did not collapse during
the calcination process. Likewise, polyvinyl pyrrolidone (PVP), a
non-ionic polymer surfactant could play a similar role (Tan et al.,
2014; Wang et al., 2019). In addition, some surfactants possess
amphiphilic property, This series of molecules can generate
thermodynamically stable gathers of intrinsically nano-scale both
in solution and at the solid liquid interphases (Lee et al., 2019;
Liu et al., 2019). Surfactants have a unique ability to self-organize
at interface or in solution, modify interfacial properties and
enhance the compatibility between materials of very different
characteristics (Carswell et al., 2003; Hosseini et al., 2016).

In this article, NiMnO catalysts were synthesized by
polyethylene glycol surfactant assist- solvent-thermal method,
and then the electrochemical catalytic properties for HER
were estimated. The as-prepared catalysts were explored by N2

adsorption-desorption, X-ray diffraction (XRD), and scanning
electron microscopy (SEM). Besides, we have performed a
series of electrochemical tests (cyclic voltammetry, linear sweep
voltammetry, electrochemical impedance spectroscopy, and
chronopotentiometry), and derived some electrochemical
parameters (Tafel slopes, electrochemical double-layer
capacitance, and Turnover frequency).

FIGURE 1 | SEM images of (a) NMO, (b) NMO-PEG-2g, (c) NMO-PEG-3g.

EXPERIMENTAL

Sample Synthesis
Materials: Polyethylene glycol (PEG, Mw = 20,000) and
ethanol were supplied by Guangzhou Chemical Reagent
Factory. Ni(CH3COO)2•4H2O, Mn(CH3COO)2•4H2O and
urea were supplied by Shanghai Macklin Biochemical Co.,
Ltd. The water (18.25 m� cm−1) used in the experiments
was purified by Millipore system (Milli-Q Academic). All
reagents used throughout this manuscript were analytical
reagent grade.

Synthesis of NiMnO catalyst: Typically, 2.043 g of
Ni(CH3COO)2•4H2O and 3.036 g of Mn(CH3COO)2•4H2O
were placed in 40mL anhydrous ethanol to form a homogeneous
solution under magnetic stirring for 2 h at room temperature,
7 g of Urea was dissolved in 10mL deionized water, different
weight of PEG (0, 2, and 3 g) were dispersed in 10mL anhydrous
ethanol under magnetic stirring for 1 h at room temperature,
which resulting in three samples, marked as NMO, NMO-PEG-
2g, and NMO-PEG-3g. Then, The PEG suspension and the
Urea solution were dripped into the Ni(CH3COO)2•4H2O-
Mn(CH3COO)2•4H2O solution in sequence under stirring.
Kept stirring for 2 h at room temperature, the mixture was
transferred into the Teflon-lined stainless-steel autoclave and
heat at 180◦C for 10 h for the solvent-thermal reaction. After the
reaction was completed and being cooled to room temperature,
the precipitates were collected by centrifugation and washed
with deionized water and ethanol for three times, then dried
in an oven at 80◦C for 6 h to get catalyst. After dried, the
catalyst was subjected to bake in a muffle furnace at 750◦C
for 120 min.

Microstructural Characterizations
X-ray diffraction (XRD) data was obtained by a PANalytical

PW3040/60 X-ray diffractometer with Cu Kα radiation (40 kV,

30mA). Scanning electron microscope (SEM) measurements

were observed by a ZEISS-Merlin microscope at 10 kV.

Brunauer-Emmett-Teller (BET) surface area analysis (N2

adsorption) of the catalysts was obtained using an ASAP2020M

system (Micromeritics). Inductively coupled plasma-atomic
emission spectrometry (ICP-AES) was conducted on a
PerkinElmer NexION 300X.
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Electrochemical Measurements
Five milligram NiMnO catalyst was dispersed in 10mL
isopropanol (Sigma-Aldrich) aqueous solution containing
Nafion (15 wt.%, Sigma-Aldrich) (isopropanol: Nafion solution:
water = 1:4:10 volume ratio). And then, sonicated for 30min
to formulate a homogeneous suspension (catalyst contain
0.5mg mL−1). 10 µL of the above-mentioned suspension was
coated on the glassy carbon electrode (CHI) with a diameter
of 4mm used as working electrode after infrared drying.
Saturated calomel electrode (SCE) was used as reference
electrode. Graphite flake was used as counter electrode. The
electrolyte was 1.0M KOH which was bubbled by high-purity
argon 5min before the measurement and continue until the
measurement was completed. Cyclic voltammetry was conducted
at 10mV s−1. Linear sweep voltammetry (LSV) was collected
by the glassy carbon electrode at a scan rate of 5mV s−1.
Tafel slopes were calculated based on the corresponding LSV
curves. Electrochemical impedance spectroscopy (EIS) was
measured in the frequency scope from 105 to 0.01Hz. The
stability measurements were detected by chronopotentiometry
at a constant current density of 10mA mg−2. All voltages
involved in the article vs. SCE were adjust to the reversible
hydrogen electrode (RHE). Calibration using the following
formula: E(RHE) = E(SCE) + 0.0591pH + 0.2415 – 0.000761
(T – 298.15). T represents the room temperature.

RESULTS AND DISCUSSION

The NiMnO catalyst was synthesized by a solvent-thermal route
using urea as a precipitant. The chemical reactions involve the
thermal decomposition of urea, following by the generation of
CO2−

3 ions and the subsequent precipitation of the NiMnO
catalyst under solvothermal conditions.

NH2CONH2 +H2O → 2NH3 + CO2

NH3 +H2O → NH+

4 +HO−

CO2 + 2OH−
→ CO2−

3 +H2O

Ni2+ +Mn2+ + CO2−
3 → NiMnCO3

SEM images (Figure 1) show that the NiMnO can be successfully
synthesized through solvent-thermal reaction. Different amounts
of PEG resulted in different morphologies of the catalysts, among
which the surface area of NMO-PEG-3g appeared to be largest.
PEG can prevent NiMnCO3 from aggregation and compression.
Meanwhile, the PEG with more mass represents more molecular
chains, making it easier for PEG molecules to be entangled or
spiraled with other PEG molecules through hydrogen bonds.
This distortion will greatly increase the specific surface area of
NMO due to the volatilization of PEG and CO2 after roasting
with NMCO3 at 750

◦C. Larger specific surface area can increase
the reaction active sites, which is beneficial to the catalytic
activity. The N2 adsorption–desorption isotherms and pore-size

FIGURE 2 | XRD patterns of NiMnO catalysts.

distribution indicate that the NiMnO catalysts added PEG form
a macropore structure. There are only a few micropores in the
structure of the NiMnO catalyst without adding PEG (Figure 2
and Figure S2). The NiMnO produced when no PEG was added
exhibited a 4–7µm spherical structure. With the addition of
PEG, scales appeared on the surface of the prepared catalyst.
A well petal-like sheet has been formed in NMO-PEG-3g. And
there are rich fluffy structures on the sheet. These structures are
conducive to the electrochemical catalytic HER.

The composition and morphology of the electroactive
catalysts were further investigated using XRD (Figure 2). The
XRD peaks were indexed to crystal facets of MnO2 (JCPDS Card
No. 86-0172) and NiO (JCPDS Card No. 78-0210). MnO2 has
a smaller Ksp value than NiO, and [Mn(NH3)n]

2+ has a smaller
Kf value than [Ni(NH3)n]

2+, which indicates that MnO2 is more
easily precipitated thanNiO (van Bommel andDahn, 2009). Both
MnO2 and NiO can be indexed to a typical hexagonal carbonate
structure with a space group of RC. The accurate content of
each element in NiMnO is further corroborated by SEM coupled
energy-dispersive X-ray spectroscopy (EDS) (Figure S1) and
ICP-AES (Table S1). The Ni and Mn contents in the product are
calculated to be 8:92 (atomic ratio) from the EDS, which are in
good agreement with the ICP-AES results.

The electrocatalytic properties of NiMnO catalyst for HER
in alkaline solution was evaluated using a standard three-
electrode system. Comparing the three catalysts of NMO, NMO-
PEG-2g, and NMO-PEG-3g, LSV results show that NMO-
PEG-3g possesses excellent activities that are much better than
the activity of NMO and NMO-PEG-2g (Figure 3A). The
infrared- calibration polarization curve of NMO-PEG-3g exhibits
favorable catalytic activity for HER with an onset potential of
36.3mV. Under the same over-potential 0.1 V, NMO-PEG-3g
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FIGURE 3 | (A) LSV curves of NMO, NMO-PEG-2g, and NMO-PEG-3g detected in 1M KOH at a sweep rate of 5mV s−1; (B) Tafel plots for LSV curves of NMO,

NMO-PEG-2g, and NMO-PEG-3g; (C) 1st, 1,000th, and 2,000th LSV curves at sweep rate of 50mV s−1; (D) Stability test of NMO-PEG-3g catalyst at an

over-potential of 112mV for 25 h.

TABLE 1 | Electrochemical parameters of the NiMnO as the HER catalyst in alkaline medium.

Electrodes SBET (m2 g−1) ESCA (cm2) TOF (s−1) Rs (�cm2) Rct (�cm2) CPE (Fsn−1cm−2)

NMO 2.16 81.25 0.067 1.1 23.2 0.0027

NMO-PEG-2g 22.35 181.5 0.041 2.5 14.4 0.0031

NMO-PEG-3g 29.27 197.25 0.035 2.53 10.6 0.0037

exhibits better catalytic activity than that of NMO and NMO-
PEG-2g. At 10 and 100mA cm−2, the NMO-PEG-3g catalyst
obtains 140 and 256mV over-potential, respectively.

Tafel slope is an important property inherent of the HER
catalyst. Figure 3B exhibits the Tafel plots of these catalysts’
series. Accordingly, NMO-PEG-3g exhibits a small Tafel slope
of 94mV dec−1 (Figure 3B), which is much lower compared
with NMO-PEG-2g (157mV dec−1) and NMO (189mV dec−1),
demonstrating a faster HER kinetics of NMO-PEG-3g. These
values mean the HER that occurred on NMO-PEG-3g catalyst
follows the Volmer-Heyrovsky mechanism. The electrochemical

desorption is the rate determining step. Stability is a fatal
parameter that estimates the property of HER catalyst. At the

LSV of 2,000th cycles, the performance of the NMO-PEG-3g

improves than that at 1,000th cycles (Figure 3C). The cause of

this phenomenon may be that the catalyst surface is activated in

the process of electrochemical reaction, which fortifies reaction

active sites. Figure 3D displays that NMO-PEG-3g endures

the stability measurement of 112mV for 25 h. As shown in

Figure 3D, NMO-PEG-3g could keep a favorable HER current

density at 14 mA cm−2.
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FIGURE 4 | (A) CV curves of NMO; (B) CV curves of NMO-PEG-2g; (C) CV curves of NMO-PEG-3g (at different scan rates of 20, 40, 60, 80, 100, 120, and 140mV

s−1 in the non-faradaic potential region in 1M KOH); (D) current density variation plotted against scan rate fitted to a linear regression enables the estimation of Cdl;

(E) Nyquist plots of as-prepared catalysts; (F) quantitative H2 measurement via water displacement.

The principal parameters of catalytic activities could
be the amount of reactive sites, electrochemically active
surface area (ECSA) and charge transfer rate (Qu et al.,

2016; Du et al., 2017). The ECSA is crucial to the
HER catalytic reaction procedure. The electrochemical
double-layer capacitance (Cdl) can be conducted
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to calculate the ECSA.

ECSA =
Cdl

Cs
(1)

Cs is the specific capacitance of the catalyst (mF cm−2). The
Cs is generally valued as 0.040 mF cm−2 in 1M KOH. Cyclic
voltammetry test is proceeded to verify the Cdl at different
scan rates in the non-faradaic potential region. As the chart
shows, these test outcomes show that the as prepared NMO-
PEG-3g possesses the biger Cdl than NMO and NMO-PEG-
2g (Figures 4A–D). The Cdl of NMO-PEG-3g is derived to be
78.93 mF cm−2. The big numerical value of Cdl guarantees
a competitive ECSA and efficient HER (shown in Table 1).
BET specific surface area is identified to be immediate real
surface area of catalyst (Sun et al., 2018). The SBET of NMO-
PEG-3g is 29.27 m2 g−1, which is bigger than those of NMO
and NMO-PEG-2g.

Turnover frequency (TOF) is a pivotal parameter to assess
the HER activity of catalysts. TOF denotes the number of
H2 molecules generated per second per active site. TOF was
inspected according to a method reported by scientists (Popczun
et al., 2013, 2014; Zhou H. et al., 2016). Thus, the number
of electrochemically effective surface sites on the catalyst was
calculated as the following Equations (2) and (3):

# Surface sites (catalyst)

cm2 geometric area
=

# Surface sites (flat standard)

cm2 geometric area

× Roughness factor (2)

TOF per site =

#Total Hydrogen Turn Overs

cm2 geometric area

#Surface active sites

cm2geometric area

(3)

Then, deductions reveal that NMO-PEG-3g catalyst has a faster
TOF value compared to that of NMO and NMO-PEG-2g. This
also proves why the catalyst possesses the favorable activity
for electro-catalytic HER. The electrode kinetics for HER was
further measured by EIS. EIS measurements and corresponding
equivalent circuit in Figure 4E are collected to verify the catalytic
reaction mechanism of as prepared catalysts for HER in alkaline
media. NMO-PEG-3g exhibits a nice semicircle in the low
frequency region. This proves a lower interfacial charge-transfer
resistance (Rct = 10.6�) of NMO-PEG-3g than that of NMO
and NMO-PEG-2g. This would be related to the increase in
the number of surface-active sites and the reduced 1GM−H

during the H+ discharge reaction step, resulting in superior HER

kinetics. The petal-like scales in NMO-PEG-3g catalyst could
provide a large reaction area, resulting in faster electron transfer
rates and favorable kinetics for HER. As shown in Figure 4F,
the quantitative H2 measurement demonstrates that the Faradic
efficiency is close to 100%, which testifies that all charge generated
in HER reaction procedures (Popczun et al., 2013) would be
devoted to produce H2.

CONCLUSIONS

In conclusion, the addition of PEG surfactant can directly
affect the morphology of the prepared NiMnO catalyst by the
solvothermal method. As prepared catalysts possess catalytic
activities for the HER in alkaline media. Because the NiMnO
catalyst prepared by adding 3 g of PEG possesses abundant
petal-like scales, it brings a large specific surface area, high
reaction efficiency, and has the best electrocatalytic activity. This
experiment investigates that the morphology of the catalyst was
controlled by changing the amount of surfactant to improve the
catalytic activity of catalyst. Moreover, we will investigate the
effect of PEG molecular weight on the structure of the prepared
catalyst in subsequent experiments.
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