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A new optically active BINOL-amino alcohol has been designed and synthesized in a

good yield and applied as chiral nuclear magnetic resonance (NMR) solvating agent for

enantioselective recognition. Analysis by 1H NMR spectroscopy demonstrated that it

has excellent enantiodifferentiation properties toward carboxylic acids and non-steroidal

anti-inflammatory drugs (14 examples). The non-equivalent chemical shifts (up to 0.641

ppm) of various mandelic acids were evaluated by the reliable peak of well-resolved 1H

NMR signals. In addition, enantiomeric excesses of the ortho-chloro-mandelic acid with

different enantiomeric ratio were calculated based on integration of proton well-separated

splitting signals.
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INTRODUCTION

Chirality plays an important role in chemical, physical, pharmaceutical, and many biological
events. The rapid and facial methods to detect and discriminate chiral compounds are highly
desirable and urgent to accelerate advance in modern asymmetric synthesis and chiral drug
screening (Izake, 2007; Wenzel and Chisholm, 2011a). In this context, the exponentially
growing detection demand in this intensive area of research drives the development of chiral
analysis (Pu, 2004, 2012; Liu et al., 2010; Nieto et al., 2010; Leung et al., 2012; Cheng et al.,
2013; Wolf and Bentley, 2013; Jo et al., 2014; Akdeniz et al., 2016; Yu and Yao, 2017).
Among these direct and non-invasive spectroscopic methods of analysis, nuclear magnetic
resonance (NMR) spectroscopy plays a leading role and enjoys a special status because it
is a reliable, routine technique for monitoring the optical purity and analyzing the absolute
configuration of chiral molecules, offering several advantages such as cost-effectiveness, operative
convenience, small sample size, and also sensor responsiveness (Parker, 1991; Zalesskiy et al.,
2014; Pérez-Trujillo et al., 2015; Silva, 2017; Xu et al., 2019). The general methods to
NMR spectroscopic discrimination of enantiomers through chemical shift measurement and
spectral splitting observed have been developed: first is to utilize an enantiomerically pure
chiral derivatization agent taking advantage of a reactive moiety of the substrate to produce
two diastereomers. However, the chiral derivatization agents require cumbersome and time-
consuming synthetic procedures and may cause concerns of kinetic resolution and racemization
(Seco and Riguera, 2015). The second, chiral-solvating agents (i.e., CSAs) or chiral lanthanide
shift reagents (i.e., CLSRs) can form two NMR-observable diastereomeric complexes/mixtures
with guests via non-covalent interaction (Wenzel and Wilcox, 2003; Seco et al., 2004; Pérez-
Trujillo et al., 2013). In recent years, chiral liquid crystals are also employed for spectral
enantiotopic discrimination due to the effect of magnetically induced anisotropic interactions
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Graphical Abstract | The new optically active BINOL-amino alcohol was

used as chiral solvating agent (CSA) for the rapid chiral analysis of carboxylic

acids and nonsteroidal anti-inflammatory drugs by 1H NMR spectroscopy.

(Lesot et al., 2015; Farjon and Giraud, 2018). The CLSRs in
the analyte solution are similar to CSAs with regard to the
non-covalent interactions, but the major problem encountered
in the use of CLSRs is enormous line broadening due to the
paramagnetic interaction in poor resolution and sensitivity (Yang
et al., 2005; Wenzel, 2012). In this regard, using CSAs as NMR-
observable sensors for structural recognition has significant
advantages over others mentioned above. Importantly, only a
little amount of hosts (CSAs) and guest are needed without
tedious derivatization and purification steps in test samples
(Wenzel, 2007; Wenzel and Chisholm, 2011b; Chaudhari and
Suryaprakash, 2012; Seco et al., 2012; Uccello-Barretta and
Balzano, 2013a,b). In addition, it is not necessary to construct a
calibration curve by using enantiopure samples compared with
other spectroscopic apparatus, such as fluorescence spectroscopy
and circular dichroism. Furthermore, the analytes are readily
recovered because of non-covalent interactions, which is very
important for difficult-access pharmaceutical compounds or
drug samples (Holzgrabe et al., 1999; Uccello-Barretta and
Balzano, 2013a,b). Thus, the further development of effective
CSAs is highly desirable.

In recent years, various representative types of CSAs have
been reported, such as Zwitterionic phosphorus heterocycles
(Sheshenev et al., 2013), tetraaza macrocycles (Feng L. et al.,
2018; Feng S. et al., 2018), C2-symmetrical bisthioureas (Chen
et al., 2018), chiral squaramides (Yang et al., 2018), Kagan’s
amides (Jain et al., 2018), and so on. The binaphthyl-type and
related compounds have been widely investigated in asymmetric
catalysis, enantioselective fluorescence recognition, and new
materials. The chiral binaphthyl units and multiple hydrogen
bonding sites containing hydroxyl, or amino groups, can provide
an excellent candidate for chiral receptor sensors development
(Yu and Pu, 2015; Pu, 2017), especially, they are broadly
applicable CSA. For instance, commercially available (R)- or
(S)-BINOL and derivatives as chiral-solvating agents to assign

the enantiomeric excess (ee) of enantiomeric hydroxy carboxylic
acids, synthetic drugs, natural alkaloids, or flavanones via 1H
NMR spectroscopy (Ardej-Jakubisiak and Kawecki, 2008; Freire
et al., 2008; Klika et al., 2010; Redondo et al., 2010, 2013;
Chaudhari and Suryaprakash, 2013; Mishra et al., 2014; Yuste
et al., 2014; Borowiecki, 2015; Du et al., 2015; Yi et al., 2016;
Monteagudo et al., 2017) and bifunctional BINOL-macrocycles
containing diacylaminopyridine moieties were developed by
Ema et al. (2007, 2008, 2018); BINOL-derived disulfonimide
extends the concept of CSA sensing to chiral recognition of
O-heterocycles (Couffin et al., 2014); the crownophane and
strapped calix[4]pyrrole containing built-in chiral BINOL were
used for the enantioselective recognition of chiral amines and
carboxylate anions, respectively (Tokuhisa et al., 2001; Miyaji
et al., 2007). Chiral BINOL Brönsted acids were selected for
determination of various indoloquinazoline alkaloid-type tertiary
alcohols and various 3-arylquinazolinones (Liu et al., 2017; Wu
et al., 2018), binaphthalene skeleton ureas as sensor for scanned
various sulfoxides, phenylethanol, and arylpropanoic acids
(Holakovský et al., 2015; Curínová et al., 2018, 2019). The results
above indicated that highly active binaphthyl scaffold receptors
containing multiple binding units could be used as an extremely
versatile reagent for various analytes, and the large atropisomeric
naphthyl rings also caused shielding effects through π-stacking
stabilization that account for enantiomeric discrimination.

The designed, synthetic new hosts that are capable of
discriminately more substrate are often challenging and an
important goal for prochiral substrates and have attracted
increasing attention in recent years. However, most of existing
CSAs are not usually practical because of the splitting of
chemical shift non-equivalences too weak to realize baseline
resolution, thereby hampering the chemical analysis. Therefore,
the development of new CSAs for NMR chiral analysis is still
highly desirable. In the last years, our group has successfully
developed a different class of CSAs for the determination of
enantiomeric ratio and the application of enantiodiscrimination
(Lei et al., 2010; Liu et al., 2011; Bai et al., 2019). Among reported
CSAs, chiral amino alcohols are especially suitable to be used
as chiral sensors as they pose proper nature of non-covalent
interactions with substrates. In our previous study, we found
that pyrrolidine-functionalized BINOL could be used as a highly
effective chiral sensor for the resolution of discrimination and
measurement of carboxylic acids. Recently, the simple β-amino
alcohol was also developed as a CSA for discrimination of the
signals of some carboxylic acid molecules (Ma et al., 2012; Li
et al., 2016). In order to know the incorporation of BINOL-
derived scaffold in the CSA enantiodifferentiation capacity, we
decided to design and explore the possibility to introduce
monosubstituted amino alcohol by choosing attached hydroxyl
and amino groups with an aim to form multiple hydrogen
bonding in the form of π-stacking. Based on this goal, the
enlargement of the enantiodistinctive capacity of target BINOL-
derived amino alcohol depended on incorporated structural
modification that was generalized and developed. In addition,
taking it into account commercially available and relatively
cheap chiral amino alcohols, we decided to synthesize our
target CSA of BINOL derivatives with chiral phenylglycinol
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SCHEME 1 | Preparation and structures of 3-monosubstituted BINOL-amino alcohol 3.

FIGURE 1 | (A) Overlaid partial 1H NMR spectra and nonequivalent chemical shifts of α-H of (±)–mandelic acid (MA) with various molar ratio in the presence of CSA 3

in CDCl3 at room temperature. (B) Job plots of CSA-3 with (R)-MA and (S)-MA. 1δ stands for the chemical shift change of the α-H proton of (R)- and (S)-MA in the

presence of CSA-3. X stands for the molar fraction of the CSA-3 (X = [CSA-3]/[CSA-3] + [MA]). The total concentration is 10mM in CDCl3.

as an attached side chain. The convenient and powerful CSA
containing chiral phenylglycinol can be utilized to carry out the
enantiodifferentiation of carboxylic acids based on well-resolved
splitting signals by 1H NMR spectroscopy. Herein these results
are reported.

RESULTS AND DISCUSSION

The chiral monosubstituted BINOL-amino alcohol can be readily
carried out in five-step sequence according to the reported
procedures starting from commercially available (R)-BINOL 1

(Matsunaga et al., 2000; DiMauro and Kozlowski, 2001; Dong
et al., 2012; Xu et al., 2016). The key BINOL monoaldehyde
was readily generated by lithiation, acylation of the bisprotected
BINOL, and cleavage of the MOM ethers starting from the
source of commercial (R)-BINOL; subsequently, the requisite
monoaldehyde 2 was condensed with ready D-phenylglycinol
and followed by reduction with NaBH4. The 3-monosubstituted
BINOL-amino alcohol 3 was obtained as a yellow solid in 89%
yield. The synthetic route leading to chiral 3-monosubstituted
BINOL-amino alcohol 3 is shown in Scheme 1 (the general
synthesis procedure is illustrated in Scheme S1 and details of all
NMR spectras are provided in Figures S1–S10).

With the desired synthetic host in hand, to investigate the
discriminating ability of BINOL-amino alcohol 3 as a CSA for
the analysis of carboxylic acids, we first performed 1H NMR
experiment of the racemic mandelic acid (MA) as a test sample
in 0.5mL CDCl3. The results of these experiments are shown
in Figure 1; the addition of CSA 3 to racemic MA in CDCl3

caused non-equivalence CαH proton resonance of MA to shift
up-field in the 1H NMR spectrum; the good signal resolution
was collected. The observed two peaks suggest that the host
compound was able to interact with racemate guests to convert
the enantiomer into different diastereomeric complexes. To
find out the suitable stoichiometries of the host–guest complex,
the regarding chemical shift 11δ value of CαH resonance
ranged from 0.1879 to 0.5491 ppm (93.95–274.55Hz), when
the molar ratio of CSA 3 and racemic MA varied from 1:2
to 5:1. By considering cost-efficiency, we know commercially
available hosts are often very expensive, and the discriminating
ability of 3 to resolve enantiomers at the host:guest molar ratio
2:1 is a clear improvement as a minimum of 1.0 eq. (and
in some cases an excess up to 24 eq.) of the host is needed
to obtain a maximal resolution (Ema et al., 2007; Uccello-
Barretta and Balzano, 2013). From the above detailed analysis,
therefore, the molar ratio of 2:1 was finally utilized to select
the application in the NMR differentiation of MA derivatives.
The stoichiometry of host–guest complex was also determined
according to Job’s method of continuous variation. As shown in
Figure 1B, it showed a probable maximum at 1 – X = 0.35; this
indicates that CSA 3 and the acid bind in a 2:1 complex under
these conditions.

With optimized conditions in hand and encouraged by above
satisfactory enantiodiscriminating results, next, we examined
the scope of other derivatives of MA. The structure, 11δ

values of examined guests, and related spectra are displayed in
Table 1. Because of the multiple hydrogen–bond interactions
of OH/NH moiety and incorporated anisotropic aromatic
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TABLE 1 | Non-equivalence chemical shift (11δ) and partial spectra of racemic carboxylic acids (guests) in presence of receptor by 1H NMR (500 MHz) in CDCl3 at 25◦C.

Entry Guesta 11δ (ppm)b 11δ (Hz) Spectra

1 0.517 258.5

2 0.582 291.0

3 0.522 261.0

4 0.641 320.5

5 0.592 296.0

6 0.389 194.5

7 0.329 164.5

8 0.047c 23.5

9 0.050c 25.0

10 0.092 46.0

(Continued)
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TABLE 1 | Continued

Entry Guesta 11δ (ppm)b 11δ (Hz) Spectra

0.041c 20.5

11 0.086 43.0

0.033c 16.5

12 0.033c 16.5

0.013d 6.5

13 0.099 49.5

0.052c 26.0

14 0.086 43.0

0.067c 33.5

aAll analytes were prepared by mixing 2:1 of the host 3 with various carboxylic acids in NMR tubes (20mM host and 10mM guests in CDCl3).
bChemical shift non-quivalences of the methine group.
cChemical shift non-equivalences of the α-methyl group.
dChemical shift non-equivalences of the α-methyl protons of the isopropyl group.
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FIGURE 2 | Selected overlaid partial 1H NMR spectra of nine different optical purities ortho-chloro-MA samples (ee% = R% – S%) in the presence of 2 equiv.

BINOL-amino alcohol 3 (left); its linear correlation between the observed (y) and theoretical ee% values (x) of ortho-chloro-mandelic acid (right).

group, the CSA associated with all tested aromatic carboxylic
acids through ion-paring interaction and exhibited good
baseline resolution for large-enough α-H signals on a 500-
MHz instrument (Table 1, entries 1–7 and Figures S11–S17).
As a whole, these carboxylic acids with a para- or meta-
substituent on the phenyl group gave higher 11δ values than
those bearing ortho-substituted ones, the 1H chemical shift non-
equivalences of methane protons reached hundreds of Hertz.
In light of the above observation, the para-substituted aromatic
carboxylic acids (Table 1, entries 2–4) almost showed good
baseline resolution and much bigger 11δ value compared
with the ortho-substituted aromatic carboxylic acids (Table 1,
entries 6–7); in particular, the MAs with strong electron-
donating groups (F-, CF3-) gave better results (0.582 ppm,
291.0Hz and 0.641 ppm, 320.5Hz; Table 1, entries 2 and 4).
However, the ortho-substituted group on the MAs displayed
weaker values (0.582 ppm, 291.0Hz vs. 0.389 ppm, 194.5Hz,
Table 1, entries 2 and 6); ortho-chloro-MA displayed similar
enantiodiscriminating ability (0.329 ppm, 164.5Hz; Table 1,
entry 7); the above results indicated that the discriminating
ability of CAS 3 could be weakened presumably due to
being more sterically hindered in ortho-substituted MAs.
However, meta-difluoro–substituted aromatic carboxylic acid
showed the relatively bigger 11δ value as 0.592 ppm compared
with the ortho-fluoro–substituted one (Table 1, entry 5). The
results suggested the stronger electron-withdrawing effects, the
larger the corresponding 11δ values. In order to further
explore enantiodiscriminating abilities of CAS 3, the α-methyl
protons of the carboxylic acids were also discriminated by the
corresponding host only moderately (0.047 ppm, 23.5Hz; 0.050
ppm, 25.0Hz; 0.041 ppm, 20.5Hz; and 0.033 ppm, 16.5Hz;
Table 1, entries 8–11 and Figures S18–S21). We can observe a
minor separation of the CH3 proton signal when using propionic
acid derivatives instead of phenylacetic acid derivatives (Table 1,
entries 9 and 11).

Non-steroidal anti-inflammatory drugs (NSAIDs) are the
most frequently used for patients with low-back pain and
inflammation. Among these phenylacetic acid analogs, the
BINOL-amino alcohol 3 also exhibited clear and good chiral
discrimination of signals for NSAIDs. The signals of α-CH3

ibuprofen, ketoprofen, and flurbiprofen were large enough with
peaks identifiable (Table 1, entries 12–14 and Figures S22–S24).

Finally, encouraged by above good enantiodiscriminating
results, and to explore the practical quantitative applicability
of BINOL-amino alcohol 3 for enantiomeric determination
of various non-racemic samples, nine non-racemic samples
containing ortho-chloro-MA with 0, 10, 40, 70, 100, −20,
−50, −80, and −100% ee values were accurately calculated
by integration of α-H signals of ortho-chloro-MA in 1H
NMR analysis. The results are shown in Figure 2. The linear
relationship between the NMR-determined values (y) and those
gravimetry-determined values (x) is excellent with R2 = 0.999 (y
= 1.007x + 0.0279, R2 = correlation coefficient).

CONCLUSIONS

In summary, a new chiral amino alcohol containing BINOL
subunit had been prepared in a five-step sequence and
enantiomerically pure form starting from commercially available
(R)-BINOL, The CSA 3, which was a successfully solvating
agent that was effective for carboxylic acids including some
NSAIDs. In the presence of two equivalent of BINOL-amino
alcohols, carboxylic acid racemates showed the chemical shift
non-equivalences (11δ) large enough for the discrimination of
the enantiomers (up to 320.5Hz). Furthermore, excellent split
signals were revealed in 1H NMR spectroscopy. The quantitative
applicability of CSA 3 for enantiomeric determination of non-
racemic samples was also explored based on the integration of
α-H signals.
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