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It is highly promising to design and develop efficient and economical electrocatalysts for

oxygen evolution reaction (OER) in alkaline solution. In this work, we prepare FeCoNi

sulfide composites (including FeS, Co3S4, and Ni3S4) derived from in situ sulfurization of

precursor oxides on carbon cloth (CC), which are used to become an OER catalyst. Such

catalyst shows excellent OER performance, low overpotential, small Tafel slope, and high

electrochemical stability, and it is a promising electrocatalyst for OER in alkaline media.
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INTRODUCTION

The excessive consumption of fossil energy and the resulting serious environmental problems
have triggered strong demand for renewable alternative energy (Chow et al., 2003; Zheng et al.,
2014). Hydrogen energy is regarded as a clean and ideal energy carrier that could replace fossil
energy (Dresselhaus and Thomas, 2001; Zheng et al., 2017, 2018b). Electrochemical water splitting
provides us a promising strategy to largely produce hydrogen (Turner, 2004; Lu et al., 2017).
However, hydrogen evolution is seriously restricted by anodic water oxidation due to the multi-
electron transfer process and high activation energy barrier (Yin et al., 2010; Yang et al., 2017;
Ke et al., 2018; Zheng et al., 2018a; Tang et al., 2019). Therefore, efficient catalysts to reduce
activation energy should be developed to boost the water oxidation process. Noble metal oxides
(RuO2 and IrO2) exhibit excellent catalytic characters in oxygen evolution reaction (OER), but
their widespread applications are limited due to scarce resources and high costs (Lee et al., 2012;
Reier et al., 2012). Hence, it is necessary to develop efficient and economical OER electrocatalysts.

In recent years, transition-metal oxides and hydroxyl oxide have attracted great interest for
catalysts (Lu et al., 2016; Guo et al., 2017; Zhang et al., 2017; Jin et al., 2018; Zhao et al.,
2018). Specifically, ferric oxyhydroxide (FeOOH) has shown efficient activity for the OER process
(Chemelewski et al., 2014; Luo et al., 2017; Park et al., 2017). Regardless of its abundant reserves
and low cost, its performance for OER has certain disparities in comparing with the noble metal
catalysts. Many ways have been taken to improve catalysis performance, such as enhancing the
conductivity of materials, increasing the specific surface area of materials, doping heteroatom
modification, and so on (Feng et al., 2016a,b; Kuang et al., 2017; Li F. et al., 2018). Research
shows that transition metal sulfides have better oxygen evolution catalysis performance than oxides
because transit metal sulfides have diverse element composition, controllable electronic structure,
and fast charge transfer speed (Liu et al., 2016; Chai et al., 2018; Li H. et al., 2018; Zhang et al., 2018).
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In this manuscript, we design and develop FeCoNiS sulfides
derived from in situ sulfurization of precursor oxides on
carbon cloth (CC) through two-step hydrothermal methods. At
first, FeCoNi-FeOOH nanoarray on CC is prepared through
hydrothermal method. Secondly FeCoNiS sulfides derived
from in-situ sulfurization is prepared through the second
hydrothermal method. It shows excellent OER activity needing
overpotentials of 220.5 and 269.9mV to attain current densities
of 10 and 100mA cm−2 in 1.0M KOH. It is a promising
electrocatalyst for OER in alkaline media.

RESULTS AND DISCUSSIONS

X-ray diffraction (XRD) patterns of these catalysts are shown
in Figure 1A. There are two broad diffraction peaks on the
bottom curve, which are the amorphous peaks of CC. Themiddle
curve is the XRD pattern of the precursor oxides without sulfide
treatment. The peaks at 11.95, 16.87, 26.91, 35.26, 46.69, 56.21,
and 64.78◦ can be indexed to the (110), (200), (310), (211), (411),
(521), and (541) planes of FeOOH phase (PDF No. 97-003-
1136). The XRD pattern of the product after sulfide treatment
is on the top. The diffraction peak intensity is obviously lower
than that of the middle curve. For better structural analysis of
the product, the powder of the precursor oxides and sulfide
products scrapped from CC are characterized by XRD again.
XRD curves are shown in Figures 1B,C. The main component of
precursor oxides is still FeOOH. Considered that Co and Ni are

FIGURE 1 | (A) X-ray diffraction (XRD) patterns of different oxygen evolution reaction (OER) catalysts. (B) XRD patterns comparison of different catalysts powder. (C)

XRD pattern of the product after sulfidation treatment.

in the precursor, we name the precursor as FeCoNi-FeOOH. The
XRD curve of sulfide product shows that there are new phases,
including Fe3O4 (PDF No.97-005-0272), FeS (PDF No. 04-003-
4477), Ni3S4 (PDF No. 97-003-6721), and Co3S4 (PDF No. 00-
047-1738). Part of FeOOH is reduced to Fe3O4, so the product is
named FeCoNiS-FeOx.

Scanning electronic microscopy (SEM) pattern of the
precursor (FeCoNi-FeOOH) is shown in Figure 2A. There are
specific and uniform nanowires array on the surface of CC.
SEM pattern of FeCoNiS-FeOx is shown in Figure 2B. Obviously,
the precursor (FeCoNi-FeOOH) nanowires are smooth, and
the product (FeCoNiS-FeOx) is relatively rough. This means
that the product has structural change after sulfidation, which
corresponded to the XRD patterns in Figures 1B,C. The
catalyst nanowire feature is also shown in transmission electron
microscopy (TEM) characterization (Figure 2C). Image taken
from the product shows about 50-nm-thick nanowires. High-
resolution TEM (HRTEM) reveals that the product is highly
crystallized with well-resolved lattice fringes (Figure 2D). The
interplanar spacing of 0.331 nm could be assigned to the (310)
plane of FeOOH.

The corresponding energy-dispersive X-ray (EDX) elemental
mapping images of FeCoNiS-FeOx are shown in Figure 3A,
which demonstrate unique distribution of Fe, Co, Ni, and S
elements. EDX pattern is shown in Figure 3B, which exhibits
types and relative amounts of different elements based on the
position and intensity of element spectral lines.
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FIGURE 2 | (A) SEM pattern of precursor (FeCoNi-FeOOH). (B) SEM pattern of FeCoNiS-FeOx. (C) TEM pattern of FeCoNiS-FeOx. (D) HRTEM pattern of

FeCoNiS-FeOx.

X-ray photoelectron spectroscopy (XPS) of FeCoNiS-FeOOH
is shown in Figure 4, which was performed to characterize the
chemical states of different elements. Figure 4A is full-scale XPS
spectrum, further revealing the presences of Fe, Co, Ni, S, and O
elements in the catalyst. As shown in Figure 4B, high-spin Fe3+

of FeOOH contains unpaired electrons and therefore exhibit
multiplet structures in Fe 2p3/2 area. The characteristic peaks of
Fe 2p1/2 is at 725.8 eV. The satellite peaks (identified as “Sat.”)
are at 719.3 and 732.3 eV, which are relevant to Fe 2p3/2 and Fe
2p1/2 of FeOOH (Biesinger et al., 2011; Zeng et al., 2012; Zhou
et al., 2018). There are two peaks at 714.4 and 723.9 eV, which
are relevant to Fe3O4. In Figure 4C, there exhibit two spin-orbit
doublets. The first doublet is at 778.6 and 793.5 eV, assigned to
Co 2p3/2 and Co 2p1/2 of Co3+, and the second doublet was at
781.9 and 797.8 eV, arising from Co 2p3/2 and Co 2p1/2 of Co2+.
In addition, two broad peaks located at 803.6 and 786.7 eV are
attributed to the satellites, which indicated the presence of Co3S4
(Xiao et al., 2014; Liu et al., 2015; Gao et al., 2018; Wang X. et al.,
2018).

In the Ni 2p spectrum (Figure 4D), there exist two main
peaks at 855.7 and 873.5 eV assignable, respectively to Ni 2p3/2
and Ni 2p1/2 spin orbit doublets and two satellite peaks (862.4
and 880.1 eV). By deconvolution of the two main peaks, the Ni
2p3/2 orbit comprises two peaks with binding energy of 853.6
and 856.7 eV, which corresponded, respectively to the Ni2+ and
Ni3+ oxidation states, and the Ni 2p1/2 orbit can also be fitted
into two peaks belonging to Ni2+ (871.5 eV) and Ni3+ (875.2 eV)

(Hu et al., 2015; Qin et al., 2016; Sivanantham et al., 2016).
There show S 2p3/2 and S 2p1/2 peaks at 161.7 and 162.8 eV in
Figure 4E, which can be related to S2− (Wang H. et al., 2018).
The component peak at 164.1 eV is characteristics of a metal–
sulfur (M-S) bond (Ning et al., 2018). The peaks of 168.9 and
170.1 eV can be attributed to SO2−

4 due to air oxidation (Cheng
et al., 2015). In the O 1s region (Figure 4F), the peaks of 530.0,
531.9, and 533.8 eV are observed on the surface of the catalyst,
which are corresponding to O2−, hydroxyl group, and adsorbed
water molecules, respectively (Luo et al., 2017).

The catalysis performance of the catalyst in water oxidation
reaction is evaluated by linear sweep voltammetry (LSV), shown
in Figure 5A. For comparison, LSV curves of different catalysts
with similar loading amounts, including CC, RuO2, FeCoNi-
FeOOH, FeCoNi-FeOx, FeCoNiS-FeOx, are also evaluated.
Overpotentials in the same current density are often used to
estimate the OER performance. FeCoNiS-FeOOH/CC exhibits
outstanding OER performance with driving 100mA cm−2 at a
low overpotential of 269.9mV, which is superior to RuO2/CC
and FeCoNi-FeOOH under the same conditions. FeCoNi-FeOx

is prepared through second hydrothermal method without
sulfurizing reagent. The OER activity of FeCoNi-FeOx is lower
than FeCoNi-FeOOH. The existence of Fe3O4 will not enhance
catalytic reactivity. The main active site of FeCoNiS-FeOx is
FeCoNi sulfides. Tafel plots of different OER catalysts were shown
in Figure 5B, which are used to evaluate the catalytic kinetics.
The Tafel slope of FeCoNiS-FeOx is 45.1mV dec−1, lower than
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FIGURE 3 | (A) Energy-dispersive X-ray (EDX) mapping images of FeCoNiS-FeOx. (B) EDX element distribution pattern.

that of RuO2/CC (52.3mV dec−1). It demonstrates that the
FeCoNiS-FeOx catalyst has more rapid reaction velocity in OER
catalytic reaction.

Another important performance, stability of catalyst, is
investigated by cyclic voltammetry and potentiostatic method.
As shown in Figure 5C, there shows a comparison of two
polarization curves, including original curve and another curve
after 500 CV cycles. When the potential is 1.5 V, the current
density is only 3% decrease after 500 cycles, which demonstrates
that the FeCoNiS-FeOx catalyst has a good cycle life. In
Figure 5D, the electrochemical stability of FeCoNiS-FeOOH/CC
is tested by potentiostatic electrolysis at a constant potential
of 1.48V for 30 h. There is only 5% decay of current density,
which demonstrated the good long-term durability of the
catalyst. Multistep chronopotentiometric curve of FeCoNiS-
FeOx is shown in Figure 6. There are 12 steps and the increment
of current density is 20mA cm−2 per 500 s. In every step,
the corresponding potential remains constant. These results
indicate that the catalyst has excellent conductivity and good
mass transportation.

CONCLUSIONS

In this paper, a two-step hydrothermal routine is adopted to
prepare FeCoNiS-FeOx catalyst. At first, hydroxide nanowire
array precursor is prepared. The precursor nanowire arrays
serve as backbones for the catalyst not only constructs effective
conductive channels but also provides rich active sites. Secondly,
the final product is prepared via anion exchange and redox
reactions with Na2S as sulfurizing reagent. The catalyst shows
excellent OER activity needing overpotentials of 220.5 and
269.9mV to attain current densities of 10 and 100mA cm−2

in 1.0M KOH. Typically, the catalyst also shows long-term
electrochemical stability for at least 30 h. The good catalysis
performance is due to FeS, Co3S4, and Ni3S4. CC as substrate
could enhance the conductivity of the material. Nanowire
structure could increase the surface area of materials and expose
more active sites. Most importantly, transition-metal sulfide
could optimize material structure and give a full play to the
synergy effect between different elements. FeCoNiS-FeOx catalyst
is a promising electrocatalyst for OER in alkaline media.
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FIGURE 4 | X-ray photoelectron spectroscopy (XPS) spectra of FeCoNiS-FeOx catalyst. (A) Survey spectrum. (B) Fe 2p. (C) Co 2p. (D) Ni 2p. (E) S 2p. (F) O 1s.

MATERIALS AND METHODS

Materials
Ferric nitrate [Fe(NO3)3.9H2O, Mw = 404.00], nickel
nitrate [Ni(NO3)2.6H2O, Mw = 290.79], cobalt nitrate
[Co(NO3)2.6H2O, Mw = 291.03], ammonium fluoride NH4F,
Mw = 37.0), urea [CO(NH2)2, Mw = 60.06], potassium
hydroxide (KOH, Mw= 56.1) are provided by Shanghai Aladdin
Ltd. Sodium sulfide (Na2S, Mw= 78.04) and ruthenium chloride
(RuCl3.3H2O ≥ 43%) are bought from Sigma-Aldrich Co. Ltd.
CC is supplied by Jingchong electronics technology company.
The surface must be free from oil and dirt, then acetone,
hydrochloric acid (3 mol/L), ethanol, and ultrapure water are
used to clean the surface of CC. Ultrapure water (18.2 M�.cm)
is used to prepare all aqueous solutions in this work. None of the
reagents as received are further purified.

Preparation of Precursor
Fe(NO3)3.9H2O 0.323 g, Ni(NO3)2.6H2O 0.058 g,
Co(NO3)2.6H2O 0.058 g, NH4F 0.03 g, CO(NH2)2 0.12 g
are added to 20ml ultrapure water to form mixture solution
after 30min stirring. The final solution and the pretreated
CC are sealed in a 30-ml Teflon-lined stainless-steel high-
pressure reactor and maintained at 120◦C for 5 h. Then, the
product is naturally cooled to room temperature. The product
is taken from the reactor and washed for three times with
ultrapure water and ethanol successively. Dried under 60◦C
for 2 h.

Preparation of FeCoNiS-FeOx Nanowire
First, 0.035 g sodium sulfide is added to 20ml ultrapure
water with stirring. The formed solution and the
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FIGURE 5 | (A) Linear sweep voltammetry (LSV) curves of different oxygen evolution reaction (OER) catalysts. (B) Tafel curves of different OER catalysts. (C) LSV curve

of FeCoNiS-FeOx catalyst and another curve after 500 CV cycles. (D) Time-dependent current density curve of FeCoNiS-FeOx OER catalyst under constant potential.

FIGURE 6 | Multistep chronopotentiometric of oxygen evolution reaction

(OER) catalyst. The current density started at 60mA cm−2 and finished at

280mA cm−2, with an increment of 20mA cm−2 per 500 s without ohmic

potential drop (IR) correction.

precursor are sealed in a 30-ml Teflon-lined stainless-
steel high-pressure reactor and maintain at 120◦C for
3 h. After naturally cooling to room temperature, the
product is washed with ultrapure water and ethanol
successively. At last, the product is dried for 2 h
under 60◦C.

Characterizations
A diffractometer (RigakuD/MAX 2550, Cu Kα radiation, λ =

1.5418 Å) is used to perform XRD characterization. The scan
range is from 5 to 80◦ with a scanning rate of 5◦/min. SEM
characterizations are realized on a MERLIN compact SEM with
the accelerating voltage of 20 kV. TEM characterizations are
realized on TEM of Zeiss Libra 200FE with operation voltage of
200 kV. An ESCALABMK II X-ray photoelectron spectrometer
is used to measure XPS spectrum with Mg as the exciting source.

Electrochemical Measurements
A CHI 660E electrochemical analyzer (CH Instruments, Inc.,
Shanghai) is used to perform all the electrochemical tests. In
order to better characterize the electrode reaction, a three-
electrode system is adopted. The catalysts/CC is used as working
electrode. Mercuric oxide electrode (Hg-HgO) is as contrast
electrode. Graphite rod is as auxiliary electrode. Potassium
hydroxide solution (1.0M) is used as the working electrolyte
solution. All experiments are realized at 25◦C. All potentials
for LSV curves are calibrated on reversible hydrogen electrode
(RHE) scale [E (RHE) = E + 0.059 × 14 + 0.098]. Unless stated
otherwise, all LSV potentials are calibrated with ohmic potential
drop (IR) due to solution resistance. Overpotentials (1E) are
calculated based on the equation 1E= E (RHE) - IR - 1.23.
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